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Abstract

At the LHC, the diboson stated/*W—, ZZ, W*Z, W*y, andZy arise primarily through quark-

quark interactions and to a lesser extent from gluon-gluon fusion. Diboson production cross-sections
are determined in the Standard Model (SM) at tree level by t- and u-channel diagrams and by charged
triple-gauge-boson couplings in the s-channel. Possible anomalous triple gauge couplings, reflecting
non-SM physics, can increase diboson production. We report on the studies of expected ATLAS
measurements of diboson production cross-sections in the leptonic (electron and muon) decay chan-
nels of theW andZ bosons. Such potential measurements can probe anomalous triple gauge boson
couplings and are sensitive to physics beyond the SM.
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1 Introduction

This paper summarizes studies [1] of Standard Model (SM) diboddnvsW Z, ZZ, Wy andZy detec-
tion sensitivities in ATLAS with final states containing muons, electrons and photons, and associated
triple gauge boson couplings (TGC). Many models predict the anomalous couplings of the order of
1023 —-10*[2]. Anomalous couplings yield larger diboson cross-sections, particularly at high trans-
verse momentum, of the bosons and high transverse maés, of the dibosons. Experimental limits
on anomalous TGC's are obtained by measuring deviations of these distributions from theoretical pre-
dictions. This study is based on an initial (early LHC running) ATLAS detector and trigger description.lt
uses 30 million fully simulated events for a refined understanding of the backgrounds and employs a
Boosted Decision Treglgorithm [3] (BDT) for a significant enhancement of the detection sensitivity.
Tree-level Feynman diagrams for electroweak diboson production at hadron colliders are shown in
Figure 1. The s-channel diagram contains the vector-boson self-interaction vertices of interest. SM
cross-sections are available up to next-to-leading-order (NLO) [4], [5], [6] and are shown in Table 1.
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Figure 1: Tree level diagrams of diboson production in hadron colliders. In the SM, charged boson pairs
are produced in all diagrams, neutral pairs only in the t-channel and u-channel. The s-channel contains
the TGC vertexV, =W, Z or y.

The most general effective Lagrangian, conserving C and P separately, for charged triple gauge boson

interactions is [7]:
L/gwwyv = ig¥ (WE WHVY — W, WHVY) + i W W VY - I\Q/IL\\;VWl;‘#WV“V"p

whereV refers to the neutral vector-bosospr v, Vyy = dyVy — 9y, (and similarly forw) and the
overall coupling constantgwwy are given bygww, = —€, gwwz= —e coty, with e the positive
electron charge anéy the weak mixing angle. In the Slgbl’ = xy =1 andAy = 0. Experimentally
we search for anomalous couplingsg? = g5 —1, Ak, =ky,—1, Akz=kz—1 Ay, and Az
Electromagnetic gauge invariance requig%& 1 orAg’l’ = 0. The final state®/+*W—, W*Z, andw*y
have differenty/$ dependence, wherg$ is the invariant mass of the vector-boson pair. This provides
complementary sensitivity to the charged anomalous TGC's [8]. In the SM, neutral bosonZaairs,
andZy, are produced via the t- and u-channels. While the ZRZ andZZy TGC's are zero at tree
level, anomalous couplings may contribute. For production of on-Zhietisons pairs only (as in these
studies) the most general form of the effective Lagrangian respecting Lorentz and electromagnetic gauge
invariance yields neutra€ odd couplings [9], commonly referred to §% (i = 4, 5). CP invariance and
parity conservation forbidg), andfY respectively.

With non-SM coupling, diboson production amplitudes grow with energy, eventually violating tree-
level unitarity. This is avoided by scaling the anomalous paramefse§S) = (1@%7 wherelAxy is
the coupling value in the low energy limit, n=2,3 for charged, neutral TGC respectial/the mass
scale where the new phenomenon responsible for the anomalous couplings would be directly observable.



Table 1: Diboson signatures, cross-sections and event selections.
Processl(= e, u) | selection (leptons and photons are isoIateoE&tlS > 30GeV)
WW— |7 vI~v | 2 opposite sign leptons witpr > 25 GeV,AR(ll) > 0.2, Ef"S> 30 GeV,
Gigw =113pb | |M,— My | > 30 GeV,Nj¢t < 2, Vector SumgieP, Ess)< 100 GeV
WZ— 1T vIT1~ | 2 opposite sign +1 lepton withr > 25 GeV,AR(Il) > 0.2, vertexAZ(Il) < 1
ordt, = 29 pb| mm,AA(Il) < 0.1 mm,EMsS> 30 GeV,|M, — M | < 10 GeV, 40< My < 250
o', =184pb | GeV,Nje < 2, Vector SUmBIEP, EMs9y< 100 GeV
ZZ— 1T 17 1% 1~ | 2 pairs of opposite sign leptons wity > 20 GeV,AR(Il) = \/ACDﬁ +Ang >
0%y =148 pb 0.2, Njet=0, all leptons same vertex
ZZ— 171~ v v | 2 opposite sign lepton&™S, pr > 20 GeV,AR(ll) > 0.2, |[M;— M; | < 10
ol% =148pb | GeV,EMss> 50 GeV, veto ¥ lep, pr(Il) > 100 GeV\Njet=0, AD(Z, EMiss) >
35°
Zy — |t |~ y | 2 opposite sign leptons, photorpr and Er > 20 GeV, AR(ll) > 0.2,
oy =219 pb AR(l, photon > 0.7, Njet=0, M, — M | < 10 GeV,|M, — M;;,| > 30 GeV
Wy — £ v y| 1 lepton and photorpr > 20 GeV, EMSS > 30 GeV, 40< Mt < 250 GeV,
oy = 451 pb Njet=0, AR(l, photon) > 0.7

