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Abstract

When a bunch passes through an electron cloud, the
transverse electron density distribution is enhanced and
modulated in time as a consequence of the motion of in-
dividual electrons under the action of the nonlinear beam
field. The effect of this “structured” electron pinch together
with the synchrotron motion of beam particles leads to an
incoherent emittance growth via the excitation and repeated
crossing of resonances, that can give rise to either stochas-
tic “scattering” (“diffusion”) or trapping. We study these
effects via a toy model of an idealized pinch, and present
applications to the CERN SPS and the GSI SIS100.

LANDSCAPE

It is well known that the excitation of nonlinear reso-
nances by magnet errors, space charge or beam-beam in-
teraction in conjunction with tune modulation can lead
to stochastic diffusion, resonance trapping and emittance
growth in hadron storage rings. Already in the 1950s the
change of a particle’s oscillation amplitude due to a sin-
gle “fast” resonance crossing was calculated by Schoch [1]
following earlier work by mathematicians. In the 1970s
A. Chao and M. Month stressed the complementary pos-
sibility of adiabatically trapping particles in resonance is-
lands, and transporting them, via a slow tune modulation,
towards larger amplitudes [2]. Since the times of Schoch,
Month or Chao, several novel theoretical approaches for
describing the effect of tune modulation have been de-
veloped in the field of nonlinear dynamics, e.g., a theory
of “modulational diffusion” by Chirikov, Vivaldi, Lieber-
man and co-workers [3]. Following the above pioneers,
over many decades numerous theoretical and experimen-
tal studies were conducted on the combined effects of tune
modulation and nonlinear forces in accelerators. A review
of these phenomena in regard to beam-beam interaction,
including estimates of diffusion rates, was delivered by
L. Evans in a school for the SPS collider [4]. A review of
related diffusion mechanisms in regard to nonlinear mag-
netic field errors was also published more than 10 years
ago [5]. An extrapolation of the dynamic aperture due to
field errors in the presence of tune modulation was derived
by a Bologna-CERN collaboration [6]. Later, the interplay
of direct space charge and tune modulation was studied
for the LHC [7]. In 1999 M.A. Furman and A.A. Zho-
lents pointed out, for the first time, that the “pinch” of an
electron cloud during a bunch passage induces a tune shift
changing along the bunch, which together with synchrotron
motion excites synchro-betatron resonances [8]. The phe-

nomenon considered was found not to be a strong effect
for the PEP-II B factory. At about the same time, K. Oide
also hypothesized about an incoherent electron-cloud ef-
fect, as a possible explanation for the vertical beam-size
blow up that was observed at the KEKB positron ring. The
KEKB beam blow up was however soon explained in the-
ory and simulations by a TMC-like fast head-tail instability
[9], an explanation which was afterwards confirmed exper-
imentally [10]. Nevertheless some KEKB data suggest that
even below the threshold of the fast instability a small “in-
coherent” blow up occurs [11]. The detailed distribution of
the pinched electron cloud inside a KEKB positron bunch
and the resulting large incoherent tune shift, computed in
2000 [12], suggest a possible explanation. In 2001 the in-
coherent tune shift due to an electron cloud at the end of
a bunch passage was also estimated for the LHC proton
beam in the PS, SPS and LHC [13]. An analytical few-
particle model, including the tune shift from space charge
and from electron cloud (with a simplified “linear” pinch),
plus synchrotron motion, was developed by G. Rumolo et
al. [14], following a suggestion by K. Cornelis. In a 2002
memorandum K. Ohmi discussed the incoherent electron-
cloud effect, emphasizing its similarity to the incoherent
effect of space charge [15]. He later compared this effect
with a linear stopband resonance due to a quadrupole er-
ror [16]. In 2003, the tune footprint created by the pinched
electron cloud was calculated via frequency maps, reveal-
ing several resonances which would potentially contribute
to an incoherent emittance growth [17]. Accompanying
longer-term tracking simulations showed a strong depen-
dence of the emittance growth on the synchrotron tune.
Also, in 2004, E. Benedetto et al. presented an analyt-
ical calculation of the electron-induced incoherent tune
shift as a function of the longitudinal and transverse beam-
particle position along the bunch, assuming that this tune
shift could be responsible for incoherent emittance growth
[18, 19]. Incoherent space-charge effects in high-intensity
high-brightness beams have become more relevant with the
advent of new projects such as FAIR [20]. In preparation of
FAIR, these effects have been studied in an extensive exper-
imental campaign at CERN [21], which was accompanied
by several numerical benchmarking studies [22]. The main
outcome of this campaign is that a particle may indeed be
trapped in a resonance when the latter is crossed, as pre-
dicted by Chao and Month more than 30 years earlier. The
resonance crossing and trapping is particularly relevant in
bunched beams where particles, due to space charge, may
periodically be subjected to a resonance crossing via the
synchrotron motion.
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ELECTRON RESONANCES

