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1. Introduction

In signal-processing problems where two signals are combined by convolution, homo-

morphic filtering techniques may be useful. Assume that we are given a signal s(n)

which is the convolution of x(n) and h(n).

s(n) = I h(k) x(n-k). (1)
k

If we take the Fourier transform, complex logarithm, and inverse Fourier transform
A A A Aof both sides of Eq. 1, we get the relation s(n) = x(n) + h(n). The variables s, x, and

h are the complex cepstra of s, x, and h. Linear filtering may be performed on s(n) in

the cepstral domain, and the result Fourier transformed, exponentiated, and inverse

Fourier transformed to complete the homomorphic filtering operation.

Such a technique is useful for inverse filtering problems or problems where a signal

and noise are combined by convolution. To make the definition of the complex cepstrum

tractable mathematically, it is important to ensure that the phase function associated

with s(n) be continuous, odd, and periodic. Defining the phase by using the principal

part of the.complex logarithm is usually not satisfactory.2 Therefore, to ensure con-

tinuity, phase must be defined as an integral.1 If the phase so defined is not periodic,

it may be made so by subtracting a linear phase component. This simply corresponds
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to a shift in the time origin of the original signal.

We must restrict the set of signals for which cepstra can be defined to exclude sig-

nals whose Fourier transforms go to zero or infinity at some frequency. This corre-

sponds to their z-transforms having a pole or a zero on the unit circle resulting in a

phase discontinuity that cannot be removed by the integral formulation. Equivalently,

the logarithms of their Fourier transforms become infinite at such frequencies.

One class of signals for which cepstra may be defined is the class whose

z-transforms are rational polynomials and are analytic and nonzero on the unit circle.

For these signals the cepstra also have z-transforms that are analytic on the unit circle.

2. Two-Dimensional Cepstrum

In an exactly analogous manner, we can demonstrate that any 2-D array having a

rational z-transform will also have a well-defined 2-D complex cepstrum, provided

that (i) the Fourier transform is not equal to zero or infinity at any frequency, and

(ii) we are careful to eliminate linear phase components by an appropriate shift of the

original array.

This can easily be seen if we first consider finite-extent 2-D arrays. These arrays

have Fourier transforms that are two-dimensional polynomials in exp[jj] and exp[jv].

We shall now show that if a finite-extent array b(m, n) has a Fourier transform B(L, v)

that is nonzero for all t and v, then the phase function associated with B([1, v) is the

sum of a linear component plus a continuous, odd, and periodic' component. First, let

z = exp[jv], and consider

B (z) = I m b(m, n) e-Jlmj z-n

as a one-dimensional polynomial in z with a parameter p. Since b(m, n) is of finite

extent, B (z) will only have poles inside the unit circle at z = 0. Now let us define

the phase function 4(i, v) as a contour integral

[ B' (z)
S(, v) = Im dz + (4, 0), (2)

B (z)

where the prime denotes differentiation with respect to z. The contour of integration

starts at z = 1 and proceeds around the unit circle to z = exp[jv]. It is necessary to

define the constant p(i, 0). We do this by considering c ([, 0) to be a one-dimensional

phase function given by

8B I  aBR
a B B

G,0 ) 0p B R 8 BI

2 2 d,
S B +B0R I
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where BR is the real part of B(1j, v), and B I is the imaginary part. This formula is the
2

phase as a function of p. for v = 0, and may be derived as Oppenheim and Schafer have

done.

By constructing (pL, v) in this manner, we are assured that 4(p, v) is continuous

and odd, and

4(p., v) = -( ) -).

When v = 2r, the contour of integration in Eq. 2 is a closed curve. Using Cauchy's

Residue theorem and Marden's3 Theorem (1,2), we have

((, 2rr) = 2,Tr - 2TrN,

where r is the number of roots (including multiplicities) of B (z) inside the unit circle,

and N is the number of poles at z = 0. If we let k = r - N, then it is clear that
v

(., v+21r) = c(p., v) + 2Trk

Similarly, we can derive the relation

(p.+2Tr, v) = c((p, v) + 2rk .

