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IX. PLASMA DYNAMICS

A. Laser-Plasma Interactions

1. TWO- AND THREE-DIMENSIONAL STABILITY ANALYSIS FOR

SECOND-ORDER LASER-PLASMA INTERACTIONS

National Science Foundation (Grant GK-37979X)

Frank W. Chambers, Abraham Bers

The theory for pinch-point time asymptotic three-dimensional pulse-shape analysis

discussed in Quarterly Progress Report No. 111 (pp. 31-37) and also in Section IX-D. 2

has been applied to five different nonlinear interactions with parameters appro-

priate to the laser-pellet interaction problem. These five interactions are Raman

(EM - EM + EP), Brillouin (EM - EM + IA), two-plasmon (EM - EP + EP), plasmon-

phonon (EM - EP + IA), and nonoscillatory (EM + EM - EP + EP). The coupling coef-

ficient y, which would correspond to the maximum growth rate in time with no damping,

is given for each interaction in Table IX-1. The interactions have been divided into two

groups: transverse, which include one electromagnetic wave in the decay products,

and longitudinal, in which both decay waves are electrostatic. The basic derivation

of these coefficients has been given elsewhere 1 ' 2 (see also Sec. IX-D. 3). In Table IX-1

the three-dimensional aspect of the couplings is included in the vector dot and cross

products. Calculations were carried out in the two-dimensional plane which maxi-

mized the coupling. The laser electric field is assumed to be linearly polarized with
A A

E along the z axis and to propagate in the x direction. The coupling is maximum for

the transverse interactions when the decay waves are in the x-y plane; for longitudinal

interactions the coupling is maximum when the decay waves are in the x-z plane. Our

results will be presented as contour plots of the growth rate Soi vs observer veloc-

ity V in the two-dimensional plane of maximum response (see Quarterly Progress

Report No. 111, pp. 31-37, and also Sec. IX-D. 2).

Formulas and references for group velocities and dampings of waves vgi(ki ) and

Yi(ki) are listed in Table IX-2. The real dispersion relation is used to calculate group

velocities and to relate w and k for frequency and wave number matching. The group

velocities and dampings are calculated under the assumption that real k and W

satisfy the matching conditions.

Calculations were performed for a neodymium laser incident on a deuterium pellet

with parameters from Nuckolls, Emmett, and Wood.3 The plasma density was taken to

be some fraction of the critical density for neodymium 1. 06 l m light which is n =

1021/cm 3 . The electron temperature was always taken as 1 keV. For laser power the

level 1015 W/cm 2 was chosen because it is a realistic intensity for a focused neo-

dymium laser. Furthermore, the instabilities considered turn out to be weakly unstable
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Table IX-1. Nonlinear interactions with their coupling coefficients.

K T K T + 3KBT i  eEL

Te m c s = M VL = me
e 1 eL

Interaction 1 - 2 + 3 Locus y 2 = Coupling Coefficient Squared

Transverse

1 2
EM - EM + EP 4 Critical y 2

Raman 16 W2k 2

2 4 2 - 2

2 Lpew3s 2Xel
EM - EM + IA Critical Y 2 2 2

Brillouin 16pe2 Tew 2

Longitudinal

2 r . 2

1 2 VLpe (k2 el)k3  (k3 'el)k2EM - EP + EP - Critical Y 16 ' k 2W 3  + (k 1
Two-plasmon k3

2 2

2 VLpe3 e 'k2(k3 " el) k3 (k2 } elEM - EP + IA Critical Y = 16 M. +

Plasmon-Phonon

2 2 2 222

EM + EM - EP + EP Critical Y 2 L \2 (k2 )(k3  ) kcs
0 4v2 pe(2 22

Nonoscillatory To e pe k2k 3 (2k2c s

a (W2- 3)/2 k (kZ-k 3 )/2
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Table IX-2. Dispersion relations used for 0, k matching and wave damping.

Wave Dispersion Relation Damping.Mechanism Reference

EM Electromagnetic Waves

2 c2k2 2
r pe

(In A/10) ne(cm- 3)
S= -v . = - e Electron-Ion Collisions 4

e

EP Electron Plasma Oscillations K - kkD

2 2 22
W z o

2  + 3k v e
r pe Te

i -V ei- eld Electron-on Collisions +

e pe 1 (1+ 3K 2 K< .28 5

3 exp (1+3K2+6K4+24K+ 180K 8  K<.28 5
eld (871/2 K 2K Electron Landau Damping

Use Fried-Conte Z Functions K > .28 6

IA Ion-Acoustic Waves K - kXD

r =  k c 2 = (KBTe+3KBTi)/Mi

i = -vii/2 - veld - Vild

(In A/10) n (cm - 3 )

Vii 10) nIon-Ion Collisions 4

3 106 (Te(eV))3/2

1/2 m 1/2
Veld p( ) K Electron Landau Damping
Veld = Pi /(1 +K) 2

e3/2 7T\1/2 (T e3/ ) r/? K-T
Vild = K T 2 Ion Landau Damping

Vild pi (8)KT. Z ex



Table IX-3. Parameters for calculations and results from plots in
Figs. IX-1 and IX-2.

(Te = 1 keV, T. = 50 eV, P = 1015 W/cm2 except as noted)
e 1

Figure (i) (ii) (iii)

1(a) EM - EM + EP n/nc .016 .063 .191

Raman wpe/WL .125 .250 .4375

max -- 3
soi . (10 ) 1.76 5.63 7.81

kkD .657 .296 .126

1(b) EM - EM + IA n/nc .010 .563 .563

Brillouin pe/wL .100 .750 .750

smaX( -3
oi ax(103 L )  .029 .236 4.00

P (W/cm 2) 1013 1013 1015

T.i (eV) 125. 50. 50.

kXD .088 .078 .078

2(a) EM - EP + EP n/nc .203 .214 .226

Two-plasmon wpe/ L .450 .4625 .475

s ma (10-3 w) 2.08 4.57 5.55

kk .312 .271 .224

2(b) EM- EP + IA n/nc .810 .856 .951

Plasmon-Phonon pe/WL .900 .925 .975

sax 10-3 L 5.95 8.27 6. 61

kXD .280 .227 .125

2(c) EM + EM - EP + EP n/nc .980 .983 .990

Nonoscillatory wpe/ L .990 .991 .995

s maxo 10-3 L) 25.3 25.4

kkD .088 .082 .062
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(IX. PLASMA DYNAMICS)

at this power level so that this theory gives meaningful results. The results can be

scaled approximately to other laser wavelengths and densities, provided (n/nc)

and klXd are held constant. This scaling is valid for the coupling coefficients and

Landau dampings, but not for collisional damping, which is usually unimportant.

The calculated pulse response shape depends primarily on three variables; the

laser polarization, the coupling coefficient, and the wave dampings.

We consider first the transverse interactions, Raman and Brillouin scattering, illus-

trated in Fig. IX-1. Note that the V -V plane is displayed and the maximum observer

velocity is c, which is necessary because of the electromagnetic decay products.

Parameters and numerical results for the plots in Figs. IX-i and IX-2 are given in

(0 Vy x
C

X Vy

(b)

Fig. IX-i. Two-dimensional contour plots of the pulse response
in the V -V plane vs observer velocity for trans-

x y
verse interactions. The laser pump is incident in the
x direction and plane polarized in the z direction.
(a) Raman EM - EM + EP. (b) Brillouin EM - EM +
IA.

Table IX-3. In (iii) of Fig. IX-la we have plotted contours of 0, 40%, and 80% of the
max -3maximum growth soia x which is 7. 81 X 10 times the laser frequency and occurs at

the velocity marked "X ". The outermost contour represents marginal stability. The

next concentric contour and the contour that encircles the origin are 40% contours,

the closed kidney-shaped contour is the 80%o contour. From Table IX-3, for this case
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(IX. PLASMA DYNAMICS)

kkD = .126 and Landau damping is negligible; the pulse response is essentially that

for the undamped case. Here the response is determined primarily by the coupling

coefficient, which depends on the magnitude of the plasma oscillation wavevector k3.
This vector is a maximum when the second electromagnetic wave is at 1800 with

respect to the laser, hence the maximum scatter in the backward direction. As the

density is increased the k2 wavevector of the electromagnetic decay wave decreases.

This causes the maximum velocity of the pulse response to decrease. Furthermore,

since k3 = k1 T k2 in forward and backward scattering, as k2 becomes small the for-

ward and backward coupling coefficients for the pulse response nearly become equal. In

fact, as we near 1/4 critical density the pattern shown in(iii) in Fig. IX-la will become

nearly circularly symmetric.

As we decrease the density, XD increases and Landau damping becomes important.

In (i) and (ii) in Fig. IX-la backscattering is being suppressed by Landau damping

so that primary scatter occurs at the sides or in the forward direction. Note from

Table IX-3 that there is a corresponding decrease in the maximum growth rate.

The Brillouin interaction, Fig. IX-lb, is similar to the Raman interaction in the

undamped case, since the coupling coefficient goes as k /2. (Note in Table IX-1 that
2

'y W3~ k3Cs.) In (iii) in Fig. IX-lb the instability is absolute, the origin in the

Vx-Vy plane is enclosed by the zero growth-rate contour and has a finite growth rate.

In (ii) in Fig. IX-lb the power has been reduced by a factor of 100; now the origin is

no longer enclosed, and the instability is convective. Finally, at low power and far out

in density the effects of damping are apparent in (i) in Fig. IX-lb; again the damping

has the largest effect in the backward direction where k3 is largest.