In September 2004 some analogies were drawn between
resonance-trapping phenomena for space charge invoked to
explain the beam losses observed during the PS measure-
ment campaign, and beam losses seen at the SPS, which
could be due to space charge or electron cloud, during dis-
cussions at CERN by E. Metral, E. Shaposhnikova, and
G. Arduini, in connection with the ICFA-HB2004 work-
shop [23]. Inspired by the remarkable similarities of inco-
herent space charge effects and incoherent electron cloud
effects, that had already been exploited by G. Rumolo et al.
[14] and by K. Ohmi [15], the CARE-HHH 2004 workshop
established a close collaboration between CERN, GSI, and
KEK [24], which culminated in the use of an analytical
electron-pinch model all around the ring for detailed long-
term tracking studies of the SPS and LHC [25], and in an
alternative description and interpretation put forward by
K. Ohmi and K. Oide, who refer to it as “6-dimensional
Arnold diffusion” [26]. The pinching of the electron cloud,
either in a field-free region or in magnetic field, leads to
a complicated structure with a series of higher density re-
gions, which are successively emerging on the beam axis,
at various longitudinal positions along the bunch. The re-
gions of peak density are a result of the transverse oscil-
latory electron motion. After its formation on axis, each
high-density region soon splits into two, on either side
of the beam. During the later part of the bunch passage,
the two newly generated electron “stripes” are then mov-
ing outward, away from the transverse bunch center. Such
electron structures were first obtained from an analytical
model of the pinch for a round beam without magnetic
field [18, 19] and later reproduced in detailed pinch sim-
ulations with the HEADTAIL code [27] for various beam
and magnetic field conditions [28]. The presence of an
electron stripe and its transverse distance from the bunch
center depends on the longitudinal coordinate z describ-
ing the longitudinal position along the bunch with respect
to a co-moving reference particle. Therefore, there ex-
ists a correlation between the electron-cloud field experi-
enced by a beam particle and its longitudinal position in
the bunch. Via the synchrotron motion this dependence
translates into a tune modulation, a mechanism that is fa-
miliar from space charge. In numerical simulations the
long-term effect of a localized pinched electron cloud is
a non-negligible emittance growth [24], which vanishes if
the longitudinal motion of the particles in the bunch is arti-
ficially frozen [25]. Unfortunately a fully self consistent
simulation of a bunched beam interacting with a pinch-
ing electron cloud all around a storage ring is prohibitively
CPU time consuming, for typical storage times of a rings
like the SPS or the LHC which range from 20 minutes to
several hours in real time. As a remedy we may employ
the simplifying assumption that the electron pinch iden-
tically repeats on each successive bunch passage through
the same or equivalent location. However, even with this
assumption the number of turns which can be explored is

relatively small [25]. In an attempt to overcome this diffi-
culty and to unravel the mechanisms of the slow emittance
growth, a further simplified analytical model of the pinched
electron cloud was constructed based on the principle of
electron charge conservation and assuming that the pinch
increases linearly along the bunch. For the purpose of com-
parison, this simplified model was also implemented in the
PIC code HEADTAIL and over 5000 turns and 10000 turns
a simulation benchmarking has been performed [25]. Other
benchmarking efforts were reported in Ref. [29]. However,
up to now, in the “frozen models” of the electron cloud, the
presence of the electron “stripes” was completely ignored.
In this paper, we address the effect of the pinch structure
on the beam dynamics. We adopt a simplified model in or-
der to gain a first qualitative and semi-quantitative under-
standing of the role of the electron “stripes” on the beam
dynamics.

