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Abstract

Collision with a large Piwinski angle is one of the update
scenarios of LHC toward the luminosity 1035 cm−2s−1.
The large Piwinski angle is realized by a small beta func-
tion at the collision point and longer bunch length. The Pi-
winski angle is increased from 0.6 to 2 in the scenario. The
bunch population is increased so as to keep the beam-beam
parameter.

The beam-beam performance is degraded by crossing
angle which induces additional nonlinear terms due to a
symmetry breaking of the collision especially for the high
beam-beam parameter. Effect of crossing angle for the
nominal LHC design and the large Piwinski angle scheme
are studied.

INTRODUCTION

We discuss effects of crossing angle in LHC and its up-
grade plans. Piwinski angle for horizontal crossing is de-
fined by

φ =
θσz

σx
. (1)

where θ, σz and σx are a half crossing angle, bunch length
and horizontal beam size, respectively. The nominal LHC
is θ = 140 μrad, σz = 7 cm and σx = 17 μm, thus the
Piwinski angle is φ = 0.6.

The crossing angle induces [7] various nonlinear terms,
which degrade the luminosity performance. The large Pi-
winski angle scheme φ = 2 expects linear luminosity
increase for the bunch population without increasing the
beam-beam parameter. We study the beam-beam perfor-
mance for the crossing collision in the nominal design and
upgrade options using computer simulations.

EFFECT OF CROSSING ANGLE

Lorentz transformation is used so that the two beams
move completely opposite direction. Electro-magnetic
field is formed in the perpendicular to the moving direc-
tion, thus colliding beam experiences the electro-magnetic
field in the perpendicular to the moving direction [1, 2, 3].
This feature simplifies treatment of the beam-beam force.
The schematic view is seen in Figure 1.

The Lorentz transformation from the laboratory frame to
the head-on frame (ML) is given for a half crossing angle
θ by [3]

x∗ = tan θz +
(

1 +
p∗x
p∗s

sin θ
)
x

Figure 1: Collision in the laboratory and head-on frame.
Light blue and orange arrows display the electric field line
of the colliding bunches. Black arrow displays the traveling
direction of the bunches.

y∗ = y + sin θ
p∗y
p∗s
x

z∗ =
z

cos θ
− H∗

p∗s
sin θx

p∗x =
px − tan θH

cos θ
(2)

p∗y =
py

cos θ
p∗z = pz − tan θpx + tan2 θH,

where

H = (1 + pz)−
√

(1 + pz)2 − p2
x − p2

y

ps =
√

(1 + pz)2 − p2
x − p2

y.

A star designates a dynamical variable in the head-on
frame. H∗ and p∗s are H(p∗) and ps(p∗), respectively.
Note that the x∗ and y∗ axes are defined in the same di-
rection for both beams, while the s∗ axis is defined in op-
posite directions, since the two beams travel in opposite
directions.

The linear part of the transformation is expressed by a
matrix

ML =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 tan θ 0
0 1/ cos θ 0 0 0 0
0 0 1 0 0 0
0 0 0 1/ cos θ 0 0
0 0 0 0 1/ cos θ 0
0 − tan θ 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

(3)
These transformations, Eqs.(2) and (3), are not symplec-

tic. In fact, the determinant of the transfer matrixML is not
1, but cos−3 θ. This is not a problem because the inverse
factor of cos3 θ is applied by the inverse transformation.
This is due to the fact that the Lorenz transformation is
not symplectic for the accelerator coordinate, because the
Hamiltonian is divided by a reference momentum. Need-
less to say, the Lorentz transformation is symplectic for the
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physical coordinate, thus the transformations, Eqs.(2) and
(3), are symplectic in the physical coordinate. The adia-
batic damping is the concept in the accelerator coordinate.
This discussion can be applied to the nonlinear transforma-
tion of Eq.(2) [4].

SIMULATION FOR NOMINAL LHC

We first evaluate luminosity for the nominal LHC us-
ing weak-strong and strong-strong simulations. Crossing
angle induces linear x − z coupling, with the result that
the beam distribution diffuses and the luminosity degrades
[4]. The diffusion rate strongly depends on the beam-beam
parameter. For electron-positron colliders, the diffusion
rate is faster than radiation damping rate > 10−4/turn for
ξ > 0.05. Here damping rate of LHC is the order of one
day 109 turns and the luminosity life time is expected 109

turns. Tolerable diffusion rate or luminosity decrement is
10−9/turn. The simulations was carried out during ∼ 106

turns in this paper. The decrement of 10−3 should be cared
to predict the luminosity life time of 109 turns.

Figure 2 shows evolution of the beam-size and luminos-
ity given by the weak-strong and strong-strong simulation
for the nominal bunch population. Plot (a) depicts beam
size evolution given by the weak-strong and strong-strong
simulations. A bunch is sliced in 10 pieces along its length
in the weak-strong simulation. Macro-particles of 104 was
used in the weak-strong simulation. The beam size of the
weak beam is averaged in each 100 turns. No emittance
growth nor luminosity degradation were seen in the weak-
strong simulation.