Next, we consider the longitudinal interactions in Fig. IX-2, which displays the

Vx-V z plane, and the maximum observer velocity is vTe. The two-plasmon instability

is illustrated in Fig. IX-2a. In (iii) in Fig. IX-2a where the effects of damping are

unimportant (k 3XD<.25), the shape of the pulse is entirely determined by the angular

dependence of the coupling coefficient (see Table IX-l). The zeros along V x occur

because there is no coupling in the case of collinear wavevectors; this is true of all

longitudinal interactions. There is also a zero where k2 and k3 form an equilateral

triangle with k1 . In this case where damping is negligible the maximum growth for any

direction of vg 2 occurs at observer velocity V = (v +vg3)/2 (Quarterly Progress Report

No. 111, see Eq. 15, p. 34), for plasma oscillations Vg = 3kk DvTe. Consequently,

V = 3XDVTe(k2+k 3 )/2 = 3klXkDTe/2. This velocity corresponds to the group velocity

of a plasma oscillation with a wavevector k1 /2. Thus the cloverleaf pattern is centered

about this velocity, and it is here that the maximum growth occurs. In fact, the growth

rate at this velocity is multivalued, since the response for any direction of k2 will

include this point. Moving slightly away from 1/4 critical density ((i) and (ii) in
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(IX. PLASMA DYNAMICS)

Fig. IX-2.

(i)

W

x

(ii)

I6

(iii)

6229-
(a)

(ii)

(b)

(ii)

(c)

(iii)

(iii)

Two-dimensional contour plots of the pulse response
in the Vx-V z plane vs observer velocity for longi-

tudinal interactions. The laser pump is incident in the
x direction and plane polarized in the z direction.
(a) Two-plasmon EM - EM + EP. (b) Plasmon-phonon
EM - EP + IA. (c) Nonoscillatory EM + EM - EP + EP.

Fig. IX-2a) results in a large increase in the k2, 3 vectors to achieve matching, hence

Landau damping becomes important. Since the forward-going wave always has the

slightly longer wavevector, it is suppressed first, and the result is the lopsided pattern

shown in (i) in Fig. IX-Za.

Similarly the plasmon-phonon instability pulse response (Fig. IX-2b) illustrates the

effects of coupling coefficient and damping. As wpe decreases in order to w match, k3
must be increased. At first as the coupling coefficient that goes as w3 = csk3 (see

Table IX-I) increases the growth rate increases (see (ii) in Fig. IX-2b). As one
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(IX. PLASMA DYNAMICS)

moves further from the critical surface, however, the longitudinal wavevector magni-

tudes further increase and Landau damping becomes important. Then, as seen in (i) in

Fig. IX-2b and in Table IX-3, the growth rate again decreases.

Finally, we have included the nonoscillatory instability in Fig. IX-2c. This is

actually a four-wave coupling and it requires the inclusion of third-order conductivity,
4

hence the vL in the coupling coefficient. To look at it another way, the pump enters

twice, thereby coupling the two plasma waves (see Watson and Bers, Sec. IX-D. 3).

This coupling relies on the proximity of the ion-acoustic resonance as seen from
2 22

the w - k cs term in the denominator of the coupling coefficient. All calculations for

this instability have been carried out very near the critical surface. The two-dimensional

response has a zero in the collinear case and is maximum at nearly 900. From similar

arguments, as with the two-plasmon interaction, the maximum growth is on the Vx

axis at Vx = gEP(kl). Note the large growth rates, which clearly exceed the acous-

tic frequency, which indicates that our weak-coupling assumption is not valid. Note also

in (i) in Fig. IX-2c that the ion-acoustic wave comes exactly into resonance for = 200.

The theory has broken down dramatically because we have used only the real parts

of w and k in calculating the ion-acoustic dispersion relation. This instability

requires a more accurate treatment, as discussed in Section IX-A. 2.

Thus far, results have been presented in two dimensions. The extension to three

dimensions is straightforward but not trivial. The three-dimensional response differs

markedly for the longitudinal and transverse interactions. The longitudinal interactions

rely on the laser electric field to drive the electric field of the decay product; hence,

when the component of E 1 along, say, k 2 vanishes there is no interaction. Thus in

Fig. IX-2 the growth rate along Vx is always zero. For these interactions we have

illustrated the Vx -V plane where the interaction is maximum. In the V -V plane

the coupling coefficient vanishes. As P, the angle between the k plane under consider-

ation and El, is rotated (see Fig. IX-3) the coupling varies as cos 2 p and the pulse

response in three dimensions is simply a figure of rotation about the V axis with the2 x
coupling coefficient reduced by cos p for the various p. This is illustrated in

Fig. IX-4a. For transverse interactions we must again have E 1 E 2 # 0, but

now the situation is not so simple. The coupling depends not only on the p ori-

entation of the plane in which we are calculating with respect to E 1 but also

on the angle c of the k2 in this plane with respect to the kl . The angular

dependence cannot be separated into a simple dependence on p times a depen-

dence on c, as was possible for the longitudinal case. The general description

of transverse interactions in three dimensions is not a simple figure of rota-

tion; however, we can simplify matters in certain planes where c and e, the

angle in the vector cross product, are simply related. Specifically, we can cal-

culate in the Cartesian planes:

QPR No. 113



Fig. IX-3. Illustration of the important angles in the three-dimensional

problem. p is the angle between E l and a vector common to

both the k and y-z planes; c is the angle between k2 and k l
in the k plane; 0 is the angle between k 2 and E1. Only two

of these angles are independent but in general they are
not simply related.

vz

VVz

fE, d- t E
Vx Vx

k k

VV

Vy

(a) (b)

Fig. IX-4. Pulse response in three dimensions for (a) longitudinal and
(b) transverse interaction.
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(IX. PLASMA DYNAMICS)

V -V z 900, 0 varies
y z

V-V = 90 0 - e
x z

V -V p varies, 0 = 900
x y

Figure IX-4b gives the response in the Vx -V and Vx-Vz planes for the parameters

in (i) in Fig. IX-lb. The lower half of Fig. IX-4b is the Vx-Vy plane response, the upper

half the V -V plane; to visualize the interaction in three dimensions, we can fold
x z

this figure at right angles along the Vx axis.

There are several important limitations on the results that we have presented. Some

concern the accuracy of the theory and others the applicability of this model to the finite,

inhomogeneous laser-pellet plasma. In solving the homogeneous problem we have used

second-order conductivity (except in the case of the nonoscillatory instability) and we

have approximated the dispersion relations of the decay products as straight lines. In

finding pinch points for the inverse Fourier-Laplace transform this is equivalent to

assuming a perturbation about or and kr for the intersecting dispersion relations;

hence, our theory is probably only valid for small growth rates. For example, in the

nonoscillatory instability we have calculated growth rates that clearly exceed the acous-

tic frequency, hence these results violate the small growth-rate assumption. This

particular instability has been investigated in greater detail (see Sec. IX-A. 2). Inves-

tigations of the other four instabilities including third-order conductivity and more

accurate approximations to the dispersion relations have shown that at the power of

1015 W/cm they are adequately described by this linearized theory.

We must also examine the applicability of this theory to the laser-pellet plasma. Our

approach thus far has been to calculate the pulse response locally at different points

along the density gradient. We must investigate the criteria for this localization to be

valid. There are several effects to be considered. A mismatch in k or o can be

introduced by density variations or by a temperature variation; this mismatch will occur

over characteristic lengths. Damping may limit an interaction to a finite region of still

another scale length. We may also be limited by the finite width of the laser beam. We

can calculate which of these lengths is the limiting factor for a given interaction.

Knowing the pulse propagation velocity, we can determine the length of time the pulse

spends in this region. Then, knowing the homogeneous growth rate, we can calculate

the number of e-foldings that the pulse undergoes in this region. The condition for locali-

zation is simply that the pulse e-folds several times before propagating out of the inter-

action region. Note that for the transverse interactions whose pulse velocities are

fractions of c this criterion is more severe than for longitudinal interactions where

velocities are closer to vTe. This condition on the growth rate can be related in turn

to a condition on the power, thereby giving a localization threshold. Considering the

QPR No. 113



(IX. PLASMA DYNAMICS)

Raman instability, mismatch will be introduced by the changing plasma frequency. This

will limit the growth of the instability. The case in which mismatch is the important

factor has been solved by Rosenbluth.7 For the two-plasmon interaction, mismatch

is no longer important, the oppositely propagating plasmons cancel the mismatch that

they introduce. The damping increases dramatically, however, as we move away from

1/4 critical density, hence there must be significant growth before the pulse propagates

into the highly damped regions. In the parametric interaction the maximum scattering

is at 900 where the density gradient has little effect. But the finite laser beamwidth

and spherical shape of the pellet can become the limiting factors.

In conclusion, at the power level 1015 W/cm 2 the assumption of localization is good
for gaining an understanding of the three-dimensional three-wave interactions, but more

accurate models for the interaction and plasma may be required to account for effects

that thus far we have ignored. Finally, it must be remarked that the detailed conse-

quences of these interactions, with regard to both backscattering and plasma heating,

must be determined from the nonlinear and/or turbulent evolution of these insta-

bilities.
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2. THREE-DIMENSIONAL DISPERSION RELATIONS FOR

THIRD-ORDER LASER-PLASMA INTERACTIONS

National Science Foundation (Grant GK-37979X)

Duncan C. Watson, Abraham Bers

Introduction

We shall use the theory of coherent wave coupling in three dimensions presented in

Section IX-D.3 to give a unified description of the following instabilities: plasmon-

phonon,1 modified plasmon-phonon, 2 nonoscillatory,3 modified nonoscillatory,4 Raman, 5

modified Raman,6 Brillouin, modified Brillouin,6 two-plasmon,7 coalesced Raman and

plasmon-plasmon,8 and coalesced plasmon-phonon and nonoscillatory. The stability

analysis for the unmodified interactions is discussed in Section IX-A. I and has also been

reported elsewhere. 9 The stability analysis for modified instabilities is carried out to

the extent of finding one-dimensional cross sections of the corresponding pulse shapes.