“STRIPES” PINCH MODEL

The pinch of the electron cloud gives rise to the forma-
tion of a certain number of “stripes” [18, 19]. The mor-
phology of each electron stripe is quite complex, and the
effect of the stripe on the beam dynamics is difficult to
assess. We simplify the problem by considering ideal-
ized electron stripes formed mainly in the horizontal direc-
tion and extending infinitely in the vertical plane (Fig. 1).
This simplification is a reasonable approximation for the
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Figure 1: Schematic of a one-dimensional model of
electron-cloud stripes in the bunch reference frame. Indi-
cated in blue is the x − z area occupied by a bunch. The
electron stripes are shown as green bands.

pinch occurring with a flat beam in a vertical magnetic
field [28], and it allows for a straightforward analytical de-
scription of the electric field. The picture shows an ex-
ample of three electron stripes modeled by straight walls
of uniform electron density ρe. The change of the hori-
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zontal stripe location with location z is taken to be small,
i.e. θ ≡ dx/dz|stripe � 1. The electron density of our
model is chosen as constant inside the stripes and zero out-
side, namely

ρ(x) =

⎧⎨⎩ 0 if 0 < |x| < R1 −ΔR
ρe if R1 −ΔR < |x| < R1

0 if R1 < |x|
(1)

where ΔR denotes the x-thickness of the stripe, and R1

is the outer horizontal border of the electron wall. In this
approximation the electric field is readily computed via
Gauss’s law, and we find that the electric field is absent
inside the stripes (i.e. for |x| < R1 − ΔR), and con-
stant outside the stripes (i.e. for |x| > R1). At each z,
the total electric field Ex is the composition of the electric
field produced by all individual electron stripes which are
present. We denote by zp the start position of a new pair of
two stripes. In our model, electrons belonging to the same
stripe are found on the bunch axis over the longitudinal re-
gion (zp, zp + ΔR/θ). This short region correspond to a
maximum of the pinch.

Consider a ring with a highly localized electron cloud
described by a single interaction point (IP) between the
electrons and the beam. In such case, the density ρe can be
related to the detuning produced at the center of the pinch,
via the relation

ΔQx,ec1 ≈ βx,IP

4π

eρe

ε0

q

p0v0
Δs , (2)

where βx,IP designates the beta function at the IP, ε0 the
vacuum permittivity, ρe the EC density within a stripe, q
the charge of the beam particle, e the electron charge, p 0

the beam particle’s longitudinal momentum, v0 its longitu-
dinal velocity, and Δs the longitudinal extent of the elec-
tron cloud. If many IPs are present in the ring and the de-
tuning from each IP is small, then the global detuning is
the sum of the individual detuning contributions from all
IPs. If the detuning from the individual IPs is too strong
(or the betatron tune close to an integer or half integer),
higher order term enter into the evaluation of the total EC
detuning. Note that Eq. (2) is valid only for particles expe-
riencing linear electron forces at the location of the pinch.
For particles at larger amplitudes (e.g. |x| > ΔR), or at dif-
ferent longitudinal locations (in the bunch reference frame)
the expression for the detuning is more complicated. In the
model of Fig. 1 each stripe intersects the axis at an angle
θ = 3.33σx/σz , the x-thickness of the stripe is ΔR = 1σx,
and the three stripes have their pinch maxima located at the
positions zp = −1σz , 0.3σz , and 1.5σz , respectively.

DETUNING AT LARGE AMPLITUDE

We consider the model of Fig. 1 where a single electron
stripe produces a detuning of ΔQx,ec1 = 0.02. The density
ρe is set via Eq. (2). We take a test particle at the longitu-
dinal position of the pinch z = −0.9σz (in the bunch ref-
erence frame). If the linear oscillation amplitude of a par-

ticle is large, i.e. X ≡ √
2Ixβx,IP � R1 (with Ix denot-

ing the classical action variable, equal to half the Courant-
Snyder invariant), the detuning is mainly determined by the
effect of the electric field outside the stripes. In spite of the
fact that the electric field is constant here, the detuning de-
creases for larger oscillation amplitudes as the integrated
effect of the electron field gets smaller compared with the
natural betatron motion. An analytic approximation of the
detuning, valid for X � R1 is (see Appendix)

ΔQx,ec1,o(Ix) =
4
π

R1ΔQx,ec1√
2βx,IP Ix

. (3)

In Fig. 2a we compare results from Eq. (3) with numerical
evaluations of the tune and find an excellent agreement.

