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Abstract

A possible approach for a common detector performance rdatation algorithms is
presented in this note. It summarizes the outcome of ongdisgussions during past
months. Special focus is given to the basic implementatesigth of performance deter-
mination algorithms inside the TMENA-framework. Moreover, a common representation

of efficiencies, resolutions and scales is proposed insitmndy-developed database struc-
ture.
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1 Introduction

The determination of the ATLAS detector performance in daften referred to as in-situ performance
determination) is essential for all physics analyses ama evore important to understand the detector
during the first data taking period. Hence a common packag#éoin-situ performance determination
inside the ATLAS software AHENA would provide a useful tool for various applications. Thekzge
should contain standard algorithms for the determinatioih@® detector performance, which should be
provided by the combined performance and standard modddimgpgroups. Moreover, the determined
detector performance should be represented in a cohergniitldan the package. In this note it is dis-
cussed what such in-situ performance determination dlgos should provide and how they should be
structured and implemented. Moreover a common databasest for the storage of detector perfor-
mance information is proposed.

One can distinguish between three different views of plsyslzservables in high energy physics
experiments. The first view describes the real measurea wdlthe observable, denoted @s;a. The
second view ob is the Monte Carlo simulated detector response of the meamsnt, which we denote
asoyc. The third and most relevant view is the truth value of thecobable, i.e.0rryth. The basic goal
of each physics analysis is to dedwsey:, from Opgia.

In general one has to understand the underlying detectoetaildo perform such a deconvolution.
The best guess of the detector understanding is given byiihédnte Carlo simulation of the detector
response. The ATLAS experiment uses for this purposes #datktietector description and the Geant4
toolkit to model the whole ATLAS detector [7]. This simulati step can be interpreted as a function
th(OTruth)

which takes as input the truth value of the observable anesgback the Monte Carlo prediction
of the detector response. On the other hand, one needs toheawgponse detector response, i.e. the
function

Tru
omc = fuc

Truth
Opata = fpata (OTruth)

to perform the physics analysis, bguh = fg;{’;h(omta)‘l. It must be goal for all groups, beginning
from subdetector experts to physics groups to minimize ifierdnces betweemhﬂgﬂh and f[T,;{J;h. This

is a long and very challenging task, which is not addressdéitismote. The remaining differences in the
two functions can be described by a third function, whicletad input variableyc and adjusts it to the

measured data, i.e

Opata = flg/g(t:a(OMC)

Hence, the functiorfJ"'" is nothing else as a convolution @A™ and fY$.. In some cases the
function fg;g;h can be directly accessed, e.g. reconstruction or trigdeiezfcies for leptons. In most
cases such a direct estimation is not possible or not adeiskibthese cases the Monte Carlo prediction
has to be modified. It must be noted that is always preferakgeljustfy, ™" via f)I€_ than trying to di-
rectly to modelff[{t" since all the known correlations and effects are autortitzken into account in
the Monte Carlo predicted detector response. An exampleidétermination of the lepton momentum
resolution which depends on the transverse momentunm tred @ regime of the detector, the isolation
and the underlying events. All these dependencies are fat@account via construction in the Monte
Carlo simulation, while a direct assessmentf@j‘t-‘;h require the description of these dependencies via
hand. The goal of this note is to discuss a common approadhdatetermination storage G&ffa

The note is structured as follows. In section 2.1 some examgthods for the in-situ performance

determination are discussed and their common features atiged in section 2.2. The motivation and
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basic functionality of a common framework is introduced @ct®on 3.1. The logical separation of the
algorithms, the basic implementation design inside tha#ENA framework and the representation of the
performance quantities is discussed in sections 3.2 ande%Bectively. The last section 3.4 describes a
possible database implementation in order to store anddémeldetermined detector performance.

2 Strategies for Performance Determination in Data

2.1 Some basic examples

In the following, three approaches for the detector pertoroe determination in data have been chosen to
illustrate their common features. These features implaaly a basic structure of a common underlying
framework. The determination of the lepton momentum scakk lapton trigger and reconstruction
efficiencies will be discussed in detail. Other performagoantities, e.g. the jet energy scale, the
b-tagging efficiency or the missing energy can also be aedessssitu in data. It must be noted that
the following discussion is only meant as an example of jbesn-situ approaches and does not aim at
covering physics analysis implementations in any det@im&examples are discussed in detail in [2], [3]
and [4].