These cross sections are taken in directions for which the unmodified instabilities have

the maximum growth rates and the effect of modification on the pulse shape is most pro-

nounced. We shall show that at high pump powers the plasmon-phonon and nonoscil-

latory instabilities lead to a single coalesced unstable pulse.

Three- Dimensional Dispersion Relations

Consider the unmodified plasmon-phonon instability, which occurs when (K)S and

(K_)S are small (see Sec. IX-D.3, Eq. 28). From Section IX-D.3, Eq. 29, taking only

the electron contributions to the nonlinear currents, we find

2 2 2 2
W pe pe p

1- 2 22 2 2 2 2 - 2 22
T - k VTe 0 - yik v 0_ - y ekVTe _ - Yik vTi

2 2
vLe 4 (4 e s e L )w kvTe + kv Tew(e S' eL)

2 pe 2 2 2 2 2 2
L( -ye VTe)  - e - VTe

Consider the neighborhood of a point (k, ) = (kIA IA) where the hypersurfaces (K)s
0, (K )S = 0 intersect and so the corresponding (k , ) = (kBG'- BG). Choose the values

of e', yi in (1) to agree with the results of Vlasov theory and use the fact that I wBG/kBG >>
VTe >> I WIA/kIA . Then
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(IX. PLASMA DYNAMICS)

2 2
k c

2
W

p2
2 2 2-3k v-- T

42 2 2 - 2-

Iv L Ip w -k T (es- e L)

2
VT k4 4 2(wZ-3k2v)

Expanding about (kIA' WIA) to first order in Ak, Aw, we have

Three-dimensional Unmodified Plasmon-Phonon Instability:

- IA. - BG(A V Ak) (AW+ G

2
VLASER

16 vTT
wBGIA(eBG eL

where

Vo vL exp(ikLZ-iwLt) + complex conjugate

S. VLASER --= 2 LI.- VLASER cos (kLZ-wLt+P)

Equation 1 is also appropriate for the unmodified plasmon-plasmon instability. Con-

sider the neighborhood of a point (k, w) - (kBG,, WBG,) where the hypersurfaces (K)S = 0,

(K_)S = 0 intersect, and let the corresponding (k_, w) E (kBG' BG). Use the fact

that I wk,,, w,,,/k, ,, v,. Then
' J. BLx L

2

p

A - 3k v 2
T

vL
2

VT

4 [(- eL )k+k_ (es L]

/2 k~~22w- 3 k v )
T

(2 kZV2)2- 3k 2v ?- -T

Expanding about (kBG" WBG,) to first order in Ak, Aw, we have

Three- dimensional Plasmon- Plasmon Instability:

2 2
SBG' BG 2 L (eBG eL) (eBG' eL)(AW -G Ak) Aw+v Ak) - 16 BG' + BG mBG WBG ' (6)

L ph Vph

k k
1 BG' 1 BG

where is the scalar is the scalar kBG
vBG WBG' vBG WBG
Vph Vph

From Section IX-D. 3, Eq. 32, taking only the electron contributions to the nonlinear

currents, we get
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2
o

pe
1- 2 2 2

C - e k VTe

pi

- -2
4 (eM- -eL) -kvT
pe 2(w2k2v 2L k - v

Using (7) for the

(k, ) (kA' oiA)

responding point

unmodified Brillouin instability, consider the neighborhood of a point

where the hypersurfaces (K)S = 0, (K_)M = 0 intersect and the cor-

(k_, W) = (kEM, -oEM)

22 22 22
k c s - pe -

2 2
o o

2
VT

422 2 - 2wpk v (e *e )p T -M- eL)

4(2 , 2 2 2
, o -yk vT

(8)

Expanding about (kIA' IA) to first order in Ak, Aw, we have

(9)

Using (7) for the unmodified Raman instability, consider the neighborhood of a point

(k, w) = (kBG, WBG) where the hypersurfaces (K)S = 0, (K_)M = 0 intersect and so the cor-

responding point (k_, o_) E (kEM", -EM,). Then

1

2 2 2 2 2

p - pe -

2 2 2
T )-

IVLI
2

VT

422 2- -  2
op VT _De T-M-" e L)

L- k( T)

Expanding about (kBG' WBG) to first order in Ak, Aw, we have

Three-dimensional Unmodified Raman Instability:

22 o
-BG Al, -EM' VLASER P 2 - 2

(A-v Ak iA+ -- v k k (e
g i g 1 WEM' OBG kBGeEM' eL
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Three-dimensional Unmodified Brillouin Instability:
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From Section IX-D. 3, Eq. 33, taking only the electron contributions to the nonlinear

currents, we find

2
pe

2 2 2
W - yk VTe

e Te

IVLel
2

VTe

2
Spi

2 ---2 2
- k

Ti

2 2
kc

2
o

C4 (em- -eL )-kv Te
pe W2 (2-k2Ve) 2

_' ye Te)

+1

2
pe

2
C

2Z
(eS- eL)w-kvTe

( 2 - k 2 2 V
e Te

e2 2 )
e -VTe)

2
pe

2 22
_2 -y k VTe- e - Te

2
pi

2 22
W_-y i- VTi

(12)

Using (12) for coalescing Raman and plasmon-plasmon instabilities, take

kvT

Ci

kvT
-T<< 1,

2 2 2 2
ek Te pe

(k, w) -(k 2 W 2 ), (k-' W_) = (-k 1 , -wl), IVLI = /2
2 2 d' I L Vo

and approximate wl = o2 = Wp except in terms involving their difference:

Three-dimensional Coalesced Raman and Plasmon-Plasmon instability:

(This is a form used by Langdon, Lasinski, and Kruer.8)

2 2 2 - 2 /o (k-k 2)2

2 pe k2  '1 Xv o  k o 1 2
•4 - = - +

pe k 1  _k 22 2 k2k2
pe C l-Op) 2 2- C +W p

From Section IX-D.3, Eq. 30, taking only the electron contributions to the nonlinear

currents, we get
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2 2
pe Pi

1 2 22 - 2 22
_ -yek v Te - ik vTi

2 e2 2 2VLe_ 4 s eL)w-kvTe + k-vTe(eS eL) pe pi

I 2 "1
VTe pe y ek VTe) (2 Yek2VTe 2 ek Te 2 Ti

2 2 2 W2
VLe 4 k-v Te"(eM - eL) k2c 2  pe pi

2 2pe 2 +1 2 2PTe 2 ek V2

Le 2 2 2
2 pe es- -eL) k vTe -S- e S- eL) - (eS eL) kvTek_vTe
Te

+ k Te(eS eL) wkvTew(eS- eL ) + k vTe(eS eL) yk 2vTek_VTe1

[(W2 ek2 Te)2 (2 ek 2 Te

e 2 ~- 2 v 2 --( s +.

2 ope (eS- eL) ak VTe- (eS- eL) + (S- _eL ) -(S--"eL ) wkv TekvTe

Te

+ kTe( eLTe S eL ) +k vTe L Te(S eL) yk- VTekvTe

2 ek 2 ( 2 - yek 2 2

(16)

Using (16) for the modified plasmon-phonon instability, we consider the neighborhood

of a point (k, w) = (kiA, WIA) where the hypersurfaces (K)S = 0, (K_)S = 0 intersect, and

let the corresponding (k_, w_) (kBG', -BG). But let the neighborhood of ('IIA' WIA)

extend over a frequency span of several WIA. Use the facts that wl__/k__ >

I0 /k_ >> vTe >> Iw/k . Then the second and fourth of the four terms on the

right-hand side of (16) may be neglected. In the first term, that part of the

numerator enclosed in brackets may itself be approximated by its first term.

Similarly, in the the third term that part of the numerator enclosed in brack-

ets may itself be approximated by its first term. Making these approximations

we obtain
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S2 2 2 2

1- 2 2 2 2 - -eL) 2 2 22 _-3k2v T  v T  k v k D Xo
- -T T T D

2 2
L 2 eS--_ eL(
2 - 2 (17)

v T  p

Expand the left-hand side about (kBG' BG ) , thereby linearizing the Bohm-Gross dis-

persion function but leaving the ion-acoustic dispersion function in unlinearized form,

and noting that (k_ - kBG, _ - (-BG) (k-kiA' W-W A), we get

Three-dimensional Modified Plasmon-Phonon Instability:

2 2 2
VBG LASE R  k cs 2

(W--IA) + -klA) 2 BG 2 2 2 (eBG' eL) (18)
8v L - k c

T s

From Section IX-D. 3, Eq. 34, taking only the electron contributions to the nonlinear

2 2 W Z W .k c pe pi

2 + 2 2

VLe 4 (e M - e L )C - k v T  pe pi

2 pe 2 2 2 - 2 ,2 2Te W_ w -Yek 2Te) -Ye k VTe - i k VTi

2 2 2k22
VLe 2 M-(e L - Te2 pe 4 2 2

Te e Te

2 2 2 2 2IvLeI 2 (e-'eL) - Te

o+ e .Lp (19)+2 pe 42-  22
Te -Y e -- VTe)

Using (19) for the modified Brillouin instability, consider the neighborhood of a point

(k, ) (kIA' IA) where the hypersurfaces (K)S = 0, (K)M = 0 intersect, and let the

corresponding (k_, w_) = (kEM, -WEM,). But let this neighborhood of (kIA, WIA) extend
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over a frequency span of several times wIA' Use the facts that I w__/k__ > I w_/k_ >>

VTe >> jI/kI. Then the third of the three terms on the right-hand side of (19) may

be neglected. With these approximations,

2 4 - 2 2
k2L2 + 1 4) M L k W

2 2 2 222 2 2 2 (e M-eL)W W v w k v k X W v W
_ vT  _ T  D  T o

(20)

Expanding the left-hand side about (kEM" -WEM')' thereby linearizing the electro-

magnetic dispersion function but leaving the ion-acoustic dispersion relation in unlin-

earized form, and noting that ( -kWEM" W-(-EM,))- (~IA' W-IA)' we get

Three-dimensional Modified Brillouin Instability:

2 T
2 k 2c 2

_ EM'. A VLASER P s 2
(W-A -kA 2 2 (eEM L) (21)

vg 8v2  EMI - k cs
T sj

Using (19) for the form of modified Raman instability in extremely underdense

plasma, we consider the neighborhood of a point (k, w) = (kBG WBG) where the hyper-

surfaces (K) = 0, (K_)M = 0 intersect, and let the corresponding (k_, ) (k EM,-EM).