The situation can be more complicated if the test par-
ticle has a small or moderate oscillation amplitude and
is located at a longitudinal position in the bunch where
R1 > ΔR. In this case for a particle with a maximum
amplitude X < R1 − ΔR, the tune will equal the unper-
turbed betatron tune as no electron force is present on the
inner side of the electron stripe. If X > R1 the particle
will spend part of its time outside the stripe, and part of it
inside. Therefore the resulting detuning will be somewhat
reduced with respect to the case where X ≈ R1 (e.g. see
Fig. 2a). However, for X � R1 the particle will stay
mostly outside the stripe, and therefore the detuning will
approach the prediction of Eq. (3) where we substitute R 1

with ΔR. We can recognize this effect in Fig. 2b, where
at large amplitudes the analytic curve (red) converges to-
wards the numerical one (black). The green area represents
the region of the stripe which at z = −0.4σz is located be-
tween 1 and 2σx [and between −2 and −1 σx]. If the test
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Figure 2: Detuning induced by the electron stripe model of
Fig. 1 at several longitudinal positions along the bunch.
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particle is situated at a longitudinal position and has a trans-
verse amplitude such that two stripes are intercepted in the
course of its oscillation the resulting detuning is the com-
position of the detuning induced by each of the two stripes
(see Fig. 2c). In Fig. 2d at z = 1.9σz all three stripes are
present. The overall effect is a significant residual detun-
ing at large transverse amplitude (X = 15σx) whereas the
latter was practically zero at the pinch location of the first
stripe (Fig. 2a). These numerical examples allow us to con-
clude that:

• The presence of electron stripes creates a detuning
proportional to 1/

√
Ix at large amplitudes.

• The varying horizontal position (or the ‘slope’) of the
stripes introduces a z-dependence of the detuning with
transverse amplitude which is analogous to the depen-
dence of the detuning produced by space charge in
high intensity bunches [30].

• The presence of multiple stripes creates a complex de-
pendence of the detuning on the coordinates (z, x) and
it reduces the decrease of the electron-cloud induced
detuning with transverse amplitude.

PARTICLE DYNAMICS IN PRESENCE OF
ELECTRON CLOUD STRIPES

We here discuss the single particle dynamics in presence
of 1-dimensional electron stripes at a single IP (modeled
as in Fig. 1). Our example accelerator is described by a
smooth approximation, and we assume the typical tunes of
the SPS: Qx = 26.185, and Qy = 26.136. For the sake of
example, we select an electron density ρe which gives rise
to an electron detuning of ΔQx,ec1 = 0.1. The presence
of a single IP excites all resonances whose driving terms
are present in the electron-induced force. On this occa-
sion we note that the electron force is constant everywhere
but within the stripe, and represents a strong nonlinearity
which excites all harmonics. The dynamical properties of
this system are better understood by studying the Poincaré
sections of the frozen system, i.e. without synchrotron mo-
tion. We take the start particles at z = −0.9σz, i.e. at
the location of the first pinch. In Fig. 3a the presence of
5 filled islands and 5 empty ones suggest that a 10th order
resonance is excited by 1 IP. In Fig. 3b we show the beam
particle detuning as a function of the particle amplitude X .
The presence of islands is detected by the flat region in
the tune curve. When we launch the test particles at a dif-
ferent longitudinal position, for example at z = −0.6σz

see Fig. 3c, the 5 occupied islands are located further out-
ward than in Fig. 3a. This is reminiscent of what happens
for bunched beams that are space-charge dominated. How-
ever, the reason why the islands move outward is different:
In high intensity bunches dominated by space charge the
islands are located outward for small |z| because the space
charge is larger close to the bunch center, hence the detun-
ing increases at the center. In the present example instead,
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Figure 3: Transverse phase space (left) and nonlinear tune
(right) for test particles at several transverse and longitudi-
nal locations.
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at z = −0.6σz, the electron stripes are located further out-
ward (at x = 1.33σx) than for z = −0.9σz, but since there
now are more electrons inside the stripe (which builds up
from z = −1.0σz to z = −0.7σz) the net result is an
increase in the detuning. This is visible in Fig. 2a where
ΔQx,ec = 1.67 × 10−3, at X = 5σx while in Fig. 2b at
X = 5σx the detuning is ΔQx,ec = 4.74× 10−3. The in-
creased electron detuning pushes the islands outward, but
when the stripes are far from the origin, and for particle am-
plitudes close to the stripes the increase of the detuning is
compensated by the increase of the area inside the stripes.
Globally this compensation leads to a decrease of the de-
tuning which can be seen in Fig. 3f, where at X = 5σx