It remains to be shown that k is not a function of p., and k is not a function of v.

If we examine the roots of B (z) as we continuously vary the parameter p from zero
. 4

to 2r, we discover that the roots move about in a continuous manner. Thus, for a root

to move from inside to outside the unit circle (or vice versa), it must lie on the unit

circle for some value of p.. But this violates the hypothesis that B(p, v) * 0. Therefore

the number of roots r inside the unit circle is not a function of p, and hence k is not a
v

function of p. A similar argument can be made to show that k is not a function of v.

Given a continuous odd phase function 4([, v) such that

(p., v+2 r) = 4(p, v) + 2lTk

,(p+2r, v) = (p., v) + 2 rk

p(p, v) = -4(-p,-v),

we can subtract the linear phase component

L(, v) = k v + k p

to obtain a term A(1, v) that can be shown to be continuous, odd, and periodic.

This result may be extended to arrays with rational Fourier transforms. The phase

function for such an array can be defined as the phase function of the numerator polyno-

mial minus the phase function of the denominator polynomial. Clearly, this differ-

ence can also be written as a linear phase component plus a continuous, odd, and
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periodic component.

It is easy to verify that subtracting the linear phase component is equivalent to a

shift of the array. Therefore, if we are given an array h(m, n) whose Fourier trans-

form is a ratio of polynomials

SI a(k, f) exp[-jik-jvk]
k

H(, v) =
X Z b(r, s) exp[-jir-jvs]
r s

then its phase function can be written in the form

(~, v) = A(', v) + k v + k

We can form a new sequence g(m, n) = h(m-k , n-k ) whose phase function is A( , v),

which is continuous, odd, and periodic. Since

In IG([, v) I= I I H([i, v) I

is continuous, even, and periodic, we may form the function

A
G(p~, v) = In IG([, v) + j vA( v)

which has a real inverse Fourier transform denoted by (m, n) and called the cepstrum
A

of g(m, n). Since G(t, v) is a ratio of polynomials, the properties of G( , v) imply that

the z-transform of g(m, n), denoted by F(w, z),

A -m -n
F(w, z) = E g(m, n)w- z

m n

A
is an analytic function for wl = z = 1. This may be seen by considering G(p~, v) to be

a one-dimensional Fourier transform in v with a parameter t. Then the function

F(e3j, z) is analytic for all values of i, and Iz = 1. Similarly, the function F(w, ej )

is analytic for all values of v, and w = 1. Therefore F(w, z) is analytic for Iw

IZI = 1.

3. Summary

Two conclusions can be drawn from this derivation. First, any real array whose

Fourier transform has a log-magnitude that is continuous, even, and periodic, and whose

phase is continuous, odd, and periodic will have a well-defined cepstrum that is real.

Second, one class of arrays with well-defined cepstra is the class whose z-transforms

are the ratio of two polynomials (with the restriction that the z-transforms not be zero
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or infinite for jIw = jz = 1), provided that care has been taken first to shift the arrays

to eliminate linear phase components. In addition, for this class of arrays we can argue

that the logarithm of the z -transform is analytic on the surface Iw I = I z I = 1.

The author would like to express his thanks to Professor Alan V. Oppenheim for his

suggestions and encouragement during the course of this work.
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B. AN ALGORITHM TO PERFORM MINIMAX APPROXIMATION

IN THE ABSENCE OF THE HAAR CONDITION
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In the minimax or Tchebycheff approximation problem the task is to approximate a

function D(x) on the interval [a, b] by a linear combination of basis functions {i(x)}"
Thus

N-1
D(x) = cii (x),

i=O

where the coefficients {ci} are chosen to minimize an error defined as

N-i
max D(x) - cii (x) = max IE(x).

a-<x-<b i=O a<x<b

If the set of basis functions satisfies a strong nondegeneracy condition (Haar condition),
the problem can be solved very efficiently by using the second algorithm of Remez. 1

This condition not only implies that the basis functions be linearly independent on the

interval [a, b], but also that they be linearly independent on any set of N samples chosen

from this interval.