But let this neighborhood of (kBG' BG) extend over a frequency span of several times

WBG. Use the facts that w__/k__ I > I w_/k_ >> I w/k >> vTe. Then the third of the three

terms on the right-hand side of (19) may be neglected. With these approximations,

k 2 2 P ( eL ) k vT W
2 4 2 22 2

k2c2 e k v T  p

2 2 2 24 2

2- 2 2 2
Iv2 w e e L ) k vT

2 2 2
vT ww

Expand the left-hand side about (kEM,-WEM,), thereby linearizing the electro-

magnetic dispersion function, but leave the Bohm-Gross dispersion relation in

unlinearized form. Note that

(k_-kEM, c_ -( EM)) - (k-kBG, -BG)

QPR No. 113



(IX. PLASMA DYNAMICS)

Three-dimensional Modified Raman Instability:

(An extremely underdense plasma. See Forslund, Kindel, and Lindman.6

2 2 2 - L2 - 2
EM' LASER k vT(eEM' . e L

)
(w-WBG + g -kEG 2 E- 2 2 . (23)BG 8v 2  EM 2

T

From Section IX-D.3, Eq. 35, taking only the electron contributions to the nonlinear

currents, we get

2 2
pe Pi

S2 - 2 2 2 - 2 2
- ye k VTe ik VTi

2 2 k 2 2  
l2 W.2

vLe1 4 (eM- eL)w-kTe c_ pe pi
2 pe 2 + 1 2
2Te Wo2(2 Yek2 VTe2 ] _
Te L -

/ 2 W2 2
+ Le 4 6eS--e -kvTe v TewCeS eY pe pi

+ 0VTe -(e ek VTe --. e2 ekVTe - ek_VTe _Ti

2 22 2 2 . 2 22 4
ILe 2 (es L) k+VTe + 2 (eS" e)(eS+ eL) kk+vTe (eS+ eL ek k+VTe

+ V e2o

SVLe 2 e L) kVTe + 2( S "eLS- eL) S-kkVTe + eL Yek Te
pe

Te 2 2 2 2 2 2kv2 pe --Te (2-y_ k% _e2 2
kW ek -Te - e Te

(24)

Using (24) for modified Raman instability near the quarter critical surface, I W+ ~

3wpe so the third of the four terms on the right-hand side of (24) may be neglected.

As for the coalescing Raman and plasmon-plasmon instability, take

2 22 2
kVT kv T  W Ye k VTe = pe] << , T<< 1, (25)

- 2 22 2
o_ - Yek - Te
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Now approximate wl = 1 2 = wp except in terms involving their difference,

Three-dimensional Raman Instability Modified by Ak Shift, with the Ak Shift

Remaining Small. The effect is that of coalescence of the Raman and Plasmon-

Plasmon instabilities.

2 p

4
Sc2

2
k2
-
k I1

+

/ 2 2 2 2\
I I SI-P/

1 2(k-k

W 2_ 2)
1l pl

(k Vo) 2

2 2
1 2

From Section IX-D.3, Eq. 36, taking only the electron contributions to

conductivity, we get

2 2

pe pi

2 22 2 22
+ - Yk+VTe w+ - ik+ vTe

2
o

pe

2 2 2
+ -ek+vTe

(26)

the nonlinear

2 2
pe pi

2 - 22 2 o 2 2

- ek - Te - ik VTi

2
pi

2  2 2 EL 2 G
+ - ik+ vTe

2
o

pe

2 2 2
- ekVTe

2
pi

2 2 2
C_ - yik vTi ) ELI G

- EL14 G_G+ + EL 4 IH+. (27)

Using (27) for nonoscillatory instability, we consider the neighborhood of a point (k,co)

(k NO' WNO) where the hypersurfaces (K+) S = 0, (K )S = 0 intersect, and let the corre-

sponding (k+, w+) (kBG," WBG,), (k_-', (BG' -BG). Use the facts that lw++/k++I,

A __/k _ > Iw+/k+I, Iw /k- > VTe >> Iw/k!. Then from Section IX-D. 3, Eqs. 30, 31,

37, and 38, we have

1EL12 G IvLI WBG

vT O

S22
k Cs

2 22
2 -k c

s

(28)(eBG' eL)
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L2
IEL2 Gv 2T

VT

2
WBG'

2
p

*2
*2 VL BGBG'
L 2 2

T Wp

2

2 H vL WBGWBG,
L+ 2 2vT LP

T p

(eBG' eL )

2 2 2 eBGeL BG' 'eL)
A -k c s

k2 c2

k cs
2 k Z2cZ(e BG -eL BG'S-k cj

s

Linearize both Bohm-Gross dispersion relations, and note that to this approximation

IEL 14 G_G+ = IEL 4 H_H+. (32)

Then (27) becomes

(for the three-dimensional unmodified nonoscillatory instability, replace

(kNO, NO) in the final square bracket).

(33)

(k, w) with

One-Dimensional Cross Sections of Asymptotic Modified Pulse Shapes

We shall now apply the stability analysis of Bers and Chambers (Sec. IX-D. 2) to

the specific modified dispersion relations that we have just derived. In the cross sec-

tion of maximum growth rate we obtain the time-asymptotic form of an evolving unstable

pulse resulting from an initially localized excitation. We do this for the modified

Brillouin, the modified decay, and the modified nonoscillatory instabilities.

Unmodified stimulated Brillouin scattering yields a time-asymptotic pulse shape

QPR No. 113
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Three-dimensional Nonoscillatory Instability:
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(see Sec. IX-A. 1) with the peak lying on the x axis. We investigate the effect of modi-

fication on the one-dimensional cross section through the peak as follows. We write the

modified Brillouin dispersion relation in the form

2 -2 2 2
-EM' VLASER P k+ g (k-kINT) - 8 EM' 2 2 (e EM e ) (34)

T s

where (k, w)= (kINT, 0) defines a point on the intersection of the hypersurfaces (K_)m =
0, w = 0. We assume that for frame velocities in the x direction the absolute insta-

bility occurs at a value k = ko which also lies in the x direction. Then we may take
to lie in the x direction. -EM'

kINT to lie in the x direction. Then _ -EM, and Vg also lie in the x direction

and (34) becomes

2
2 W2 k 2 2

EM' vLASER p k csw+vv (k -kNT) -LASER P s (35)
g x INT 2 WEM' 2 2 c 2

T s

We introduce normalized quantities as follows. Define

2
2 Wo

k o s VLASER P- K -2 C 2 EM A. (36)
INT kINTCs v '  8v T  WEMk vNT

g T WEMIkINT 9

Then (35) becomes

(C2+Kx-l) (n22-K)2 = -AK. (37)

The absolute instability in a frame moving in the x direction with normalized veloc-

ity V x = Vx(frame)/c s then satisfies

D = (C(Q +KxVx)+Kx-1 ) ((Q2 +K)xV x2- Kx-)+ AKxZ = 0
Dv x x x

(38)
8Dv/K

x = 0

The pair (K o, 2 ) corresponding to absolute instability is used to plot oi as a func-

tion of Vx . The resulting pulse-shape cross section is displayed in Fig. IX-5. The

parameters entering the calculation are chosen for a neodymium laser delivering

1015 W/cm - 2 onto a deuterium plasma of electron temperature 1 keV and ion tem-

perature 50 eV.

QPR No. 113



(IX. PLASMA DYNAMICS)

/PwL  = 0.75

POWER = 1015 W/cm-  
Wi

X = 1.09 p.m 5.OXIO ld

UNMODIFIED
BRILLOUIN
INSTABILITY /

MODIFIED
BRILLOUIN
INSTABILITY

Vobs

-O

-c -0.5c O

Fig. IX-5. Modified Brillouin instability.

