Measurement of SUSY parameters using events with dileptons with ATLAS.

U. De Sanctis University of Milan & INFN

ATLAS Detector Under construction October 2005

- Reminder of SUSY and mSUGRA framework;
- Topology of the SUSY events;
- Leptons identification;
- Measurement of masses and other properties of SUSY particles in the 2lepton channel.
- Extracting masses and parameters from measurements

SUPERSYMMETRY REMINDER

Adds to each SM fermion (boson) a bosonic (fermionic) partner.

SM Particles	SUSY P	articles
quarks: q	q	squarks: \tilde{q}
leptons: <i>l</i>	l	sleptons: \tilde{l}
gluons: g	g	gluino: \tilde{g}
charged weak boson: W^{\pm}	W^{\pm}	Wino: \widetilde{W}^{\pm} \sim_{\pm}
Higgs: H [°]	H^{\pm}	charged higgsino: \widetilde{H}^{\pm} $\int \chi_{1,2}$ chargino
	$h^{\circ}, A^{\circ}, H^{\circ}$	neutral higgsino: $\tilde{h}^{0}, \tilde{A}^{0},$
neutral weak boson: Z^{0}	Z ^o	Zino: \widetilde{Z}° $\widetilde{\chi}_{1,2,3,4}^{\circ}$ neutralino
photon: γ	γ	photino: $\tilde{\gamma}$

• **R-parity** $R = (-1)^{3(B-L)+2S}$ can be conserved (**RPC**) or violated (**RPV**)

- **RPC** implies:
 - SUSY particles produced in pairs
 - stable and neutral lightest SUSY particle (LSP)
 - no proton decay
- LSP is a good candidate for cold Dark Matter

MSSM Lagrangian depends on 105 parameters **mSUGRA** requires only 5 parameters

- Also other SUSY models exist: GMSB, AMSB, ...

Par.	Description				
m ₀	Common scalar mass				
m _{1/2}	Common gaugino mass				
A ₀	Common trilinear term				
tanβ	Ratio of Higgs vev				
sign(μ)	μ from Higgs sector				

mSUGRA benchmark points

SUSY benchmark points chosen in the $(m_0, m_{1/2})$ plane for different $tan\beta$ values:

- ✓ Systematically exploring phenomenological signatures
- Scanning the parameter phase space constrained by latest experimental data and Cold Dark Matter abundance.

Coannihilation: Light $\tilde{\tau}_1$ in equilibrium with $\tilde{\chi}_1^0$, so annihilate via $\tilde{\chi}_1^0 \tilde{\tau}_1 \rightarrow \gamma \tau$.

Bulk: bino $\tilde{\chi}_1^0$; light $\tilde{\ell}_R$ enhances annihilation.

Funnel: H,A poles enhance $\overleftarrow{\boldsymbol{\varepsilon}}$ annihilation for tan $\beta \gg 1$.

Focus point: Small μ^2 , so Higgsino $\tilde{\chi}_1^0$ annihilate. Heavy s-fermions, so small FCNC.

Split, 29/09/2008

SUSY signatures at an hadronic collider

- Assuming R-parity conservation
- Strongly interacting sparticles (squarks, gluinos) should dominate production unless very heavy.
- Cascade decays to the stable, weakly interacting lightest neutralino follows.
- Event topology:
 - high p_T jets (from squark/gluino decay)
 - Large E_T^{miss} signature (from LSP)
 - High p_T leptons, b-jets, τ-jets (depending on model parameters).

Several other possibilities exist, but our effort has to be as more "model independent" as possible.

2-lepton channel: strengths and weaknesses

- Reduces the signal because of (model dependent) leptonic BRs;
- Heavily suppresses the background: top is the dominant one;
- Statistical significance is smaller but S/B ratio larger.
- The Same Sign channel has the best S/B ratio but limited by signal rate Baseline selection :
- Jet multiplicity ≥ 4 , $p_T^{1st} > 100 \text{GeV}$, $p_T^{others} > 50 \text{GeV}$
- $E_T^{miss} > max(100 \text{GeV}, 0.2 \text{xM}_{eff})$; Transverse sphericity > 0.2.

Electron & Muon selections for 2-leptons channel

- Pt > 10 GeV, $|\eta| < 2.5;$
- Calorimetric isolation < 10 GeV in a 0.2 radius cone;
- Combined muons (e.g. using information from both the muon spectrometer and the Inner Detector)
- Overlap removal procedure.
 Say ΔR (muon, jet) the distance muon-jet in (η,φ) plane:
 - if $\Delta R < 0.4 \rightarrow$ muon discarded

- Pt > 10 GeV, $|\eta| < 2.5;$
- Calorimetric isolation < 10 GeV in a 0.2 radius cone;
- If an electron is found in the $1.37 < |\eta| < 1.52$ region, the event is rejected (ID services and ECAL barrel-extended barrel transition worsen the performances);
- Overlap removal procedure.
 Say ΔR (e, jet) the distance electron-jet in (η,φ) plane:
 - if $\Delta R < 0.2 \rightarrow$ jet discarded
 - if $0.2 < \Delta R < 0.4 \rightarrow$ electron discarded.