The Parks-McClellan algorithm2 for the design of linear-phase finite-impulse

response (FIR) filters performs an approximation of the form
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N-l
D(eJw) z H(e J ) = E 2h(n) cos wn + h(0),

n=1

where the {h(n)} are the impulse response coefficients of the filter. Since the set of basis

functions {1, cosW, . .. , cos (N-1) ) satisfy the Haar condition on the interval [0, r], the

second algorithm of Remez plays a central role in the Parks-McClellan algorithm.

If equality constraints are applied to the impulse response coefficients such as

h(3) = 0, h(4) = h(5), or h(17) = 3, then the resulting approximation problem, although

superficially very similar, differs from the unconstrained problem in the important

respect that the new set of basis functions will generally not satisfy the Haar condition.

Since the resulting basis functions are still linearly independent, we can apply the ascent

algorithm described by Cheney.1 Stiefel 3 has shown that this is equivalent to linear pro-

gramming applied to the dual formulation of the problem.

It has been shown that when the optimum minimax solution has been obtained the

error function E[x] will oscillate between ±Emax, N+1 times over the interval [a, b]. The

ascent algorithm starts with an initial guess of these N+1 extremal locations. It then

formulates and solves a set of N+1 linear equations in N+1 unknowns. The unknowns

represent the N coefficients {ci} and the deviation a. Next, a search algorithm uses

the calculated coefficients to determine the location of the worst error over a dense grid

of samples of x. This point is exchanged with one of the N+l extremal locations and the

ascent algorithm then solves for a new set of coefficients and repeats. The process

continues until the worst error found over the entire grid is already a member of the

extremal set. At each step the calculated derivation increases.

Because of the absence of the Haar condition, uniqueness is not guaranteed. Non-

uniqueness at any step is indicated by the fact that the matrix of equations used to solve

for the coefficients is singular. By perturbing the elements slightly, however, we may

arrive at one of the infinite number of best approximations.

To give the flavor of the computations involved, we shall describe some of the details

of the ascent algorithm. Further details can be found in Cheney or in Kamp and

Thiran.4 First, we must find the signs of the errors at the N+1 extremal locations or,

in the filter design case, extremal frequencies. We must choose the signs so that the

origin of N+l space lies in the convex hull of the set of basis functions evaluated at the

N+l extremal frequencies, which we refer to as the basis vectors. Thus we need only

find a nontrivial solution to the set of equations

N+1 i.
St.A J = 0,

j=1 J

i. th th
where A J is the basis vector at the j extremal point or the i. grid point. Then the
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th
sign of the error associated with the j extremal point is s. = sgn t.. Now we may solve

J J
the set of equations

N i.
e * s. + ckA = D(i) j = 1,2, .... N+1,

J k=1 kk

. thwhere A J is the k coordinate of the basis vector and D(i) is the ideal function at the
th k

1 grid point. Having calculated the coefficients ck, we must now find the location of

the worst error on the entire grid. If this error is no larger than the error calculated

at the extremal frequencies, we are finished. Otherwise, we must pick a member of

the extremal set with which to exchange this point. We choose the point so that the origin

of N+l space again lies in the convex hull of the basis vectors exchanged one at a time

with the new basis vector. This can be effectively accomplished by taking the dot product

of the new basis vector with each of the old basis vectors and picking the resulting maxi-

mum. These points are exchanged and the ascent algorithm continues. Also, we need

not reinvert the matrix for the new solution, since we can modify the inverse matrix

itself to perform the exchange. Further, if the new matrix (before inversion) is non-

singular, the new error e is guaranteed to ascend in magnitude.