Unmodified plasmon-phonon instability yields a time-asymptotic pulse shape (see

Sec. IX-A.1) with peaks very near the z axis. We investigate the effect of modification

on a one-dimensional cross section along the z axis as follows. We write the modified

decay dispersion relation in the form

2 2 2

-BG LASER s 2
W + v G (k-kINT) 8v 2  wBG 2 _ k2 (eBG eL) , (39)

T s

where (k, c) = (kINT , 0) defines a point on the intersection of the hypersurfaces (K_)s
0, o = 0. We assume that for frame velocities in the z direction the absolute insta-

bility occurs at values of k= k so that k k - kL lies nearly in the z direction. Then
-BG o -o o L
vg may be taken to lie in the z direction and (14) becomes

2 2 2
+ vBG (kLASER sBG 2 (40)

g (kz-kINT z)  8v 2  BG 2 2 2 (40)
T s

with the proviso that the k resulting from any calculation using (40) must be such

that k -kL lies within a narrow angle from the x axis. That is,

Ikx-kLI << kz , Iky << Ikz. (41)

We introduce normalized quantities as follows. Define

2
k_ cs LASER WBGk K EC 2 BG A. (42)

k NT zc BG 2 BG INTz NTz v 8v k v
g T INTz g
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Then (40) becomes

(C2+kz-l) ( -K) = -AK .2 (43)

The absolute instability in a frame moving in the z direction with normalized velocity

V z Vz(frame)/cs then satisfies

D -(C(2+K V) +K-) (Q+KVZ) Z-K 2 ) +AK = 0
v z z zz z z

8DI8Kz = 0.
(44)

The values kz = koz(Vz ) of the wave numbers at which absolute instability occurs must

satisfy (41). This provides an a posteriori check on the validity of the approximation

PEAK AT I UNMODIFIED
-3 1 DECAY

50X"IO L I INSTABILITY

UNMODIFIED I /
OSCILLATING
TWO-STREAM I
INSTABILITY

I P

, SADDLE-P

7 X 10 3
WL

,

'VCI
1<J

Wp
=- 0.99125

POWER= 1015 W/cm
Z

S= 1.09pm

Vobs

-0.2 -0.1 0.0 0.1

Modified plasmon-phonon
instability neglected.

instability with nonoscillatory

(40). The resulting pulse-shape cross section is displayed in Fig. IX-6. Again, the

parameters entering the calculation are chosen to describe a neodymium laser delivering

1015 W/cm-2 onto a deuterium plasma of electron temperature 1 keV and ion tempera-

ture 50 eV.

Unmodified "nonoscillatory" instability yields a time-asymptotic pulse shape (see

Sec. IX-A. 1) with peaks very near the z axis. We investigate the effect of modifica-

tion on a one-dimensional cross section along the z axis as follows. We write the

modified "nonoscillatory" dispersion relation

QPR No. 113
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{ -NO) - -kNO (W-WNO) + -kNO vGBG

2
VLASER

8v
BG {(-NO)- (k-kNO) (e G eL)

{2 2BG 2 s
- BG'fW ) NO (k-kNO)- G (e BG, .eL) k 2 2 2

s

(45)

where (k, w) = (kNO' WNO) defines a point on the intersection of the hypersurfaces(K+)s = 0,

(K )s = 0. Note that this dispersion relation describes the interaction of two-s
plasmons and two phonons, as well as the original pump wave. It includes the modified

plasmon-phonon instability, and describes how the modified plasmon-phonon instability

and the modified nonoscillatory instability affect each other. This mutual distortion will

be seen to become a coalescence at the power level considered. Assume that for frame

velocities in the x direction the absolute instability occurs at values of k = k0 so that

-BG -BG' -
k±o ko ± kL lie almost along the z axis. Then vg , vg , eBG eBG may be taken to

lie in the z direction, and correspondingly

-BG -BG'
Vg =g BG = WBG'

(kNNO' NO) = (kINT, o)

Then (44) becomes

2 2 BG2
o - (k z - k I N T z

) vg

2 2
vLASER BG s

4v2 BG(kz-kINT z) Vg k2 C2 2
T k s

(47)

(46)

with the proviso that the k resulting from any calculation using (47) must be such that

k ± kL lie within a narrow angle about the z axis. That is,

k << kz .

We introduce normalized quantities as follows. Define

k
NT zK

INT z kINT z Cs

c
s

BG
vg

2
VLASER WBG

G A .
82 BG Vg

T klNT z g

(48)

(49)

Then (47) becomes
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C 2 { - (Kz 2 K2 2 = -2A(Kz-1) K2 . (50)- = " Z'so)

The absolute instability in a frame moving in the z direction with normalized velocity

V = v (frame)/c then satisfies

D - C2(Q+KzVz) -(K-1)2 K2_02) + 2A(Kz-1) K2 = 0

(51)

8Dv/8K z  0.

The values k = k oz(v z ) of the wave numbers at which absolute instability occurs must

satisfy (48). This provides an a posteriori check on the validity of the approximation

(47). The resulting pulse-shape cross sections are displayed in Figs. IX-7 and IX-8

for two plasma densities. Again the calculation is for a neodymium laser delivering

10 1 5 W/cm - 2 onto a deuterium plasma of electron temperature 1 keV and ion tempera-

ture 50 eV. We note that, at this power-level, very near the critical density (Fig. IX-7)

the modified nonoscillatory instability completely defines the pulse shape, while at

somewhat lower densities (Fig. IX-8) the pulse shape is formed by a coalescence of the

modified plasmon-phonon and the modified nonoscillatory instabilities.
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B. Intense Relativistic Beam-Plasma Interactions

1. STRUCTURE OF PLASMA GENERATED BY IRRADIATION OF

A SOLID TARGET FROM A PULSED CO 2 LASER

National Science Foundation (Grant GK-37979X)

Thaddeus J. Orzechowski, George Bekefi, Jeffry Golden,

Ivan Mastovsky, David P. Bacon

Relatively little work has been reported on the production of plasma by CO 2 lasers

focused on large solid targets. In this report we describe observations made under two

conditions. In the first, the plasma expands freely into vacuum, and in the second it

expands against a strong mirror magnetic field. This plasma will be used eventually

as a target for our relativistic beam experiments.

Figure IX-9 shows the experimental arrangement. Light from a double-discharge

laser, one meter long, is focused by a germanium lens on the surface of a polished

PULSED CO2 LASER

VARIABLE
9-- ATTENUATOR

GERMANIUM LENS,

SALT FLAT , e=90

=0O CHARGE-
COLLECTION
PROBES

CARBO 81
TARGET 

= 1350

TO PUMPS / =180 0

Fig. IX-9. Experimental apparatus. Mirror coils (not shown) are
located above and below the vacuum chamber.

carbon block situated in vacuum. The laser beam is incident at a 450 angle to the target

normal. Radially movable charge-collection probes are used to monitor the plasma

density as a function of both time and position. The polyethylene attenuators shown in

Fig. IX-9 are used in studying the production of plasma as a function of laser energy

energy.

When the mirror magnetic field is used, it is provided by two pulsed coils situated

above and below the vacuum chamber so that the magnetic field lines point out of the
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plane of the paper. In this manner, magnetic fields in excess of 9 kG can be made to

act on the expanding plasma.

The focused laser spot diameter was measured by using a heat-sensitive film at the

focus of the germanium lens and attenuating the laser beam to prevent burning the film.

DISTANCE

(a)

D 1
- 0.5

Ja
0r

DISTANCE

(b)

Fig. IX-10. Microdensitometer tracings of the
(One horizontal division = 67 pm.)
(b) Width of pulse.

laser pulse profile.
(a) Height of pulse.

The image dimensions were then measured on a microdensitometer. Figure IX-10 shows

tracings of the height and width of the image. By converting the area of the rectangle

to an effective circular area, we found a spot diameter of 420 pm. From the densitom-

eter tracings it was also possible to determine that the dominant mode of the laser

beam is TEM4 1 . The experimental parameters of the laser beam are as follows.

Energy

Spot Diameter

Laser Flux

Ablated Atoms

1.3 J

420 p.m

4 X 109 W/cm 2

3 X 1016/pulse

The laser pulse has a sharp 100-ns peak producing approximately 0. 6 J of energy

and a long tail (-500 ns) containing an equal amount of energy (Fig. IX- l a). By using

the effective spot diameter, we found that the laser flux is approximately 4 GW/cm2

The ablation of matter (Fig. IX-1 b) was deduced from careful weighing measurements
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before laser irradiation and after irradiation by 1000 successive pulses. Assuming that

all the ablated matter is ionized, and using the spot diameter as an estimate of the

initial plasma size, we found that the plasma density is greater than the critical density

for penetration of 10. 6 Lm laser radiation.

INTENSITY

a = I00 nsec -

TIME
(a)

0 0.5 1.0 1.5

LASER ENERGY W(JOULES)

(b)

Fig. IX-11. (a) Laser pulse shape.
(b) Ablated matter vs

energy.

2.0

We shall now describe our observations of a freely expanding plasma in the absence

of magnetic field. Figure IX-12 illustrates the spatial and temporal evolution of the

plasma. Each curve is a plot of density as a function of radial position (along the target

normal) for various times during the expansion. (Note that the density is in arbitrary

z 10

1.0

75 10 75 10

RADIUS (mm)

Fig. IX-12. Plasma profiles (density vs position) for various times (in ns)
in the expansion normal to the target surface.
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(IX. PLASMA DYNAMICS)

units.) The peak density at 240 ns is of the order of 1016 particles per cubic centimeter.

At early times in the expansion, the plasma is well differentiated into a sharp, rapidly

moving shock and a more sluggish inner core. The shock thickness increases with time

and the density falls at a rate shown in Fig. IX-13. Both the peak shock density and the

Fig. IX-13. Plasma density (peak and inte-
grated) as a function of time.

100 200 500

TIME (ns)

1000 2000

integrated shock density follow power laws. The exponents in these laws are not in

agreement with a three-dimensional hydrodynamic model of the shock expansion. The

observations of Rumsby and Beaulieul differ from ours. They used a ruby laser of

approximately 1 J energy and found agreement with the three-dimensional shell model.

