b-tagging with ATLAS

Laurent Vacavant

on behalf of the ATLAS Collaboration

All material to be available in: *Expected Performance of the ATLAS Experiment,* Detector, Trigger and Physics, CERN-OPEN-2008-20

Identification of b-jets is a key ingredient for the whole high- p_T physics program of ATLAS

- Top physics: (talks from F.P.Shiling and W.Verkerke, B. Clement, P. Cavalleri next)
 - favorable situation: S/B 10x higher than Tevatron
 - b-tagging still useful to kill light jet background:
 - example for lepton+jets channel, 100 pb⁻¹:
 - S/B 2x (4x) better requiring one (two) jets to be b-tagged (no remaining light jet background expected in the latter case)
- Standard Model Higgs (searches & properties): (talk by L. Fayard)
 - Natural interest for low mass region ($\Gamma_{ff} \sim m_f^2$)
 - revived interest for WH(bb) (w/ high-p_T jets) (Butterworth et al., PRL 100,242001,2008)
 - ttH(bb) channel + other ttH channels (talk by I. Ludwig)
 - signal ~0.4 pb, 4 b-jets in signal, huge background
 - background suppression (top) for other channels
- <u>SUSY:</u>
 - mostly Higgs sector (coupling to b enhanced by $sin\alpha/cos\beta$ for 2HDM models like MSSM) (talk by L. Fayard)
 - also inclusive searches: +20% in reach (Kadala et al.,arXiv:0803.0001, see posters)
- Exotics: Z', little Higgs, etc

modest ε OK

 $\epsilon \gtrsim 70\%$ needed !

higher jet p_{T} or

soft (bbH), taus

TeV-ish jets !

b-tagging basics

b-tagging ingredients

- Jets (direction):
 - to assign tracks ($\Delta R < 0.4$)
 - to sign impact parameters
- •<u>Tracks:</u>
 - impact parameter resolution
 (35µm for a central 5 GeV track)
 - tracking in (dense) jets
 - specific quality requirements
 - N(hit B-layer) > 0
 - shared hits, etc
- Primary vertex:
 - mostly needed along Z (σ ~50 μ m)
 - @ high-luminosity
- <u>Lepton ID</u> (soft leptons)

Impact parameter-based b-tagging

Impact parameter:

- signed w.r.t. jet direction
- significances (d_0/σ)

Simplest algorithm: • counting tracks with large d_0 or d_0/σ JetProb algorithm: (à la ALEPH)

- compatibility of tracks
 with primary vertex
- \cdot resol. function from data

 $\mathscr{P}_{i} = \int_{-\infty}^{-|d_{0}^{i}/\sigma_{d_{0}}^{i}|} \mathscr{R}(x) dx$

$$\mathcal{P}_0 = \prod_{i=1} \mathcal{P}'_i$$
$$\mathcal{P}_{jet} = \mathcal{P}_0 \sum_{j=0} \frac{(-in\mathcal{P}_0)^j}{j!}$$

IP likelihood ratios:

smoothed & normalized significances for the two hypotheses: b(S), u(S)
for each track: ratio b(S)/u(S)

• 2D PDF for (d_0, z_0)

Laurent Vacavant

Physics at LHC - October 2 2008

Secondary vertex-based b-tagging

Inclusive vertex:

- 1. Find all two-track vertices (tracks away from primary vertex: $L_{3D}/\sigma > 2$)
- 2. Remove vertices compatibles w/ γ conv., K_s, Λ , material inter.

- 3. Fit all remaining tracks into single inclusive vertex
- 4. Remove iteratively worst tracks
- 5. Use distance to PV or properties of the fitted vertex for discrimination:
 - number of two-track vertices
 - mass of the vertex
 - energy fraction

(NB: L_{xy} not used, correlated with IP)

Laurent Vacavant

6

Secondary vertex-based b-tagging

Topological reconstruction of B/D decay

Based on likelihood:

- categories for topology
- vertex mass
- energy fraction
- significances of {dist_i}

<u>Main idea:</u> try to constrain all tracks from the B/D hadron decays to intersect the same flight axis (instead of the common vertex approach)

JetFitter: a new dedicated Kalman filter fitting:

 $\{x_{v}, y_{v}, z_{v}, \phi, \theta, dist_{1}, dist_{2}, dist_{3}, \dots, dist_{N}\}$

Treatment of incomplete / 1 – prong topologies:

• on average 1.9 (1.7) OK tracks from D (B) decays

Algorithm	Topology	Track efficiency	Track purity
BTagVrtSec	1 inclusive B/D vertex	69 %	92 %
JetFitter	1 vertex	74 %	91 %
	1 vertex + 1 track	80 %	85 %
	2 vertices	85 %	89 %

→~20% improvement in light jet rej.