In the event that the matrix should be singular (which the Haar condition does not

permit), it can be made nonsingular by perturbing its elements slightly. The error e

may not strictly ascend, however, and this is referred to as a static exchange. It is

indicative that at this stage the solution will not be unique. The condition can be detected

and the nonuniqueness indicated if we have the final solution. Other techniques can be

applied to arrive at solutions that optimize the solution according to some other consid-

eration. The extremal error e for each solution will be the same, however. For further

information on the question of nonuniqueness see Kamp and Thiran. 4

The most time-consuming part of the ascent algorithm is in calculating the error

function at all points of the grid. The result of this computation is one number: the

index of the location of the worst error. We have explored two techniques that speed

up the design algorithm. The first uses the principle stated in the first algorithm of

Remez. The second is an attempt at a multiple exchange algorithm.

The first algorithm of Remez (see Cheney ) states that we may solve the approxima-

tion problem on a thin subset of grid points containing at least N+1 points. Then the

solution is used to find the location of the worst error over the entire grid. This point

is then appended to the thin subset and the ascent algorithm is called for the solution on

these N+2 points. The algorithm continues in this fashion until the location of the worst

error is already a member of the thin set. The speedup apparently occurs because

(i) the ascent algorithm need only use a few well-chosen points, and (ii) old peak loca-

tions are immediately available to the ascent algorithm should they again become
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locations of worst error. The obvious disadvantage is that the subset grows larger at

each iteration.

The multiple exchange algorithm seeks to keep the thin subset relatively thin by

replacing old (and, we hope, unusable) points with local maxima of the current error

function. In this way we provide many peaks rather than only one to the ascent routine.

This is known to provide increased efficiency in Remez' second algorithm when the Haar

condition is present. As the approximation approaches convergence, each peak will be

significant. Preliminary results indicate that a considerable speedup can result. We

shall continue work in this area in the hope that a highly efficient algorithm can be devel-

oped. An application for this algorithm is presented in Section XV-C.
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1. Introduction

In this report we are concerned with the design of circularly symmetric two-

dimensional (2-D) digital filters whose impulse response is finite in extent (FIR). The

choice of circular symmetry (or more precisely "octal" symmetry) is appealing from

practical, as well as theoretical, considerations. Theoretically, it allows us to limit

the number of free parameters in the approximation problem. Practically, there is

a natural tendency in some applications to do Z-D filtering without regard to direction.

For the most part, however, the notions of the new algorithm can be generalized

to other types of symmetry. Hu and Rabinerl have explored the 2-D extension of the
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1-D technique known as "frequency sampling." They also applied linear programming

(a very expensive solution) to obtain a minimax approximation. A more subtle approach
2.was taken by Fiasconaro in which linear programming is applied to a "thin" set of

points in the 2-D domain. In more recent work, Kamp and Thiran3 present a detailed

algorithm in which the multiple exchange properties of a Remez-type algorithm are

exploited.

All of these optimal design techniques are rather costly with respect to computer

design time. Another technique proposed by McClellan4 transforms I-D optimal fil-

ters into certain optimal 2-D filters. This approach is extremely efficient and perhaps

is suitable for most applications. We propose, however, by exploiting the notions of

projections,5 that more nearly optimal 2-D filters can be designed by transforming

the problem into a one-dimensional design problem. To this end, we shall explore the

techniques of least-squares approximation, the Parks-McClellan algorithm6 in 1-D,

and approximation in 1-D subject to certain symmetry constraints implied by 2-D

circular symmetry. We shall also compare the last with the approximation problem

in Z-D.