2.1.1 Lepton Momentum Scale and Resolution

The knowledge of the energy scale and resolution for lepteressential for many physics analyses,
since it has a direct impact on the number of events which fesginematic selection cuts. One of
the most common approaches for the determination of the seal resolution within the energy range
of 20 GeV and 60 GeV is the study of the reconstructed Z bossonence. The energy resolution of
the lepton reconstruction has a direct impact on the medswigth, while the energy scale has a direct
impact on the measured mean value. In order to determinesfhhen momentum scale and resolution,
the following algorithm could be used. The energy resotutionction e predicted by Monte Carlo
simulations is iteratively adjusted in its width and scaie,

€pata — Toca(€Mmc, S, 60) 1)

wheres describes the energy scale abd corresponds to an additional resolution smearing. As an
example the determination of the overall scale and reswmwtiith a simple gaussian will be discussed,
briefly. In this example case the transversal momentum foin eauon track will be modified via

€pata — €mc -+ gaugXm =S,00) (2

The parametes describes an additive energy scale @ represents the width of an additional
gaussian smearing function. For each variation of the patens, the resulting Z boson mass distribution
can be calculated, by applyir‘@"{ga on the full Monte Carlo simulated data. An effective vaoatican
be achieved by2-minimum search algorithm likd Minuit which searches for a minimal difference
between the predicted Z boson mass distribution and theureghslistribution. This iterative process
stops if the new predicted Z boson mass distribution agre#snwits statistical error to the measured
distribution and the chosen parameteasidd o are defined as measured momentum scale and resolution,
respectively. A schematic example of several predictedsrdissribution for various values gfis shown
in Figure 1. A detailed discussion can be found in [1].

This simple example can be extended for different kinemaigmes, e.g. a separation between
20GeV< pr < 40GeV and 40Ge\k pr < 60GeV. In this example three different Z boson mass
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Figure 1. Measured invariant mass distribution Figure 2: Principle of ‘Tag and Probe’-method:
and Monte Carlo predicted distributions for vari- Two independent subdetectors measure the same
ous lepton momentum scales. quantity. The probe object tests the efficiency.

distributions, for each possible combination of the two meiy must be measured and fitted. This
requires higher statistics to achieve good precision aadsléo a multidimensionaf?-fitting procedure.

Moreover, not only the Z boson decay, but also other well knossonances like th¥/ ¢y decay can
be used to determine the lepton momentum scale and resolutio

2.1.2 Muon Reconstruction Efficiencies without background

The basic principle to access trigger and reconstructificiesicies in data is based on the so-called ‘tag
and probe’ method. It relies on the fact that muons and elestcan be detected by two different de-
tector systems, e.g. by the inner detector and the muonrspester or the electromagnetic calorimeter,
respectively. Moreover, the decay of a well known partislesed. The decay of the Z boson into two
muons is discussed here again as a first example in orderd@oviee the reconstruction efficiency of
the muon spectrometer. The two decay muons can be detecte acks in the inner detector and
two corresponding tracks in the muon spectrometer. Thealleec'tag’ muon is defined as a combined
muon track, i.e. a track which is reconstructed both in theirdetector and the muon spectrometer.
The ‘probe’ muon is an inner detector track, which has nonlested if it also matches with a muon
spectrometer track, as illustrated in Figure 2. To mininmbagkground under the peak, it is required
that the tag and probe muon yield an invariant mass closeet@ thoson mass. Moreover, kinematic
and isolation cuts are applied to further reject backgrommtesses. This leads to a clean sample of Z
boson decays, i.e. it is known that the probe-track was chligea muon as a Z boson always decays
into leptons of same flavor. Itis crucial that no informatfoom the muon spectrometer was used for the
probe-track. Hence it can be tested if a track in the muoresystan be associated to the probe-muon.
Applying this procedure to a large sample of Z boson eveaiddéo a direct determination of the overall
track reconstruction efficiency of the muon spectrometer.