the detuning is smaller than in Fig. 3d. Note that in this
last case (Fig. 3f), the tunes of the test particles stay below
the 10th order resonance, and therefore 10th order islands
no longer appear in phase space. Also visible in Fig. 3e
is a peculiarity of our model in which electron forces are
absent inside the electron stripes, namely that the inner
region of the phase space here exhibits completely unper-
turbed Courant-Snyder ellipses. When the second electron
stripe emerges, at z = 0.45σz (Figs. 3g,h), the detuning
is strongly enhanced close to the origin, and more weakly
increased further away, but the overall effect is that the test
particle tune crosses the 5th order resonance at two posi-
tions, namely at X = 3.5σx and at X = 9σx. This is
reflected in Fig. 3g by the presence of two chains of five
islands. This additive effect of the electron stripes on the
detuning is found at all longitudinal positions. In partic-
ular, at z = 1.8σz we observe that the tunes ΔQx,ec al-
ways lie above the 5th order resonance for all values of
X and therefore no 10th or 5th order island is found (see
Figs. 3i,j). In other words, for intense bunched beams, the
electron stripes introduce an x − z correlation in the posi-
tion of the transverse islands, which are self generated and
strongly excited due to the concentration of electrons at a
single interaction point.

TRAPPING ON RESONANCE CROSSING

In the previous section we uncovered several analogies
between the pinched electron cloud and space-charge ef-
fects for intense bunched beams. We now explore if a shift
of the tune across the 10th order resonance may induce par-
ticle trapping in the presence of an electron pinch as is the
case for space charge. There is one important difference:
For space-charge dominated intense bunched beams, the
resonance is normally excited by a nonlinear driving term
of the optical lattice, whereas in the case of the electron
pinch the resonance driving term is provided by the elec-
tron stripes themselves. In the simulation, we first induce
a resonance crossing by varying the accelerator tune Qx,0

over 104 turns from 26.185 to 26.22, so that we intersect
the resonance 10Qx = 262. We launch a test beam par-
ticle of initial coordinates x = 2σx, z = −0.95σz, and
px = pz = 0 so that only the effect of the 1st stripe is
included. Then we simulate the resonance crossing, keep-

ing the synchrotron motion of our particle frozen. Here the
speed of the crossing is intentionally chosen to be much
smaller than what it might be for a real bunched beam, as
the trapping is facilitated if adiabatic conditions are met.
The electron density of the stripe is adjusted via Eq. (3) so
that it creates a detuning of ΔQx,ec1 = 0.1. In Figs. 4a,b
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Figure 4: Crossing of the 10th order resonance by varying
Qx,0.

we show the particle amplitude versus the number of turns.
The trapping is evident. Note that the particle is escap-
ing towards infinity very fast when the tune is on the res-
onance, and finally a de-trapping takes place leaving the
particle at a very large transverse amplitude, in this ex-
ample at X ≈ 20σx. This result strongly depends on the
speed of the resonance crossing: the slower the crossing the
larger is the amplitude gain, consistent with the theory of
Schoch [1]. This dependence is similar to what was shown
in Refs. [31, 32, 33] for high-intensity bunched beams with
space charge. Figure 5 presents a detail of the trapping with
a typical spiraling of the particle in phase space, following
the outward moving islands.

The second fundamental type of resonance crossing oc-
curs when the bare tune Qx,0 is fixed, but the particle is
allowed to longitudinally oscillate according to the syn-
chrotron motion. The dynamics of this case is much more
complex as the particles travel through different longitu-
dinal sections of the bunch for which the electron stripes
vary in number and position. As a first step to approach
this problem we consider the single passage through a res-
onance over half a synchrotron oscillation. We set the syn-
chrotron period equal to 2 × 104 turns and take a test par-
ticle located at the head of the bunch with initial coordi-
nates: x = 2σx, z = −3σz, px = pz = 0. The density of
the electron-cloud is again adopted to produce a detuning
of ΔQx,ec1 = 0.1 at the pinch location. The tunes of the
ring are those of the SPS: Qx,0 = 26.185, Qy,0 = 26.136.
In Fig. 6a we present the motion of the test particle in
the x − z plane. The motion appears to be regular un-
til z ≈ −1σz is reached, where the first electron stripe
is encountered. Following this, the motion ceases to be
regular, but trapping does not yet occur as the important
islands are still well inside the particle orbit. An island
trapping takes place only at z � −0.35σz. The trapping
is evidenced in Fig. 6b by the 5 arms leaving the inner,
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Figure 5: Detail of Fig. 4b: particle trapping induced by
electron-cloud stripes.