2. Least-Squares Design in Two Dimensions

The design of 2-D circularly symmetric lowpass filters is a particularly straight-

forward problem when we apply the least-squares error criterion. The solution corre-

sponds to sampling the inverse Fourier transform of the ideal lowpass filter. If

2\+ W 2 2
Jm n m n p

H e , ,e = (1)

elsewhere

then

W J 1 (a m 2 + n2)

h(m, n) = , m- nO 0
ZrI m +n

2
p

h(O, 0) = -- , (2)

where J 1 (x) is the first-order Bessel function of the first kind. Note that h(m, n)

possesses "octal symmetry." That is, h(m, n) = h(±m, ±n) = h(±n, ±m) for any choice

of signs. Specifically, for 0 * m * n 0 0, there are 8 points in the impulse response

that have the same value. These points all lie on a circle of radius m2 + n . The

case of a 5 X 5 filter is
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Fig. XV-1. 5 X 5 least-squares 2-D lowpass cutoff = Tr/2.
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Fig. XV-2. 15 X 15 least-squares 2-D lowpass cutoff = T/2.
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f edef

e cbce

dbabd

e cbce

f edef

Here, h(O, 0) = a, h(0, 1) = h(0, -1) = h(-l, 0) = h(1, 0) = b, etc.

We shall now show that this symmetry produces symmetry about the two axes and

the diagonals in the frequency plane. We write the 2-D frequency response and collect

like factors of the impulse response to obtain for N X N = (2M+1) X (2M+1):

(jm jWn M
He , en = h(0, 0) + I 2h(m, 0) (cos omm m+cosw nm)

m = 1

M
+ M 4h(m, m) cos w m cos w m

n m
m = 1

M m-1
+ M Z 4h(m, n) (cos nn cosc mm+cosw nmcosw mn). (3)

m=2 n= 1
m2nnm n m n

Thus we see that He , e = H(e ,e n) = H(e , e n We also see that

H (em, e ) is purely real. A similar result can be shown when N is even, although

we do not consider it here.

Perfect circular symmetry cannot be obtained by FIR filters except in the trivial

1 X 1 case. The octal symmetry represents a reasonable approximation to it. As

Fig. XV-1 shows, for low-order filters the approximation may not be too good. Since

the least-squares design merely truncates the impulse response in Eq. 2, it is possible

to design filters of large extent. Figure XV-2 shows the frequency response contour

for a 15 X 15 lowpass filter with cutoff at 7r/2.

3. Design Techniques in I-D Involving a Projection

We now show how, by using the technique of Mersereau and Dudgeon,5 the 2-D impulse

response can be invertibly projected onto a line. The frequency response of this

l-D sequence is the 2-D frequency response evaluated along a series of lines (called

"slice" lines) in the frequency plane. Since the projection is invertible, we may map

the 2-D ideal filter specifications into 1-D, design the 1-D, and then back-project the

impulse response to obtain the 2-D frequency response.

We start with an N X N FIR 2-D filter, as before. We project this array onto a

line at angle tan- 1 1/N with the horizontal. This is equivalent to reading out the array
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h (-2, 2) h(-1, 2) h(O, 2) h(1, 2) h (2, 2)

h (-2, 1) h(-1, 1) h(O, 1) h (1, 1) h(2, 1)

h(-2, 0) h(-1, 0) h(0, 0) h(1, 0) h(2, 0)

h (-2, -1) b if- 1) h (o, -1) h (1, -1) h(2, -1)

h(-2,-2) h(-1,-2) h (0, -2) h(I,-2) h(2, -2)

Fig. XV-3. 2-D 5 X 5 impulse response.

h(-2,-2) h(-2,-2) h(-2,0) h(-2, 1) h(-2,2) h(-1,-2)

h(- 1, - 1) . . h(0,- ), h (0, 0) h(0, 1) . . . h(2,2)

Fig. XV-4. 1-D projection of 5 X 5 impulse response.

by columns starting at the lower left. For example, the 2-D sequence in Fig. XV-3

would be projected onto the 1-D sequence in Fig. XV-4.

The z-transform of the 2-D sequence is

M M -m -n
H(z m , z) = h(m, n) z m zn

m=-M n=-M m n

and the z-transform of the I -D projection h(Nm+n) = h(m, n) is

M M -(Nm+n) M M -Nm -n
H(z) I= h(Nm+n) z= z I h(m, n) z z

m=-M n=-M m=-M n=-M

and thus

N ~jWjNcw jcW
H(z) = H(zN, z) or H(e j ) = H(ej N  e). (4)

The line n = No for the case N = 5 is plotted in Fig. XV-5. This figure also shows
n m

the ideal filter and the sample points.