Several things have to be noted: the selection cuts, whiglagplied on the tag and probe muons,
lead to a background free selection and the reconstrucfiimieacy can be tested for each event. Monte
Carlo simulations predict a background contribution oflésan 02%. In data this can be tested via

D1: both muons in the first region, 2: both muons in the secogidme 3: each muon in a different region
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Figure 3: Invariant mass distribution for two tag- Figure 4: Invariant mass distribution for one tag-
objects in each event. object and one probe-object in each event.

a like-sign, opposite-sign comparison. Therefore it idisigint to store the selected probe-tracks for
each event and the information on whether a muon spectroitnatd could be associated or not. This
information is enough to determine the reconstruction iefficy.

2.1.3 Muon Reconstruction Efficiencies with background cotmibution

The situation changes significantly if one does not rely otaigon requirements for the muon as QCD
background contributions cannot be neglected anymore.piidtge-track may arise from a background
process and therefore the test for a corresponding signiattine Muon Spectrometer is likely to fail. In
this case, the background has to be estimated from datajia @ side-band subtraction approach which
will be discussed for the Z boson decay in muons in the folhgwin a first histogram the invariant mass
of all tag-objects per event, i.e. combined reconstructedms, is plotted which is shown schematically
in Figure 3. The invariant mass of the tag- and the probeetdbjs plotted in a second histogram (Figure
4). Both distributions are fitted by a function which contansignal and a background contribution, e.g.
a combination of an exponential and a Breit-Wigner functidhe area under the Breit-Wigner part can
be interpreted as the number of signal events, i.e. everithwésult from a Z boson decay.
The following numbers of events are expected for the twoxase

2
N2 tags™~ €°-N (3)

N1 tags, 1 probe” €(1—¢€)-N (4)
where¢ is the reconstruction efficiency of the Muon Spectrometat ldnis the number of total
selected signal (background-subtracted) events. Theegifig can then be determined by the ratio of
N1 tags, 1 probéNdNo tagg It is important to note that the efficiency test cannot beeugd on an
event-by-event basis in this case. Moreover, the calamatf a binned efficiency, e.g. for different
n-regions of the detectors, requires at least two histogrfiomgach kinematic region. This implies

significantly larger statistics than the case previousbgua$sed.
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Figure 5: Schematic sketch of the physics analysis model.

2.2 Summary of underlying structure

The presented approaches seem quite different at a firsteglaat have a common underlying structure
containing three steps. All methods start with a signalctigle, e.g. the selection of probe tracks, or
the filling of histograms. In a second step, the correspangdarformance quantity is calculated, e.g. by
fitting several functions or counting how many probe trackgehbeen matched. The last step involves
the representation of the performance quantity and howsibiged, e.g. via a simple histogram.

3 Common Framework Design

3.1 Motivation and basic functionality

The reasons for a common detector performance frameworkuanerous. The primary reason becomes
evident when discussing a simplified physics analysis madetketched in Figure 5. Each physics
analysis is based on physics data, usually representedtoglams, which have been selected via several
cuts. In order to understand these histograms, one alsmdgp® detailed Monte Carlo simulations of
the proton collisions and the corresponding detector mesgpo The pure Monte Carlo simulation is
always only a first guess and must be modified or at least cosditoy the detector performance, which
has been directly measured in data, i.e. stored in a kindtetctie performance database. Combining
the Monte Carlo simulation of the detector and the in-sittedrined performance quantities enables
the unsmearing of the measured data and lead to the actualreg@nt. As already mentioned in the
introduction this note does not address the difficult pregasminimizing the difference between the
Monte Carlo description of the detector response and thermeasurements.

The database which contains the in-situ determined giestiin be used in two ways. First of all,
it can be used if required to modify directly the Monto-Caslmulated data, e.g. with an AOD-to-AOD
correction. Secondly it can be used to estimate systematiertainties (e.g. lepton momentum scale)
which results in differences in the unsmearing of the detesponse. While the first analysis will
usually be done through e.g. a common reprocessing of AO®fdata sub group, the second will be
often performed by users.