Two dimensional model is used for the strong-strong
simulation to save the calculation time. This approxima-
tion may give optimistic results. However an emittance
growth is seen in the strong-strong simulation. The emit-
tance growth is considered by numerical noise of macro-
particle statistics. Macro-particles of 106 are used the sim-
ulation. The statistical noise of collision offset (0.1%) can
be introduced collision by collision in the simulation [5].
Needless to say, the weak-strong simulation is noise free.
Plot (b) depicts luminosity evolution for the nominal, twice
and 4 times bunch populations. Luminosity degradations
are 10−9, 5× 10−9 and 3× 10−8 in one turn, respectively.
If we believe this result, the bunch population is limited to
the nominal value by the beam-beam effect. Here we con-
sider this degradation is due to the numerical noise again.
More discussions for noises in macro-particle simulations
are seen in Ref.[6]. We use only the weak-strong simula-
tion hereafter.

Figure 3 shows the luminosity degradation for 2×, 4×,
6× and 8×more bunch populations than the nominal value.
The red and green lines depict the evolution of the lumi-
nosity zero or finite crossing angle. In the nominal bunch
population, there was no difference between zero and finite
crossing angle. The difference was visible for more than 6
times population. Anyway, the nominal LHC is no problem
for finite crossing angle.
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Figure 2: Beam size increment and luminosity decrement
given by the strong-strong simulation.
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Figure 3: Luminosity degradation due to the crossing angle
given by the weak-strong simulation. Plots (a)-(d) depicts
for 2×, 4×, 6× and 8× more bunch population than the
nominal value, respectively.

LARGE PIWINSKI ANGLE OPTION

We study a large Piwinski angle option for LHC. Table
1 [8] shows parameter list of the large Piwinski angle op-
tions. The Piwinski angle φ = 2 is realized in the first
option with long flat bunch, a half beta and 5 times bunch
population. The angle φ = 3 is realized in the second op-
tion with a quarter low beta and 2 times bunch population.
In this paper we study the first scheme (LPA1).

LHC has two collision points. Both of the two collision
points are designed so as horizontal-horizontal crossing in
the nominal design. Hybrid crossing, in which horizon-
tal and vertical crossing[9] are adopted for the two inter-
action points, can be considered for the upgrade plan. The
tune spread due to the nonlinear beam-beam interaction is
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narrower for the hybrid crossing than the nominal cross-
ing. The horizontal crossing induces the nonlinear terms
xy2 while vertical crossing induces skew terms x2y. This
means the hybrid crossing induces more resonances than
the nominal crossing. It is very difficult which is better the
two cases, less resonance with wider tune spread, or more
resonances with narrower resonances. The answer depends
on the case by case, operating point, beam-beam parameter
and so on. Simulation only gives the answer.

The nominal crossing induces the same nonlinear inter-
actions at the two interaction point. This means some non-
linear terms can be cancelled depending on the betatron
phase difference. In the hybrid crossing, some terms can
be cancelled but terms with different symmetry (parity) can
not be cancelled.

Table 1: Basic parameters of LHC nominal and large Pi-
winski angle option. ∗ The bunch length is total length
with a flat longitudinal distribution.

variable nominal LPA-1 LPA-2
circumference (m) 26,658
beam energy (TeV) 7
bunch population (1011) 1.15 4.9 2.5
half crossing angle (mrad) 0.14 0.19 -
beta function at IP (m) 0.55 0.25 0.14
emittance (m) 5.07× 10−10

beam-beam tune shift 0.0033
bunch length (cm) 7 41∗ 7.5
synchrotron tune, νs 0.0019
betatron tune, νx(y) 63.31/59.32
revolution frequency 109/day
Piwinski angle φ 0.4 2 3
luminosity (cm−2s−1) 1 10

Simulation for the nominal and hybrid crossings

The weak-strong simulation was executed to study the
large Piwinski angle scheme. The number of the longitu-
dinal slices are increased for proportional to the Piwinski
angle. We show examples of the nominal and hybrid cross-
ings. It should be emphasized that the results depend on the
betatron phase difference between two IP. Here the phase
difference is chosen to be Δψ = 0.2 × 2π for both of x-y
plane. The parasitic interactions are included in the simu-
lation.

Figure 4 shows the simulation results for Np = 4.9 ×
1011 with including 7 parasitic collisions both side of up-
stream and down stream of the collision point. Plots (a),
(b) and (c) depict the evolution of luminosity and beam
size, and beam particle distribution in x-y plane after 106

revolutions, respectively. Red and green lines are turn by
turn beam size and its average during 100 turns. Lumi-
nosity does not change, while the beam size fluctuates for

the revolutions. It is seen that some particles have a large
amplitude in the final distribution (c).
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Figure 4: Np = 4.9× 1011 Evolution of (a) luminosity and
(b)beam size. (c) Beam particle distribution in x-y plane
after 106 revolutions.