We believe that the breakdown of the three-dimensional analysis results from the strong

spatial anisotropy of our plasma.

VW
0.29

I I I I I I I 1 I I 1
0.1 0.2 0.5 1.0

LASER ENERGY W(JOULES)

Fig. IX-14. Expansion velocity normal to
the target surface as a func-
tion of laser energy.

Figure IX-14 illustrates the dependence of the plasma expansion on laser energy. The

value of the exponent (0. 29), which relates the velocity to the energy, is of some impor-

tance. Its value is close to 0.33, which is characteristic of a regime in which the initial

plasma density is of the order of the critical density for laser light penetration. Dyer,
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(IX. PLASMA DYNAMICS)

Pert, and their co-workers, 2 3 find an exponent of 0.12 in a regime of laser fluxes that

overlap our own. The discrepancy between the two sets of observations is not under-

stood.

The spatial anisotropy of our plasma is evident: for example, the plasma density

at a fixed radial distance from the focal spot along the tangent to the target surface is

at least an order of magnitude lower than the density normal to the surface. An equally

pronounced anisotropy exists in the expansion velocities of the fast shock and the plasma

core. The fast shock exists primarily in a cone about the target normal, whereas the

eo0 e8=90 e815 e 80
V= 0.44x10

7 
cm/s V I.3x 107 V 0.86x 107 V 0.41x 10 cm/s

8

O0
O

0 400 800 1200 0 400 0 400 800 0 400 800 1200

TIME (ns)

Fig. IX-15. Expansion velocities for various angular orientations
illustrating the anisotropy of the plasma.

slow plasma core predominates along the target surface. Figure IX-15 shows the posi-

tion of the plasma boundary as a function of time for four different angular orientations.

Angles 0 = 00 and 0 = 1800 describe the behavior of the slowly expanding core, which

expands along the target surface. The two remaining angles refer to the expansion of

the fast shock, which is normal to the target surface and 45o off the normal. The con-

stancy of the velocity over the entire duration of the observed expansion is indicative of

negligible momentum coupling to the background gas.

We have also studied the plasma expansion in magnetic fields in the range 3-9 kG,

with a fixed 3:1 mirror ratio. We summarize our observations as follows: The central

plasma core decelerates with time and stops where we believe the plasma energy corre-

sponds to p = 1. In contrast, the fast shock exhibits no deceleration, as shown in

Fig. IX-16, where we show the shock position vs time for three different values of mag-

netic field. Note that the velocity is constant in time and virtually independent of
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B= 3.6kG

V 0.67x10 cm/s

B =5.5kG

V = 0.68x10

B=7.3kG

V=0.69xiO 
7

B=9.IkG

V=0.86xl0
7

cm/s

0 200 400 600 0 200 400 600 0 200 400 0 200

TIME (ns)

Fig. IX-16. Expansion velocities normal to the target surface
applied magnetic field intensities.

for various

the strength of B. The velocities are somewhat slower than for the freely expanding

plasma. Figure IX-17 illustrates the time evolution of the plasma along the normal

to the target surface. The plasma is still differentiated into a shock and core, but

the core stops at a position 20 mm from the focal spot. Also, the shock density

falls off more rapidly. This decrease in density is shown in Fig. IX-18. Here

the peak shock density is plotted as a function of radius for different magnetic field

strengths. When the shock reaches certain critical positions, its density is rapidly

100
360

440

> 10 520S10
w 280

< 00 200
-r i 920

600

10 20 30 10 20 30 10 20 30 10 20 30
RADIUS (mm)

Fig. IX-17. Plasma profile (density vs position) for various times (in ns) in
the expansion against a 7.3 kG applied magnetic field.
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(IX. PLASMA DYNAMICS)

depleted, but it progresses with undiminished speed. Before these critical radii are

reached, the scaling of density with position is the same as for the freely expanding

B=5.5kG B=7.3kG B= 9.IkG
100

- *

_jI-

Fw Fig. IX-18.

z Peak plasma density as a function of
_ 10 position normal to the target surface

Cn for various applied magnetic fields.
z

S3.33 2.77  NR2.8 6

Cr

_J
0. I I I I * I I

10 30 10 30 10 30

RADIUS R (mm)

-2

plasma in the absence of magnetic field, n cc r-2. We believe that this similarity to

the freely expanding plasma is due to the large kinetic energy density in the shock com-

pared with the magnetic energy density for these radii. Beyond these points, the power
-3

laws are as shown in Fig. IX-18; that is, n cc r-3

We plan to measure the electron temperature as a function of time and position, using

spectroscopy and diamagnetic probes. We feel that only after the temperature behavior

is understood will we be able to undertake a detailed theoretical analysis of the behavior

of the plasma in a magnetic field.
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2. MAGNETIC INSULATION OF AN INTENSE RELATIVISTIC

ELECTRON BEAM

National Science Foundation (Grant GK-37979X)

Jeffry Golden, Thaddeus J. Orzechowski, George Bekefi

It is often desired to reduce, or altogether prevent, electron flow from occurring

in a vacuum gap between two electrodes subjected to intense voltage differences. 1 Such

needs arise, for example, in the design of ion diodes2, 3 in which one of the basic and

still unsolved problems is the suppression of the electrons that are field-emitted from

the cathode. One scheme that has been proposed4 is to apply a sufficiently strong mag-

netic field oriented at right angles to the electric field of the diode.

The insulating effect of a magnetic field has been demonstrated 5 satisfactorily at low

diode voltages, but inconclusively at high diode voltages. In this report we limit our-

selves to the latter regime, with voltages in the range

100-250 kV. The experimental arrangement is illus-
CURRENT trated in Fig. IX-19. The cylindrical diode consists

STAINLESS-STEEL
CATHODE of an outer thin-walled stainless-steel 4.84 cm ID

cathode connected via a cathode shank to the inner

SOLENOID conductor of the water-filled coaxial capacitor that

CARNOD CURRENT serves as the transmission line of our 2. 5 0

COGEN III high-voltage facility.7 A stainless-steel

TO WATER-FILLED inner stem supports the anode made of graphite
COAXIAL CAPACITOR TM snQ

2 INCHES (POCO Graphite. M). A set of anodes with 4. 38-

Fig. IX-19. 3. 77 cm diameters is used, which provides diodes

Cylindrical diode schematic. with 2. 3-5. 4 mm spacings. The anode is connected

to the outer grounded terminal of the water-filled

capacitor via a return current can, as shown in

Fig. IX-19. The diode current I D is monitored with a rapidly responding current-

viewing probe (T & M Research Products Inc.), and the diode voltage VD is obtained from

a measurement of the transmission-line voltage and knowledge of its impedance (the

presence of an 18. 5 02 copper sulphate shunt impedance in parallel with the diode is

properly accounted for in the derivation of VD). The magnetic field Bo acting on the

diode is generated in a solenoid energized by a capacitor bank, and is timed in such a

way that B remains virtually constant over the duration of the ~50-ns voltage pulse

applied across the diode. The thin-walled stainless-steel diode construction ensures

good penetration of the pulsed magnetic field into the diode interior. The diode is

evacuated and maintained at pressures better than 5 X 10-5 Torr. The burn marks

observed on the anode indicate that electron emission from the cathode occurs over its

entire curved surface, and not merely from isolated regions. The cylindrical diode
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(IX. PLASMA DYNAMICS)

geometry has the advantage 4 that any diamagnetic currents (azimuthal currents) can

flow freely; thus, undesirable space-charge gradients caused by charge accumula-

tion are avoided.

I 10

MAGNETIC FIELD B0 (kG)

Fig. IX-20. Diode current as a function of applied magnetic
field for four diode spacings d. Current is nor-
malized in accordance with Eq. 1.

The results of the experiments are shown in Fig. IX-20. The applied axial magnetic

field is plotted on the abscissa and the normalized diode current I on the ordinate. Since

the diode voltage varies somewhat from shot to shot, and also with gap spacing, the diode

current, for convenience of presentation, is normalized to a "standard" voltage of

160 kV, which is the mean voltage of these experiments. The normalization is accom-

plished by invoking the Child-Langmuir law and writing

I = ID[160/VD(kV)] 3 / 2

where ID is the true measured diode current. From Fig. IX-20 we see that for a given

cathode-anode spacing d the magnetic field has little effect on the electron emission

until a critical magnetic field B = B is reached, beyond which the current falls pre-

cipitously. We also see that B is a function of the spacing d.
1, 4, 5 that magnetic insulation will occur, provided thatTheory shows that magnetic insulation will occur, provided that
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(IX. PLASMA DYNAMICS)

[eBodeff/m c] 2 > 2eV mocZ] + [eVd/m cz2. (2)

Here deff is the true anode-cathode spacing in planar geometry, but for cylindrical

geometry it is defined as

deff= (r b -r a /2ra

= d[1 + (d/2ra)], (3)

where rb is the radius of the outer cathode, and ra is the radius of the inner anode

(ra<rb). For our diode voltages, the relativistic correction given by the second term

of Eq. 2 is negligible, and the formula for the critical magnetic field takes on the simple

form

"odf 1/2Bd /V2 = 1. 07, (4)

now with B in kilogauss, VD in kilovolts and deff in millimeters. Table IX-4 lists

the experimentally determined critical fields for the different diode spacings. We see

Table IX-4. Critical magnetic field as a function of diode spacing.

dff B Bd/V1/2
eff 0 0 eff D

(mm) (kG)