A common detector performance database is however only ggexrtof a common framework. It
is usually sufficient for the estimation of systematic utaieties in physics searches to use common
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efficiency and resolution information stored in a commoredieir performance database. This does not
hold for cross-section measurements, since they depemdltyuon the precision of efficiencies and
resolutions. Each cross-section analysis might use Bliglifterent physics object selections. If such a
selection does not correspond to the selection used fofffibiiacy determination in the database, then
this will result in a systematic error in the measurementgdneral it can be said, that the performance
determination is such an essential part of each precisicasonement that it should not be separated
from the analysis itself. Therefore, the second aspect @nanton framework is the general usability
of the performance determination algorithms by every iiolial user. Nevertheless, even in the second
case the common detector performance database must beansgdds-checks and validation of the
individual or small-group analysis. The following pointsosild be respected in order to ensure a general
usability of the performance determination algorithms:

e Each algorithm for each physics object must be implementitdirwATHENA and part of the
official ATHENA release.

e The algorithms should be maintained and tested by the pe#ioce groups or in special cases by
physics groups.

e All relevant cuts should be accessible via dobOptionFile and an example should be provided.

e For each in-situ algorithm a corresponding performancerdhgn which is based on Monte Carlo
truth quantities must be implemented, in order to allow esysttic comparisons (e.g. the same
definition of efficiency via track-matching must be used)

e The determined detector performance parameters shoutdreel $or standard cuts in the detector
performance database as a reference for systematic caopsri

e The authors of each algorithm should maintain documemtgtages

e A common repository inside theTAENA-framework would be desirable. The current location is
underPhysicsAnalysis/AnalysisCommon/InsituPerformance

Following the above guidelines has various advantagesh®matverage user who wants to perform a
precision analysis: It will not be needed to develop one’si@ade for performance determination, but
the existing, verified code inside therTAeNA-framework can be used and - if applicable - modified.
Having the code inside theTAENA-framework forces common standards and ensures the cdaitipati
of the code in various environments. Hence also the exigfifthinfrastructures can be easily used.
Having a common framework with common standards enableggbeto access and understand the
performance quantities for various objects in the same #way. having worked previously on the muon
reconstruction efficiency it is straightforward for the useaccess the electron identification efficiency,
since a common representation infrastructure has beerfasedth.

3.2 Logical Seperation of Analysis Tools and Basic Implemeation Design

As already discussed in section 2.2, the common algoritheme three basic phases. During the first
phase, the primary event data in ESDs, AODs or DPDs is aatess# relevant information for the
performance determination is extracted. Usually thisrimi@tion can be represented in histograms or
NTuples. In the following, this information is called ‘inteediate data’. The actual performance param-
eter determination is then based on these ‘intermediag datl not directly on primary event data.

It must be ensured that the size of intermediate data is senaligh to be handled on a single
computing note, since fitting algorithms usually have to ppliad on combined data and cannot be
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parallelized. Therefore it is essential that intermeddstta is additive, i.e. can be added together from
several grid jobs.

This basic requirement in illustrated in Figure 6, whichwhdhe suggested computing model. The
first part of the job is execute on the grid and each grid-jalvigles his own intermediate data. This data
is then added together on the local machine and processediinto determine the detector performance.
Histograms, NTuples and DPDs can be added trivially andénarea good choice for the representation
of intermediate data.

It is proposed to use exclusively DPPsss intermediate data. DPDs have a significantly larger size
than plain RPOT-NTuples as they contain event relevant parameters andearceverhead to be readable
by the ArHENA-frameworks. First estimates show a file-size of BBfor the above described scenario,
which is still easily manageable by a single PC. The writingaf plain RooT-NTuples and histograms
will be only supported for debugging purposes.