The mapping of the ideal filter specifications onto the slice line is mainly a prob-

lem in trigonometry and axis scaling. A cutoff circle may cut the slice line more than

once. Thus a lowpass circularly symmetric filter (Fig. XV-5), would map into a multi-

band filter of one pass and two stop bands. The projected 2-D filter is shown in

Fig. XV-6.

The problem with the straightforward approach of Mersereau and Dudgeon is that

the frequency response of the back-projected filters may deviate wildly from the desired
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-7 0 Wp Ws 7

Fig. XV-5. 5 X 5 slice lines with ideal filter specifications.
p = . 3r and w s = .71T.

0 0.05 0.137 0.27

Fig. XV-6.

0.49

RADIAN FREQUENCY (Xr )

Ideal frequency response of Fig. XV-5 taken along
the 5 X 5 slice line.

response between the slice lines. We propose that the symmetry constraints previously

discussed can be imposed on the projections to yield equality constraints among the

1-D FIR samples. In this way, we hope to improve the interpolation of the fre-

quency response between the slice lines.

We now apply the octal symmetry constraints to design some filters, by using the

least-squares error criterion on the 1-D slice line. From Eq. 3, we obtain the slice

response
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H(e ) = H(e j NW, e) =h(O, 0) + Z 2h(m, 0) (cos m + cos mNe)
m= 1

M
+ I 4h(m, m) cos mw cos mNw

m=l

M m-1
+ Z I 4h(m, n) (cos n cosmNw+cos mwcosnNw).

m=2 n= 1

Applying the cosine product law, we get

M
H(eJ3) = h(O, 0) + 1 2h(m, 0) (cos mw+ cos mNw)

m = 1

M
+ 2 2h(m, m) (cos (N+I) mw + cos (N-1) mw)

m= 1

M m-1
+ E I 2h(m, n) (cos (mN+n) w+ cos (mN-n) w+ cos (nN+m) w

m=2 n= 1

+ cos (nN-m) w). (6)

this form, -the least-squares result may be obtained by integration to yield h in terms

the lowpass cutoff w :
p

h(O, 0) = -

[sin mw sin mNp
p p

h(m, 0) + m= 1,2,..., M
2r m mN

msin (N+l)mw sin (N-1)mwpl

h(m, m) m= 1,2, ... M
2v (N+1)m (N-1)m

1
h(m, n) =

4 rr

sin (mN+n)wp sin (mN-n)wp

+ +
(mN+n) (mN-n)

sin (nN+m)w

(nN+m)

sin (nN-m)w

(nN-m)
m = 2, 3, ... , M

The contour plots in Figs. XV-7 and XV-8, which are to be compared with

Figs. XV-1 and XV-2, show that good agreement is obtained by using the two design

techniques. As we shall see, the symmetry constraint is a powerful factor in obtaining

good back-projected 2-D filters.
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7T 0 0 0 0 thru 1.0 1.0 n 1.0 0

-7r 0.1

Fig. XV-7.

2-D frequency re-
sponse designed on
5 X5 slice line using
least squares.

Fig. XV-8.

2-D frequency re-
sponse designrd on
15 X15 s!ice line
using least squares.

Fig. XV-9. 2-D1 frequency response of 9 X 9 Hu filter #1 designed

on the slice by the Parks-McClellan algorithm with-
out symmetry constraints.
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-7" 0 0.1.2.3A.55.7.8.9 1.0 1.0 "r

Fig. XV-10. 2-D frequency response of 9 X 9 HuI filter #1 designed
by linear programming. w = 4r/9, ws = 6rr/9.