2.45 22 4.3

3.62 12.5 3.6

4.83 5.0 1.9

6. 10 1.9 0.9

that the ratio Bo deff/VD takes on values not too different from the value of 1. 07

required by theory. The measured ratio, however, exhibits a systematic variation as

deff is changed, which does not agree with the statement of Eq. 4. Part of this discrep-

ancy, but probably not all of it, may be the result of diode "closure." It is known that

plasma formed at the cathode travels across the gap with the result that d becomes a

function of time. 8 With velocities 8 typically of the order of 3 X 106 cm/s, the

plasma moves ~1 mm during the 50-ns pulse. The reduced d then requires a larger

magnetic field to achieve insulation, in conformity with the results of Table IX-4. It

is clear that the effect of closure becomes less important for the larger gap spacings.
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At magnetic fields well beyond the critical field a weak residual current remains

(see Fig. IX-20) whose magnitude appears not to be greatly influenced by the size of

B . We do not yet know the origin of this current. It could be an ion current flowing
o

from anode to cathode (the ions coming from a plasma residing at the anode surface);

or it may be the result of an instability I which drives electrons across the gap. Alter-

natively, it could be a current of electrons flowing along magnetic field lines in the

direction of the current probe. For example, a slight tilt of the cathode relative to the

anode produces a component of the diode electric field which is collinear with B and

thus causes electrons to be accelerated in that direction. This effect is similar to what

occurs in a magnetron injection gun. 9 10

In conclusion, we have demonstrated the insulating effect of a strong magnetic field

acting on a high-voltage diode. And while currents have been reduced by almost

2 orders of magnitude, a small residual current remains whose origin must still be

studied in detail.

We wish to thank I. Mastovsky and D. Bacon for their assistance in running the

experiment.

References

1. R. V. Lovelace and E. Ott, Laboratory of Plasma Studies Report No. LPS 133,
Cornell University, August 1933.

2. M. Friedman, IEEE Trans. Nucl. Sci. 19, No. 2, 184 (1972).

3. S. Humphries, Jr., Laboratory of Plasma Studies Report No. LPS 136, Cornell
University, October 1973.

4. R. N. Sudan and R. V. Lovelace, Phys. Rev. Letters 31, 1174 (1973); I. Nebenzahl,
Laboratory of Plasma Studies Report No. LPS 76, Cornell University, July 1971.

5. A. W. Hull, Phys. Rev. 18, 31 (1921).

6. R. Miller, N. Rostoker, and I. Nebenzahl, Bull. Am. Phys. Soc. 17, 1007(1972).

7. J. Golden, Quarterly Progress Report No. 103, Research Laboratory of Elec-
tronics, M. I. T., October 15, 1971, p. 103; also S. M. Thesis, Department of
Aeronautics and Astronautics, M. I. T., 1972.

8. R. K. Parker, Ph. D. Thesis, University of New Mexico, 1973 (unpublished);
K. B. Prestwich and G. Yonas, Bull. Am. Phys. Soc. 17, 981 (1972).

9. G. S. Kino and N. Taylor, Trans. IEEE, Vol. ED-9, No. 1, pp. 1-11, January
1962.

10. M. Friedman and M. Ury, Rev. Sci. Instr. 41, 1334 (1970).

QPR No. 113



(IX. PLASMA DYNAMICS)

3. BEAM-PLASMA INTERACTION IN A LONGITUDINAL

DENSITY GRADIENT

National Science Foundation (Grant GK-37979X)

Abraham Bers, Marcio L. Vianna

In this report we show that plasma density gradients in the direction of beam flow

strongly modify the time-space evolution of the two-stream instability. The theory is

supported by computer experiments, and is applied to determine lower bounds to the

interaction length of relativistic electron beams with small plasma targets.

For a homogeneous plasma, the beam-plasma interaction (nonresonant electron-

electron two-stream) evolves essentially as an absolute instability with very large

growth rate. We are considering the strongest hydrodynamic interaction, that is, in

the absence of such effects as temperature, collisions, or finite transverse dimensions,

all of which diminish the growth rate in a way that is well known. In the nonlinear

regime the instability is quenched by particle overtaking and trapping, and can lead to

appreciable heating of the plasma electrons. We wish to point out that a plasma den-

sity gradient in the beam flow direction changes the evolution of this instability in an

important way. We show this by determining the Green's function solution for the prob-

lem. We also show that this is confirmed by computer simulations, and that we can

determine the onset of the nonlinear regime with respect to the beam injection boundary.

The variation of plasma density along the beam flow direction is inherent in beam-

plasma experiments, for example, where the plasma is confined by a mirror magnetic

field. Recent developments in high-current relativistic beams, and their intense beam-

plasma interactions, 3 have made it possible to use such beams to heat the plasma around

a pellet.4 Such plasmas, again, are inherently inhomogeneous. We apply our results

to such examples and determine the beam characteristics required for a strong inter-

action.

The simplest model equations for the problem are the linearized hydrodynamic equa-

tions in one space dimension for cold-beam and cold-plasma electrons, combined with

Maxwell's current equation. The Green's function equation for the current density

may then be written in normalized variables as

g (y) + 2 j = 8(y) 6(T), (1)

where y = bx/v T = W (t-x/vo), Wp is the maximum plasma frequency of interest, b
/my3 is the beam plasma frequency or re istic electron, y =

4 7ne 2 /my 3 is the beam plasma frequency for relativistic electrons, = V/C 2 /2
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and g(y) = w2 ()/2 = n (y)/n represents the density profile. The perturbed beam cur-
p p p p

rent density J(x, t) is related to j (y, T) by J(x, t) = j[y(x), T(t,x)]. To specify the problem

completely, the boundary conditions are j(y, T) = 0 for y < 0, and j(y, T) = 0 for T < 0.

We choose a linearly increasing density profile for our model of the inhomogeneous

plasma, such that g(y) = Ey + g , where E = (1-go)(wbL/V ) F g = n (0)/np = W (0)/o p

and L/(1-g ) is the scale length of the density gradient. We can solve this problem

exactly in terms of a contour integral representation:

- 2 - 1/2

a - g ia 2a (a2g) /2
j (y, 7) = - da 2 i (a -g)

Y ( a2 -go -/2 1 a2 1/2Y 12a (a 2_g 1/2 (2)

Here J 1 and Y 1 are Bessel functions of order 1 and r is a Laplace contour below

all singularities. The representation is also valid in the homogeneous plasma limit,

which can be recovered from (2) by making go - 1 and expanding the asymptotic result

in a power series in Ey.

A more convenient representation can be derived by carrying out the contour inte-

gration in (2) around the branch cuts and poles, which leads to the real integral repre-

sentation

2 1g g-s /s /2 1/2 2s 2 1/2
j(y, T) = - /2 ds 2  sinsT J1 L- s-go) Ii T (g-s)

SO -g L

S(g-gol/2 1 r /2 1/2] 1/2+ go I 2 1/2 sin g T. (3)

The first term is a pulselike solution. The second term arises from the localized

excitation of plasma oscillations that persist into a steady state because our plasma

model has neither collisions nor thermal diffusion, either of which would damp it out.

Hence we ignore this term in describing the pulse response. We focus our interest on

the inhomogeneous plasma and consider g << 1. Then for ET2/8 > 1 and E 2/16y < 1 we

are able to get a stationary phase approximation to the integral in (3), which is

j(y, T) 1/2 (1-Er 2/16y) 1/2 1[ (T/2) (Ey) 1/2 (1-ET 2/16y)/2] cos (ET2/8)/(E 2/8).

(4)

In Fig. IX-21a we compare the numerically calculated j from formula (3) (with the
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omission of the second term) taking go = 0 with (4) for a small y, where the approxima-

tion should be only fair. In Fig. IX-21b we show a picture of the perturbed current

waveform. The amplitude maximum computed from (4) can easily be retrieved. Its

locus is given by jmax = (g-go)-1/2 (y) The position and time of arrival of the maxi-

mum are related by ym = ET/8, and hence fall within the validity of (4). The velocity

of the pulse maximum as a function of time is v = v 1 - 1I + v t/2L2 , and the

time taken for the pulse maximum to arrive at a point x is t = vo 1 x + Z (2Lx) 1 / 2 1
tLmetakenforthe
oLP "

0 50

3.0

2.0

-1.0

-2.0

10.50 11.00

wpt = 1200

11.50
I I I I I I I I 1 I I I I

12.00

Fig. IX-21. Pulse evolution in space and time for E = (wbL/vo)- = 10- 2

(a) Current pulse waveform for a fixed point in space (y = 5)
and n (0) = go = 0 as a function of T. The solid line was

calculated numerically from the exact solution, Eq. 3,
omitting the steady-state term; the dashed curve was
calculated from the approximate Eq. 4. The accuracy
of Eq. 4 increases for larger y.

(b) Picture of the current pulse waveform calculated from
2 2 -4

Eq. 4, where p T = 1200, and wb/w = 10 . Dashed line

indicates the pulse envelope.