The content of the DPDs is fully in control of the user and ttarfework does not give any restric-
tions. Nevertheless, experience has shown that it is moseogent for most users to use rather simple
and flexibly defined objects. Therefore the current impletation of the framework supports a generic
UserObjectwhich can be written via the official BAENA-tools to DPDs on disk, i.e. no dependencies
to other analysis packages are needed. The individual asedefine thisdJserObjectto his needs, i.e.
to store only the relevant parameters per event which amedeer the performance determination.

Intermediate data, which are based on simptoRNTuples usually contain basic physics object
information, like energyn or @ plus some additional information (isolation, track asaton, ...), while
the histograms contain distributions of physics quargtjtixe invariant mass distributions. Even though
the AOD data size contains several TB of data and has to begsed on the grid, the resulting inter-
mediate data has only a small size. This is illustrated agaithe muon efficiency determination based
on the Z boson decay. Assuming 100.000 produced Z bosonsegentday, which decay into muons,
per during the high luminosity phase of ATLAS, results in @gmately 1 million probe tracks in ten
days. Storing six float quantities per probe track leads tata gize of~ 100MB, which can easily be
handled on a local machine. The intermediate data whichsisthan histograms results in even less data
and hence can also be handled on a single PC.

The large disadvantage of using plaim®&r-NTuples or Histograms as intermediate data, is the
fact that their reprocessing for the performance detentioinaloes not fit to processing scheme behind
ATHENA. ATHENA is based on an event-by-event evaluation scheme and pesrtorenall fits at the end
of the event-based processing. Since simpteoRNTuples cannot be processed within theH&NA-
framework they would have to be read in and evaluated cowipletithin thefinalize(}method of the
algorithm, as the histograms. A further disadvantage te$tom the fact, that using plain NTuples
and Histograms lead to the loose of information about thmgry event, which makes debugging much
harder.

The usage of DPDs as intermediate data already implies tie imaplementation design which is
shown in Figure 7. The actual performance determinatioremated in two independentrTAENA
algorithms. The first algorithm is responsible for the sigg&lection, i.e. the generation of the inter-
mediate data and could be run on the grid. The signal seteitelf is separated in anTANENA tool
from the algorithm to ensure a greater flexibility. Keep imyithat the same signal selection might
be used by different performance determination algorithires example the determination of the muon
reconstruction efficiency and the muon trigger efficiendydsed on the same selected probe tracks. The
communication between the main algorithm and thei&nA tool is handled via the Storegate service.

The performance determination (second phase), i.e. tHeafpn of fitting functions, as well as the
storage of the results in a database (third phase) is doie iseicond algorithm. This algorithms treats
the intermediate data as input and calculates directlyiefittes (as for example the muon reconstruction

2)DPDs are an Athena readable data format of NTuples
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Figure 6: Sketch of the computing model for the Figure 7: Sketch of the implementation structure
insitu performance framework. of the insitu performance framework.

efficiency) or fills histograms, which are needed for exanii¢he momentum resolution determination.
In thefinalize(ymethod of the algorithm all necessary calculations perém which need accumulated
data, e.g. fits, are performed. It might be advantageousctpsalate also the second phase in an external
ATHENA tool, since some fitting algorithms might be common for vasiperformance determinations.
Moreover, the final results are written to the database #feealgorithm has finished.

The separation into independent signal selection and ypegioce determination algorithms has a
further advantage: It allows to process several sets ofnmadiate data, which has been created by
several different signal selections, by the same perfoomatetermination algorithms. The proposed
structure even allows the user to run on small Monte Carlgoéesnn one go, i.e. the user is not obliged
to run the two algorithms after one and the other but can daialfel, as AHENA-Storegate is used for
writing and reading intermediate data.