Di-Lepton Edge mass measurement (1)

- In case of a discovery of SUSY, particle properties can be measured to verify that they are indeed SUSY partners
- Edge(s) of di-lepton invariant mass correlated with slepton and neutralino masses

 $\tilde{\chi}^0_{\ 2} \rightarrow \tilde{l} \ l \rightarrow \tilde{\chi}^0_{\ 1} \ l^+ \ l^-$

- Impossible to reconstruct peaks because χ_1^0 (LSP) escapes detection, more complicated relations between masses of particles $M_{ll}^{\max} = M(\tilde{\chi}_2^0) \sqrt{1 - \frac{M^2(\tilde{\ell}_R)}{M^2(\tilde{\chi}_2^0)}} \sqrt{1 - \frac{M^2(\tilde{\chi}_1^0)}{M^2(\tilde{\chi}_2^0)}} \sqrt{1 - \frac{M^2(\tilde{\chi}_1^0)}{M^2(\tilde{\ell}_R)}}$ involved.
 - Uncorrelated (SUSY+SM) background (two leptons from independent chains) removed by flavour subtraction:
 e⁺e⁻ + β² μ⁺μ⁻ β (e⁺μ⁻-e⁻μ⁺), β=ε_e/ε_μ
 - Leptons can also be combined with jets of the full decay chain to look for other kinematical edges (M_{IIj} or M_{Ij})

Assuming that the squarks decays originate the **two hardest jets** of the event, one can use the *qll* combinations. Each combination has a minimum or a maximum which provides one constraint on the masses of $\tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \tilde{l} \tilde{q}$.

llq edges

Fit formula: 2 straight lines (for signal and background) smeared by a Gaussian distribution to take into account the experimental resolution.

Edge: 517±30±10±13 GeV Truth: 501 GeV

Edge: 343±12±3±9 GeV Truth: 340 GeV

Split, 29/09/2008

Physics at LHC 2008 U. De Sanctis

llq thresholds

Fit formula: 2 straight lines (for signal and background) smeared by a Gaussian distribution to take into account the experimental resolution.

Edge: 265±17±15±7 GeV Truth: 249 GeV

Edge: 161±36±20±4 GeV Truth: 168 GeV

Split, 29/09/2008

Physics at LHC 2008 U. De Sanctis Extracting masses and parameters

Using the previous measurements (with also $q\ell$ edges and thresholds), a global fit is performed in order to extract the value of the masses of the particles involved:

Masses of SUSY particles

mSUGRA parameters determination

					Parameter	SU3 value	fitted value	exp. unc.
Observable	SU3 mmaac	SU3 mmc	SU4 mmass	SU4 mmc				
0000114010	see milleas	ta tu la	so milleas		$\operatorname{sign}(\mu) = +1$			
	$[\text{GeV}/c^2]$	$[\text{GeV}/c^2]$	$[\text{GeV}/c^2]$	$[\text{GeV}/c^2]$	$tan \beta$	6	7.4	4.6
$m_{\tilde{\chi}_1^0}$	88±60∓2	118	62±126∓0.4	60	M_0	100 GeV	98.5 GeV	$\pm 9.3 \text{ GeV}$
					$M_{1/2}$	300 GeV	317.7 GeV	$\pm 6.9 \text{ GeV}$
10 A	$180 \pm 60 \pm 2$	210	$115 \pm 126 \pm 0.4$	11/	A_0	-300 GeV	445 GeV	$\pm 408~{ m GeV}$
$m_{\tilde{\chi}_2^0}$	$109 \pm 00 \pm 2$	219	$9 113 \pm 120 \pm 0.4$		$\operatorname{sign}(\mu) = -1$			
ma	$614 \pm 91 \pm 11$	634	$406 \pm 180 \pm 9$	416	$tan \beta$		13.9	± 2.8
тq	0112/1211		100 1 100 1 /	110	M_0		104 GeV	$\pm 18~{\rm GeV}$
$m_{\tilde{\ell}}$	$122\pm 61\pm 2$	155			$M_{1/2}$		309.6 GeV	$\pm 5.9~{ m GeV}$
i	'				A_0		489 GeV	$\pm 189~{ m GeV}$

With **1 fb-1** the uncertainties on the masses and on the mSUGRA space parameters are very big \rightarrow more statistics is needed.

Measurement of neutralino spin (1)

Important to measure the spin of new particles: it's the fundamental check to ensure that what we have discovered is SUSY!!

The charge asymmetry is **diluted** because:

- Usually it is not possible to discriminate the *near* and *far* leptons: we sum m(ql^{far}) and m(ql^{near}) invariant masses
- 2. The charge conjugated cascade decay (from the anti-squark) gives the opposite asymmetry. However, cancelation is not exact because at LHC a larger number of squarks than anti-squarks is produced (pp collider)

Measurement of neutralino spin (2)

Conclusions

- A brief review of the search strategies for SUSY in the 2leptons channels with ATLAS has been presented;
 - New discoveries possible with <u>early LHC data (O(100)pb⁻¹</u>)
- Accurate knowledge of SM physics and of detector performance needed for any new discovery
 - First data taking period devoted to understanding of detector
 - After that, di-lepton channel could be competitive in the early LHC phase because its clear signature.
- Relations among masses can be determined with a 2-5% precision already with 1 fb-1 of "well understood" data.
- Larger statistics needed to measure the neutralino spin and to use the relations above to constraint the parameter space of mSUGRA and eventually to discriminate among the various SUSY models.

BACKUP SLIDES

Split, 29/09/2008

Physics at LHC 2008 U. De Sanctis

18