Table 2: Diboson detection efficiencies and statistical significance for i

Process Method | Nsignai(S) | Nobkg(B) Eff. Significance
WW— [fvI~v | BDT 469+ 6 92+8 4.9% | 23
cuts 231+4 223+21 24% | 15
WZ— IFvI*l- | BDT 128+2 16+3 15.2%| 18
cuts 53+2 8+1 6.3% |11.4
ZZ— 1717171~ | cuts 17+.1 19+.2 7.7% | 6.8
ZZ— 1t~ vy cuts 10+.2 5+2 26% | 3.2

Zy— ete y BDT | 367+12 | 187+19 |5.4% | 20.3
Zy— ptu-y | BDT | 751+23 | 429£43 | 11% | 27.8
Wy — etvy BDT | 1604+65 | 1180120 | 5.7% | > 30
Wy— pufvy | BDT | 2166+88| 1340+130| 7.6% | > 30

2 Event Generation and Analysis

Generation oW TW—, W*Z0, 7070 final states and leptonic decays are modeled by the MC@NLO
(v3.1) [10] generator, interfaced to HERWIG/Jimmy (v6.5) [11] for NLO QCD matrix elemamgV/
production via gluon-gluon fusion is done by gg2ww (v2.4) [18}*y and thez%y production is from
PYTHIA (v6.4) [13] with leading order QCD matrix elements. Backgrounds from top pairs are simulated
by MC@NLO, and from QCD jets associated with #hs orZs are produced by PYTHIA. All cross-
sections are normalized to NLO, using k-factors determined from the NLO generators. The diboson
processes, production cross-sectiam{ — leptong) and event selections are reported in Table 1.

Studies of diboson events were conducted with a straight-cut analysis based on selections in Table 1
and also using a multi-variate BDT algorithm [3]. In the latter, a cut on the BDT output discriminant
was chosen to minimize the cross-section measurement error. The expected signal and background for 1
fb~! luminosity using one or the other method are reported in Table 2.

To determine sensitivity to anomalous TGC’s the BHO and BosoMC MC generators [8] [14Xfor
WW, Zy and forW Z, y respectively are used to compute differential cross-sections over a grid of points
in the parameter space. Figure 2(a) shows cross-sections for SM and anomalous TGC's. Rather than
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Table 3: Charged TGC 95% CL limitg, = 2 TeV

Lumi. fot [ A, Aky Agf Ak, Ay

wz wWw wz wWw Wy
1 [-0.028,0.024]| [-0.117,0.187] | [-0.021,0.054]| [-0.24,0.25] | [-0.09,0.04]
10 [-0.015,0.013]| [-0.035,0.072] | [-0.011,0.034]| [-0.088,0.089]| [-0.05,0.02]
30 [-0.012,0.008]| [-0.026,0.0048]| [-0.005,0.023]| [-0.056,0.054]| [-0.02,0.01]
DO/CDF best| [-0.13,0.14] | [-0.82,1.27] [-0.88,0.96] | [-0.2,0.2]

re-run fully simulated events with anomalous couplings, the ra&®son/doswm (Figure 2(b)) are used

to re-weight the fully simulated SM events, after standard cuts. Theoregieaéncedistributions of

pr andMr in coupling parameter space are created. These variables are sensitive to anomalous TGC'’s,
especially at high M or pr as Figure 2(a) shows. To determine experimental sensitivity, pseudo-data
are extracted from the SM simulated data as mock observations corresponding to a specified luminosity.
Figure 3 shows an 'observed’ Mdistribution of WW~ pairs for 1 and 30 fb'. Comparison to a
theoretical reference distribution is done with a binned Maximum Log Likelihood (MLL) method. By
fitting the MLL to an anomalous TGC parameter, one dimensional 95% CL limits are obtained. Limits
on charged anomalous TGC's for 1, 10 and 30%flare reported in Table 3 with Tevatron limits for
comparison. One dimensional limits for neutral anomalous TGC'’s bas@Zen llll andZZ — llvv

are in Table 4 with LEP results for comparison. Charged and neutral TGC two dimensional expected
limits are available in [1].

Table 4: Neutral TGC 95% CL limit9\ = 2 TeV

Luminosity fo! | 7 f£ fy fd

1 [-0.018,0.018]| [-0.018,0.019]| [-0.022,0.022]| [-0.022,0.022]
10 [-0.009,0.009]| [-0.009,0.009] [[0.01,0.01] | [-0.011,0.01]
30 [-0.006,0.006]| [-0.006,0.007]| [-0.008,0.008]| [-0.008,0.008]
LEP [0.3,0.3] [0.34,0.38] | [-0.17,0.19] | [0.32,0.36]
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Figure 3: WTW~ transverse mass distributions at 1 fb(@) and 30 fb! (b) integrated luminosity.
Pseudo-observations (data points) are shown with SM and anomalous coupling (AC) signals combined
with background. The last bins are overflow bins.

3 Conclusion

Vector boson self-couplings are a fundamental prediction of the non-Ab8li#R), x U(1)y gauge
symmetry theory, thus precise measurements of the couplings are a test of the SM and a probe for new
physics. A factor of 7 higher LHC collision energy over the Tevatron enables a higher repghamd

Mr. Coupled with cross-sections &thigher [1], the LHC diboson production rate will be100 times

higher, allowing ATLAS sensitivities to anomalous TGC'’s to be greatly improved over current limits.
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