3.3 Representation of Performance Parameters

Detector performance parameters can be generally categosis efficienci€sand resolutiorf8. Both
depend usually on several parameters kgt and@. Therefore the performance parameters should be
represented by an N-dimensional matrix, where N is the narobparameters used for the description
of the detector performance. The electron reconstructfficiescy can be described for example in a
two dimensional matrix alongr andn of the electron. Each bin of the matrix should contain

e measured performance parameter
e statistical uncertainty of the measurement
e weight of this measurement

e optional: an estimate of the systematic uncertainty of teasarement

3)Note that also fake-rates can be described as efficiencies
4)Note that scales fall also in this category
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The weight of a measurement needs to be discussed in moiie detang such a weight allows the
addition of several performance matrices. Keep in mind,ubaally several performance matrices, each
representing the measured performance of a certain nunfilwata taking runs, have to be added in
order to get an overview of the detector performance whicklevant for the analysed data-sets. If for
example the physics analysis uses run 1 to 3 and the perfoeweais estimated for each run separately,
then the user wants to add the measured performance of thes¢ogether. One could argue that this
kind of weight information is encoded in the number of runsclithave been used for the calculation,
i.e. by the amount of data. But it has to be noted that differens imply differences in the detector
performance and hence differences in the signal selecffarieacy. Therefore the weight should be
stored explicitly.

In the following we discuss three different approachesdeesthe performance parameters where we
distinguish between efficiencies and resolutions.

3.3.1 Efficiency Representation

For the background free efficiency determination (see@e@il.2) it is proposed to store

£ — Nsuccesses
NTrials

where NsyccessedS the number of trails which have been successfully chosehNg,iys is the total
number of trails. These two numbeMs ccesse@NdNrrias, Can be used for the efficiency representation
which has several advantages. First of all, these two nusrdaar be trivially added together from several
runs and hence guarantees such an additiveness. Mordmyecantain already the statistical uncertainty
information.

This representation is not suited for situations where &dpatind is presented and e.g. a side-bind
substruction has to be performed as discussed in sectidh hthis case it is proposed to store an object
which contains two histograms in each bin of the N dimendioratrix. The two histograms correspond
to the two histograms introduced section 2.1.3. The objagitralso provide methods to perform the
efficiency calculation based on fits on the two histogramse dtivantage of this approach is again the
additiveness of the two histograms for several runs.

3.3.2 Energy Response Representation

For efficiencies the functiori}t" can be in general directly accessed in data as already medtia
section 1. This changes for more complicated objects likeetiergy response of the detector, which
describes in general scales and resolutions. In these itas@soposed to determine the functiélf,
which modifies the Monte Carlo predictid@{:“th. Hence we have to distinguish between the represen-
tation of f; " and )¢

Data*
The resolution and scale of an observable is encoded in $trebdition of

OTruth — Ureco
OTruth

whereqgruth is the truth value of the observed quantity anddhe..is the reconstructed value of the
observed quantity. The scale is usually defined as the mdae ghthe distribution and the resolution
corresponds usually to the rms value. Nevertheless it & that the full information is only represented
in the full distribution, which can be interpreted as a piuiliy density function (PDF).

It is proposed to storéh}gﬂh in each bin of the N dimensional matrix as a histogram of theeco
sponding PDF. The scale and resolution are automaticattpdad in such a histogram. Moreover, no
functional form must be assumed and also the additivenesssigred.
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Figure 8: lllustration of the representation of scales asbliutions.

For the description of <. it is usually sufficient to store a functional form which mfbet the PDF
of f,\T,er‘“h. An example would be a gaussian function. In this case omlyrthan and width of the gaussian
would be stored in each bin of the N dimensional matrix. Thigdeaadvantage of storing a functional
form of fNI¢_is that it allows also to describe a better resolution of taedor than it is predicted by
Monte Carlo simulation. The most simple examplefgga which reduces the predicted resolution is

given by

fgl;%a(oMQ OTruth) = OTruth+ O(Omc — OTruth)

No additional smearing is applied for = 1, the resolution broadens for > 1 and gets better for
o < 1. It should be noted that in this case not ooly: but alsoorh is Nneeded as input. In this example
only the parameteo would be stored in the performance matrix.

In summary it is proposed to store an object which represgld" or )¢ in each bin of the
performance matrix as illustrated in Figure 8.