4. Minimax Approximation on the Slice

We now approximate the ideal filter response on the slice, by using the minimax

error criterion. First, we shall require only that the 2-D frequency response be real;

that is, h(m, n) = h(-m, -n). The frequency response then becomes

(N2-1)/2

H(e) = H(ejN~, e) = h(k) cos kw, (8)

k=0

where h(mN+n) = h(m, n). This is precisely the problem solved by the Parks-McClellan

algorithm. Second, we shall impose the full octal symmetry constraints. We may not

apply the Parks-McClellan algorithm to the latter problem because the set of basis func-

tions does not satisfy the required Haar condition; instead, we have developed in Sec-

tion XV-B a new algorithm that does not require that the set of basis functions satisfy

the Haar condition.

We compare a Parks-McClellan slice-designed lowpass filter to a minimax filter

designed in the 2-D frequency plane by linear programming (see Hu and Rabinerl). The

contour plots are shown in Figs. XV-9 and XV-10, respectively. In these we see that

the lack of octal symmetry allows wild variations of the frequency response between the

slice lines. In Fig. XV-11 we show that we have designed the same filter by imposing

the octal symmetry constraints on the impulse response of the 2-D filter. Computa-

tion of the 9 X 9 filter in Fig. XV-11 (15 basis functions) required 20 hours of
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HP 9830A calculator time (roughly equivalent to 10 seconds of IBM 370 CPU time).

The cost reduction was estimated to be roughly 100: 1 and the error was within 7%/0 of

the error in the Hu filter. Indeed, the worst error on the 2-D plane occurred at coor-

dinates (iT, 0), a point through which a slice line will never pass no matter how high

the order.

0 0

0

7 0 0.I.2.34.5.67.8.9 1.0 1.0 0 V

Fig. XV-11. 2-D frequency response of 9 X 9 Hul filter #1 designed
on the slice by the new algorithm exploiting the sym-
metry constraints of the impulse response coefficients.

We have seen that by imposing octal symmetry constraints among the impulse

response coefficients, we are able to control to a large extent the frequency response

between the slice lines.

5. Optimal 2-D Design

Figure XV-12 shows the sample points of the now familiar slice line for the 9 X 9

filter that we have just designed. The octal symmetry constraint implies that each

of these points has a counterpart in the lower triangular portion of the upper frequency

plane. At the counterpart, the response is the same as at the original point. The pre-

cise form of the sampling of this triangle is shown in Fig. XV-13. It is not sur-

prising, therefore, that the filter is close to optimal (in the minimax sense). Because

the sampling is not dense in places, we would be surprised it it were the optimal.

By making two changes in the design program (Fig. XV-14), we were able to design

2-D filters in 2-D. First, the basis functions were generalized to the form of Eq. 3.

Second, the set of sample points (an array of 2-D coordinates) was specified as in
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Fig. XV-12. Sample placement along the 9 X 9 slice lines for the
1

Hu filter #1 design problem.

Fig. XV-13.

Sample placement of Fig. XV-12 when
the octal symmetry is taken into ac-
count.

Fig. XV-14.

Placement of sample points for the design

problem in 2-D. Hul filter #1 with the
total number of sample points approxi-
mately the same as in Fig. XV-13.
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Fig. XV-12. The number of sample points is roughly the same as the I-D slice case.

These samples emphasize the edge regions, as well as the outline of the triangle.

The final concept of the design of the 2-D filters in 2-D bears a marked similarity

to the work of Kamp and Thiran.3 In addition, however, they have dealt with the prob-

lem of nonuniqueness sufficiently to have incorporated it into the design algorithm.

6. Conclusion

We have shown that the slice projection can be used to design nearly optimal 2-D fil-

ters when symmetry constraints are imposed. The only time advantage that is apparent

is that we need not sample the slice as often as the 2-D plane. In effect, this means

that we may design larger filters in the same amount of storage. The price for these

larger filters is in the more random placement of points by the -D algorithm, rather

than the controlled placement by the 2-D algorithm.
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