smaller deformed ellipse. Also, due to a stroboscopic ef-
fect, the same trapping is signaled by 3 arms in Fig. 6a.
A de-trapping occurs at z � 0.1σz , from when on the
islands no longer intercept the particle orbit. In particu-
lar the resonance is not crossed anymore by our particle
in the region z = [0.15, ..., 0.25]σz, whereas in the fol-
lowing interval z = [0.25, .., 0.3]σz the islands disappear
entirely and the particle executes a nearly regular betatron
motion. Both these effects are visible in Fig. 6a, where
the three arms vanish. Then, islands are newly formed
at z ≥ 0.3σz , namely two or three chains of 10th order
islands (see Fig. 3g). Our tracked particle is located be-
tween the inner and outer island chains. The outer chain
does not intercept the particle orbit, while the inner smaller
chain of islands never succeeds in crossing the particle or-
bit: for z > 0.46σz the detuning is already so large that
the particle tune is moved above the 10th order resonance.
Consequently in the region z = [0.4, ..., 1.2]σz, the par-
ticle mainly undergoes chaotic betatron-like motion. Note,
however, that the further outward the electron stripes are lo-
cated, the weaker becomes the electron-induced detuning.
At z � 1σz the reduction of the detuning is such that the
test particle again assumes a tune on the 10th order reso-
nance. A “trapping” now takes place (see the stroboscopic
effect in 1.2σz < z � 1.5σz). When the third electron
stripe commences, at z = 1.5σz , the detuning rises again,
eliminating all 10th order islands. This is visible in Fig. 6a
by the irregular motion in the interval 1.5σz < z < 2.3σz .
For z > 2.3σz the electron-induced detuning shrinks again
and the 10th order islands reappear, but no full trapping
takes place. The partial trapping of this phase is visible by
a weak signature of some stroboscopic effect in Fig. 6a, in
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Figure 6: Crossing of the 10th order resonance in half a
synchrotron period.

the region 2.3σz < z < 3σz . This last part of the particle’s
motion corresponds to the outer halo in Fig. 6b.

EXAMPLE APPLICATIONS

The aim of the previous section was to demonstrate
that trapping by electron stripes is possible. However, in
normal operating conditions, most synchrotrons work in
the “non adiabatic” regime, with longitudinal oscillations
much faster that in the previous examples. The fast lon-
gitudinal oscillations create a complicated dynamical situ-
ation, where resonance trapping is dominated by “scatter-
ing” [34] (see also the original discussion of fast resonance
crossing by Schoch [1]). We now apply our toy model for
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the electron stripes described in Fig. 1 to the SPS ring as-
suming a realistic longitudinal frequency Qz,0 = 1/168.
Figure 7a presents the simulated emittance growth for 120
electron-cloud interactions equally distributed around the
SPS ring. In Fig. 7b there are 744 electron-cloud inter-
actions, one for each dipole according to the SPS struc-
ture. The total electron-induced detuning is again chosen
equal to 0.1. Note the asymmetric response of the beam
growth for a swapping of the horizontal and vertical tunes
as a consequence of the crossing or non crossing of the 10th
order resonance. In spite of the different number of interac-
tions, the beam response is comparable in the two pictures.
In Fig. 7b the emittance growth is slightly smaller than in
Fig. 7a as the smaller number of interaction points excites
the 10th order resonance more strongly. In all these simu-
lations we assumed a zero chromaticity, a linear lattice, and
an accelerator optics modelled in smooth approximation.
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Figure 7: Example application to the SPS: a) electron IPs
uniformly distributed around the circumference; b) one
electron IP for each of the 744 dipoles in the SPS lattice.