3.4 Database-Structure

It was already mentioned in the previous sections that thectle performance parameters parameters
should be stored in a common database. In this section abp®sksitabase structure is proposed. The
basic features of such a database can be summarized as

¢ unique identification of a specific detector performanceapeater, e.g. the muon spectrometer
stand alone reconstruction efficiency

e storage of in-situ determined detector performance paemne

e storage of Monte Carlo predicted detector performancenpetexrs for systematic comparisons
¢ handling of performance parameters for individual runsuarihosity blocks

o user friendly access for reading and writing inside andidatdhe ATHENA-framework

o official parameters provided by the performance groupsheTLAS collaboration in particular
for the physics groups

In Table 1 a collection of identifiers is presented whichwlbunique specification of performance
parameters. The identifie@bject Container Type Channe] Author, RecoSW\are filled with simple
string-variables by the user. TH@bjectidentifier describes which physics object is determined. (e.
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muons) and th€ontaineridentifier stands for the AOD-collection-name (e.g.) whitrereconstructed
quantities of the object were stored. The information oséhevo identifiers is redundant. Nevertheless,
it allows for an easier search for users of the databaseg $icnaming conventions of AOD contain-
ers are usually not self explanatory. TRecoSW\encodes the software version which was used for
reconstruction. It might be important to specify which cibioths data was used in the reconstruction
and hence the AMI configuration tag might be a possible eidarts this identifier. The last identifier

in this list, called interval of validity IOV), specifies which runs have been used for the performance
determination. In case of a performance determination lmvias based on Monte Carlo simulation just
the software version, which was used for the simulationsedu Each performance parameter entry can
be described in a unique way, once the identifiers are pravinléhe database.

Database ID | Description Examples
Object Which kind of physics parameter is stored | Muon, Electron, Tau, Jet, ...
Container Name of AOD/ESD container StacoMuonCollection,
TriggerMu20, ...
Type Description of Performance Parameter Efficiency, Scale/Resolution,
Fake-Rate, ...
Channel Which physics channel was used Z— uu,J/Psi— eeftt ...
Author Who is the author of the performance entry | MuonPerformanceGroup,
PrivateMSchott, ...
RecoSWV | Software Version used for reconstruction 14.0.21, ...
(eventually also the AMI configuration tag)
[e)Y] For data: Which runs have been used to
determine performance (start and end numbef432 - 1438
For Monte Carlo: Simulation Software Releas&3.0.1

Table 1. Overview of identifiers for a unique representatidrperformance quantities in a common
database

The actual implementation of the database depends on theagee One can differ between the
usage for individual or small group physics analyses andfficiad ATLAS performance database. A
simple RooT-based database approach is not suited for an official degabgplementation. Hence, it
is proposed to use adbL-database for such a large scale application. An interflss could hide the
actual implementation of the underlying database from Hes.u

It is worth to have a closer look to the basic principle of adl-database, which is illustrated in
Figure 9. Each database entry can be accessed via a uniogeidéntifier. To each entry also an IOV
is stored. Simple data like a few numbers can be stored Hirecthe database. For more complicated
objects, e.g. histograms,dOL stores only references to external files, e.goR-files [5].

Hence, it is proposed to use simple®&r-files to store the performance parameters. TheseR
files can then be added to the@GL-database, which handles the unique identification and 10Vs

An advantage of this approach is the easy access of usersftorpance quantities. It should be
noted that a large part of final physics analysis are notezhwut within the AHENA-framework, but
mainly in ROOT. Hence the access of performance parameter®ibiRnust also be possible. AdoL-
database allows an extraction of the relevant files, whichain the specified performance information.

It remains to be specified how the performance parameterst@red in the RoOT-file itself. Each
performance parameter for a specified block is saved iroaTRlirectory whose name contains all
database identifiers, previously discussed. Such a file eanspected and simply accessed within the
RooTt-framework, which will be the basis for most end-user aredyas already mentioned. The plain
directory structure and naming convention gives an ineiteeling for what is essentially stored in each
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COOL - Database

(DATA ov |
Data [float, float, int, int , float, ...] 10-23
Data [float, int , int] 12-35
Data [Reference to ROOT-File] 11-18

L )

Figure 9: Schematic structure of a COOL-database.

directory. Moreover, different ®oT-files can be easily merged together, which is essential ifyma
persons work on the same or similar analyses.
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