A higher bunch population, Np = 6 × 1011 was tried
to make clear the luminosity degradation and emittance
growth. Figure 5 shows the simulation results for Np =
6 × 1011 with including 7 parasitic collisions each side.
Again the luminosity does not degrade, but beam size in-
creases faster than that of the nominal population, Np =
4.9 × 1011. More particles have large amplitudes in the
final distributions.
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Figure 5: Np = 6 × 1011 Evolution of (a) luminosity and
(b)beam size. (c) Beam particle distribution in x-y plane
after 106 revolutions.

We next cut off the parasitic interactions to understand
why particles have large amplitudes. Figure 6 shows the
simulation results forNp = 6× 1011 without parasitic col-
lisions.

The same simulation was carried out for the nominal
collision scheme, horizontal-horizontal. Emittance growth
and luminosity degradation were not seen in the nominal
collision. We would like to say the tune spread is not
universal parameter to characterize the emittance growth
and/or beam-beam performance, and we do not conclude
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Figure 6: Np = 6 × 1011 Evolution of (a) luminosity and
(b)beam size. (c) Beam particle distribution in x-y plane
after 106 revolutions.

that the nominal collision scheme is better than the hybrid
scheme in this example.

Taylor map analysis for the nominal and hybrid
crossings

Nonlinear terms in one turn map depend on the colli-
sion scheme; the nominal or hybrid crossing, or betatron
phase difference between the two interaction points. The
beam-beam interaction can be expanded by Taylor polyno-
mial for the dynamic variables. The one turn map including
two interaction points and two linear arcs is represented by
Taylor polynomial. The one turn map characterizes reso-
nance behaviors of the beam particles. For example, xnym

term in the map, exp(−a : xnym :), drives resonances of
nνx ± mνy . Details of the analysis is seen in Ref. [7]
We discuss nonlinear terms up to 4-th order in this paper.
Higher order terms may be important for proton rings with-
out radiation damping. Further studies will be done else-
where.

Figure 7 shows the coefficient of x4 term of the beam-
beam interaction as a function of the betatron phase differ-
ence between the two interaction points. The coefficient
for the nominal crossing is small than that for hybrid cross-
ing. This means the x4 term is weakened by long bunch
collision in the horizontal plane, perhaps. The coefficient
has peaks for the phase difference of 0.3 and 0.8. The to-
tal tune is (νx, νy) = (0.31, 0.32). The phase difference is
another arc is 0.5 or 1 at the peaks, respectively.
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Figure 7: Coefficient of x4 term for the betatron phase dif-
ference between the two interaction points. Red (HH) and
green (HV) lines are for the horizontal-horizontal crossing
adn horizontal-vertical crossing, respectively.

Figure 8 shows the coefficients of x3z, y3z and related
terms. y3z terms are very small for the nominal cross-
ing, because the terms are suppressed by symmetry of the

horizontal-horizontal crossing.
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Figure 8: Coefficients of x3z and y3z terms of the beam-
beam interaction. (a) x3z (300010) and p3

xz (030010) for
the horizontal-horizontal crossing. (b) x3z (300010) and
p3

xz (030010) for the horizontal-vertical crossing. (c) y 3z
(003010) and p3

yz (000310) for the horizontal-horizontal
crossing. (d) y3z (003010) and p3

yz (000310) for the
horizontal-vertical crossing.

Figure 9 shows the coefficients of x2yz, xy2z and re-
lated terms. xy2z terms are very small for the nominal
crossing, because the terms are suppressed by symmetry
of the horizontal-horizontal crossing.
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Figure 9: Coefficients of xy2z and x2yz terms of the
beam-beam interaction. (a) xy2z (102010) and pxp

2
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SUMMARY

Effect of crossing angle are evaluated for the nominal
LHC. The weak-strong simulation showed a visible lumi-
nosity degradation in a day for 6 times higher bunch pop-
ulation: that is, there is no problem for the nominal de-
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sign. The strong-strong simulation gave luminosity degra-
dation stronger than that of the weak-strong simulation.
This degradation is considered due to numerical noise of
macro-particle statistics at present.

High Piwinski angle scheme with a half beta and twice
longer bunch length was investigated. The simulation in-
cluded 7 parasitic interactions both of upstream and down-
stream of the collision point. Two type of collision scheme
for two collision points, the nominal horizontal-horizontal
crossing and the hybrid horizontal-vertical crossing, was
studied. An example for each scheme was investigated with
the weak-strong simulation. The hybrid crossing gave a
halo formation due to the parasitic interactions in this ex-
ample. We should not conclude that the nominal collision
scheme is better than the hybrid scheme in this example.

Preliminary results for Taylor map analysis of the beam-
beam interactions were presented. Nonlinear terms de-
pending on the symmetry (parity) of the colliding system
appear in the map. The nominal crossing gives a wide tune
spread but less resonance term, while the hybrid crossing
gives a narrow tune spread but more resonance terms. It
is difficult to say simply which is better; depending on the
operating point, betatron phase difference between the two
interaction points.
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