We also applied this modeling of electron stripes to the
future SIS100 ring at the GSI, even though the occurrence
of an electron cloud at SIS100 is not yet fully assessed [35].
Figure 8a shows the simulated emittance growth during
120 × 103 turns, and Fig. 8b the accompanying halo de-
velopment. The working points are Qx,0 = 18.84, Qy,0 =
18.73, and the longitudinal tune is Qz,0 = 10−3. A more
detailed discussion of the SIS100 parameters and the asso-
ciated space-charge issues can be found in Ref. [36]. The
results of our simulation show an emittance increase by
12%, and the fraction of halo particles outside 3σx exceed-
ing 2%. Though these results appear acceptable compared
with the beam-loss budget, a complete evaluation of the ac-
tual electron-cloud density expected in SIS100 still remains
to be carried out.

CONCLUSION

The study presented in this report demonstrates that the
morphological fine structure of the electron-cloud pinch
plays an important role in creating the amplitude depen-
dent detuning responsible for island migration and conse-
quent particle trapping. Differently from the space-charge
induced resonance trapping, the multiple stripes formed by
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Figure 8: Application of the one dimensional electron
stripe model to SIS100. a) emittance increase; b) % of
particles beyond 3σx. In this simulations the total electron-
induced detuning is chosen equal to 0.1.

the electron cloud induce multiple resonance crossings due
to slow synchrotron motion. The complexity of the dy-
namics is fully illustrated by Fig. 6 where in half a syn-
chrotron period the trapping and diffusion regimes alter-
nate several times. We expect that a refined modeling of
the electron stripes will create an even more complex dy-
namics which renders the reliable prediction of long term
emittance growth a challenging endeavour indeed.
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APPENDIX

The detuning created by one localized EC kick can be
computed as follows. Consider the beam-particle motion
in a section of the storage ring where the beam-electron
interaction is located. In this section let the beta function
be βx,IP , and for simplicity adopt a smooth approximation
with αx,IP ≈ 0. In Courant-Snyder variables the particle’s
phase-space coordinates then are x̂ =

√
2Ix cos(θx), and

x̂′ =
√

2Ix sin(θx), with θx denoting the betatron phase of
the particle and Ix the classical action variable. The aver-
age shift in the betatron phase advance after N turns, due to
the additional deflections Δx′i (i = 1, ..., N ) experienced
at a single beam-electron interaction point on successive
turns, is

Δθx =
1
N

N∑
i=1

√
βx,IP Δx′i cos(θx,i)√

2Ix

, (4)

where θx,i denotes the betatron phase on turn i. In Eq. (4)
we assume that the invariant Ix remains constant, i.e. we
exclude any resonant effect, or, in other words, we are av-
eraging over a number of turns N sufficiently small that the
growth of Ix is negligible, but large enough for phase av-
erages to make sense. For applying Eq. (4) to the effect of

BEAM’07 PROCEEDINGS

91



the pinched electrons, we first note that, in our toy model,
the EC electric field Ex inside the emerging stripes close to
the center of the pinch zp, is given by

Eec,x = −eρe

ε0
x . (5)

Inserting the resulting deflection Δx′, which is also linear
in the offset x, into Eq. (4) the calculation reduces to an av-
erage over the term cos2(θx,i) which can be estimated an-
alytically using the aforementioned assumptions. We then
find that one IP for a particle with small transverse ampli-
tude will give rise to the detuning

ΔQx,ec1 =
βx,IP

4π

eρe

ε0

q

p0v0
Δs . (6)

We can therefore express the density of a stripe as a func-
tion of the EC detuning in the pinch as

ρe = ε0
4π

βx,IP

ΔQx,ec1

Δs

p0v0

eq
. (7)

For a particle at large transverse amplitude with respect to
the stripe location R1 > ΔR, we can approximate the elec-
tron field as

Ex,o = −eρe

ε0
ΔR sign(x̂). (8)

and again apply Eq. (4). In the expression (8) we do not dis-
tinguish between the inside of the stripe (where Ex = 0)
and the outside (where the field is constant) because, for
large betatron amplitudes, the inside of the stripe occupies
only a small fraction of the area spanned by the particle
motion, which will not significantly contribute to the over-
all detuning. By combining Eq. (8) and Eq. (4) the detuning
at large amplitudes becomes

ΔQx,ec1,o =
1
π2

√
βx,IP

(
eρe

ε0

q

p0v0
Δs

)
ΔR√
2Ix

, (9)

and inserting ρe from Eq. (7) we finally obtain the equation
for the tune shift. Note that if 0 < R1 < ΔR then we
substitute ΔR with R1 and obtain Eq. (3).
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