➔ promising for b/c separation

Physics at LHC - October 2 2008

Performance of b-tagging algorithms

- Track counting: R~30 @ 60%
- Soft muon: R~300 @ 10% (i.e. 80% w/ BR)
- Soft electron: R~100 @ 8%
- •HLT: R~20 @ 60%
- •Charm rejection: 5 to 7 @ 60%, up to 20 with JetFitter

Factorization (\neq channels): dependency on jet pT, η and env. (ΔR)

Degraded performance:

- ·low p_T : MS, secondaries
- high η : lever-arm (z_0), secondaries
- high p_T : next slide

Laurent Vacavant

Tagging high and very high- p_T jets

Challenges:

• fixed $\triangle R$ for track/jet assoc \rightarrow dilution for jets of high p_T

- gains (x2,x3) possible for non-isolated jets
- pattern-recognition issues
- 'late' B-decays

Fraction of jets (WH400):

	$R_B > 2.9$ cm	$R_B > 5.1 \text{ cm}$
all E_T	9.0%	2.8%
$E_T > 100 \text{ GeV}$	12.2%	3.9%
$E_T > 200 \text{ GeV}$	21.1%	7.9%

<u>Example</u>: $Z'(2 \text{ TeV}) \rightarrow bb$, uu after retuning of IP3D+SV1: (x3 worse otherwise)

➔ Require dedicated treatment for clustering, pattern-recognition

Impact of residual misalignments

Studies:

MC geometry includes misplacements as expected in detector (incl. surveys) $10-100 \mu m$ for modules, mm for elements, some systematic deformations (global shifts, clocking effects,...)

 all displacements known in reco
 1 + additional pixel random misalignments introduced in reco only
 actual ATLAS alignment procedure ! (cf. talk by R. Moles)

Both 1 and 2 require a specific procedure to increase the hit errors \rightarrow fully recovers tracking efficiency and fake levels

Alignment procedure suggests residual misalignments of ~ 3 μm in rq (pixels)

➔ after alignment, relative loss in rejection between 11–18%

→encouraging, even though probably not all systematic deformations were accounted for

Calibrating b-tagging efficiency with di-jet events

- Key-ingredient: soft muons
- Dedicated μ-jet trigger:
 - staged jet E_T thresholds
 - 1 Hz \rightarrow 100k in 30h (1 pb⁻¹@10³¹ cm⁻²s⁻¹)
- <u>Method 1:</u> p_T^{rel} templates
 - b & c templates from MC
 - fit in p_T , η bins
- <u>Method 2:</u> non-linear system (à la D0)
 - 2 samples
 - 2 different b-jet/light jet fractions
 - 2 non-correlated taggers
 - ➔ system can be solved analytically
- Both methods work well for $p_T^{jet} < 80 \text{ GeV}$
- Systematic uncertainties dominate for > 50 pb⁻¹
- → Current precision on b-tag efficiency: 6%

Calibrating b-tagging efficiency with top events

Tag counting method:

- count 1,2,3 b-tags \rightarrow likelihood
- best accuracy on ε_b : for 100 pb⁻¹ ±2.7%(stat)±3.4%(syst)

<u>Selecting unbiased b-jets</u> (leptonic side)

integrated efficiency only

W jets: Hadronic side E_T >40 GeV, b-jet: $E_T > 40$ 20 b-veto veight>3) (weight < 3) Lepton: E_T≥20 Ge₩ Leptonic side b-jet: E_T>20 GeV E_Tmiss> No tag 20 GeV requirement

Several selection methods:

- topological
- likelihood
- \cdot kinematic fit
- \rightarrow signal purity 60–80%

b-tagging efficiency determination:

	Торо.	Like.	Kine.
Stat. (200 pb ⁻¹)	6.4%	4.4%	5.5%
Syst. error	3.4%	14.2%	6.2%

→ can also be used to extract b's p.d.fs

Laurent Vacavant

Physics at LHC - October 2 2008

Conclusion

- Expected b-tagging performance of ATLAS studied in details
- For simple taggers, light jet rejection of 30 (for $\varepsilon_b = 60\%$)
- Secondary vertex taggers can achieve a rejection of 150
- Most advanced taggers can reach a rejection of 50 for $\varepsilon_b = 70\%$, very important for multi b-jet signatures (more is needed: NN, BDT)
- Many critical aspects studied: misalignment, material, state of detector, Monte Carlo modelling, etc - More to do: misalignment, pile-up
- Methods to measure the b-tagging efficiency in data have been established, allowing a ~7% accuracy with 200 pb⁻¹ in top events
- Work is on-going for the measurement of mistag rates
- New developments, e.g. b/c separation, can broaden the physics reach of ATLAS
- Commissioning of the detector progressing well, our work will now focus on the commissioning of the b-tagging to transform our expectations into reality !