QPR No. 113

. . . . . . . i I I I
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The steady-state amplitude of a sinusoidal excitation 6(y) cos aT can be written

immediately from (2); for a > g /2 it is just 27 times the integrand of (2). For a = g /2 <
1/2 5

g /2, by analytic continuation, and ignoring the plasma resonance solution, we get

j (y, T) = 4 go /(g-g ) 1/2 1 go (ggo)1 sin go /2. (5)
E

The plasma resonance solution is again related to the second term in Eq. 3 and is sin-

gular at the origin. This singularity, however, is removed by the inclusion of either

plasma collisions or temperature. In Fig. IX-22 we reproduce the results of the com-

puter experiments done by Davis and Bers, where the beam is velocity modulated at

the origin. Equation 5 is the steady-state current density resulting from a unit current

density modulation at the origin; this can easily be related to a velocity modulation

amplitude at the origin v(O, 0) to give

J(x,t) =ev(0,0)(nnb 1/2 3 (l-g ) x/L 1/2 1 2/o x 1/2 sin w(t-x/V). (6)

The locus of amplitude maxima for the transient can then be found approximately from

(4):

Jm - ev(0, 0)(E 2/ 1) Iy3nbnp/g] 1/2 (L/x)1/2 I1 (bx/Vo). (7)

Comparing (7) with (6), we find that at any position the steady-state current density is

always larger than the maximum transient current density at the same position. This,

together with Fig. IX-22, shows that the steady state prevails near where the beam is

injected, and determines the onset of the nonlinear regime. We find this to occur at

the position where the steady-state perturbed current density becomes equal to the dc

current density enbvo.

We now consider the case in which the waves grow from the noise level in the plasma.

From the equipartition theorem for plasmas, we can make an estimate of the amplitude

of the fluctuating electric field near the beam entrance. This gives E ~ (12) 1 / 2 X

e(n po/Do) 1/2, where XDo is the Debye length at y = 0, and e is the electronic charge.

Using this as the amplitude of a driving electric field on the beam at y = 0, we find the

steady-state current density to be (5) multiplied by (E/7Tgo /2)(wDo pE/4rvo). By

equating this current density to enbvo we then arrive at

NDo/2 (yn/nb) g(/2 bDo 2 [(-g) x/L] 1/2 I1 [2(bL/vo)(go/1-go) 1/2 (x/L) 1/2] = 1,

(8)
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DISTANCE Z (UNITS OF 0.4vo/wp)

Fig. IX-22. Results of computer experiments. In this experiment go = 0. 15,
-3 -3 2 2 - 3

E = 35.4 X 10 , v(0, 0)/vo = 10 , and b/p = 5 X 10 . The pic-

tures were taken at T = 300/wo and a steady state seemed to be

achieved up to a distance of 150. The beam is velocity modulated
at the origin, and the frequency is cpo. (a) Beam sheet velocity;

envelope calculated from linear theory. (b) Acceleration of a test
particle, eE/m; envelope calculated from linear theory. We note
that the nonlinear regime sets in around z = 110. This is found to
correspond to the point J - enbv in the steady state, whereas the

peak amplitude of the transient at the same position is only
0. 2 enbvo
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where NDo = (4/3)7knDo po which gives an equation for the distance x at which non-

linear effects will set in. Since strong energy transfer from the beam to the plasma

must occur in the nonlinear regime, Eq. 8 gives a lower bound for a plasma target

thickness that may be heated by the two-stream instability. In Fig. IX-23 we show the

locus of this lower bound for two extreme types of beam-plasma interaction. The solid

curves are typical of a long plasma column, and show how the critical x increases with

increasing plasma density gradient. The dashed curves are typical of a small pellet

plasma;8 here the plasma density gradient is fixed, and along each curve we see how

the critical x may be reduced by increasing beam density.

In conclusion, we have shown that in the presence of a plasma density gradient in

the direction of beam flow the beam-plasma interaction is convectively unstable and the

entire unstable pulse propagates essentially with the beam velocity; the nonlinear

regime along the beam path is reached where the oscillating beam current density

0.8 r

U

0

0. 4
CA

0.2 0.4 0.6 0.8 1.0
x/L

Fig. IX-23. Solution to Eq. 8 giving the locus of the normalized
distance x/L, at which the nonlinear regime sets in,
vs P = vo/c. Solid curves refer to a plasma such that

12 3T e =10 eV, L = 20 cm, nb = npo = 10 1/cm . Each

curve corresponds to a different maximum plasma
density np, as indicated, and correspondingly differ-

ent plasma density gradient. Dashed curves refer to
a plasma presumed to result from a laser exploded
pellet interacting with an electron beam with a cur-

rent density of 10 MA/cm 2 . The outer region of the

plasma has a temperature T = 103 eV, L = 0. 1 cm,

and a maximum plasma density np = 10 20/cm 3 Each

dashed curve refers to a different n . For the beam
po

velocity range shown the beam density is in the

range 1015-10 1 6 /cm 3
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amplitude equals the dc beam current density. This, coupled with the results of steady-

state noise amplification in the presence of the plasma density gradient, can be used to

estimate the constraints among plasma length and beam-plasma parameters that need be

satisfied for transferring energy from the beam to the plasma. One of the examples in

Fig. IX-23 shows that heating of small (0. 1 cm) dense (1019/cm 3 ) plasma targets by

intense beams (107 A/cm 2 ) requires that these beams be of high density (1016/cm3).
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C. Experimental Studies - Waves, Turbulence, and Radiation

1. WAVE CONVERSION NEAR LOWER HYBRID RESONANCE

National Science Foundation (Grant GK-37979X)

Mario Simonutti, Ronald R. Parker

Introduction

The theory of linear wave conversion near lower hybrid resonance in an inhomoge-

neous plasma, a process first noted by Stix, is being studied in the framework of a

self-consistent small-signal linear theory based on the moment -equations with an iso-

tropic pressure law. Despite the long period of interest in the mode conversion process

in a plasma, an interest resulting from its possible application to plasma heating with

radio-frequency power, there is no direct evidence confirming the existence of that pro-

cess in a plasma. We feel that the reason for this is the lack of an adequate under-

standing of the complete problem. Our objective is to study sufficiently the theory of

mode conversion near lower hybrid resonance (LHR) to determine conditions on the

plasma parameters and driving source configuration to be used in the design of an

experiment in which mode conversion might best be observed. Only after direct evi-

dence of this process is obtained will it be possible to consider seriously the design of

a well-understood RF heating scheme based on that process. Progress and plans toward

achieving this goal are reported here.

Moment Equation Theory

The full theory represented by the linearized moment equations with an isotropic

pressure law can be cast in the form of a linear dynamic system in physical variables,

particle densities and velocities, and electromagnetic fields. We show that the system

exhibits the mode conversion process. The form of a linear system presented here

allows us to include proper zero-order effects and consider small-signal power and its

conservation. This treatment differs markedly from the usual method of dealing with

the problem through a differential equation in a single dependent variable that has no

direct relation to any of the physical variables and whose coefficients are approxi-

mate.1,2 These coefficients are taken generally from the homogeneous plasma disper-

sion relation polynomial and must be made linear in the independent variable, since an

asymptotic method of solution is usually applied.

The moment equations upon which this report is based are, for each species, the

continuity equation and the momentum equation without collisions

aps
t + V pv (1)8t s s
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s  )- -sms- + Vs) : Ps q s (E+v s X B) - VPs, (2)

where the subscript s indicates particle species. We consider an electron e and single

ion species i plasma. Maxwell's equations and a relation between pressure Ps and

density ps complete the system. Since collisions are not included, the system is loss-

less. The equations are solved in the zero order and then linearized in the dependent

variables to derive the first-order system. We assume the absence of zero-order drifts

parallel to the magnetic field, and the absence of a zero-order electric field.

The zero-order relation between pressure and density is taken as Ps, = ,KT ,

where the species temperature T s need not be independent of position in the method, but

for convenience it will be taken as constant. For a homogeneous plasma, the zero-order

solution is trivial; however, for a plasma with a nonuniform density profile zero-order

diamagnetic drifts with an associated variation in the zero-order magnetic field B are

predicted. These effects would normally be considered sufficiently small for a low beta

plasma so that they should have little effect on the basics of the first-order wave propa-

gation process. In order that the solution satisfy small-signal power conservation, it

is essential that they be included, as we shall show. In previous treatments of the prob-
1,2

lem 2 it was impossible to include these zero-order effects, since the equations were

derived from considerations of a purely homogeneous plasma.

The diamagnetic drifts are given by the expression

B X VP
o S,O

2 (3)
sso s

and the associated zero-order magnetic field is given by

B 2

+ p KT = constant, (4)

s

where p s,depends on position according to the imposed density profile. The subscripts

zero and one indicate the order of the variables, except in the term 4o.
A rectangular coordinate system is chosen (see Fig. IX-24) in which p and B

vary only in the x direction; B is in the z direction; y and z are directions of zero-

order uniformity. Diamagnetic drifts are then only in the y direction.

The electrostatic approximation E 1 = -VOl is made for the first-order system. The

dynamic equations are linearized while taking into account proper zero-order conditions.

In order to obtain the driven linear response of the plasma to a fixed frequency source,

all first-order variables are taken to have exp(iwt) time variation and complex amplitude.
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The y and z spatial dependence is transformed as exp(-i(ky y+k z)) and each k , kz
spectrum component of the solution is considered separately. Responses with y and z

dependence other than sinusoidal may be determined by Fourier synthesis. Since a

VFig. 
IX-24.

S Coordinate system for the problem.

B(x)

boundary-value problem is considered in which the boundary conditions are actually

radiation conditions, no source term appears explicitly. The relation between the first-

order density and pressure is taken as the linearized form of

P
s - constant (5)

Ps

which is P 1 , s = 1, KTs

The linear system obtained under these conditions is

d
d(kx) Y(kox) = A(kox) Y(kox), (6)

where the components of Y(kox) are

2p. m. v. V.
P, OLH R I , x

v V

, OLH R e e, lx e2 eOLIR e e

yKT i
n. N.

i, oL
Y(k x) = (7)

yKT
n N

2Pe, LHR e,l Ne

1'1

12
1 k2
2 oo 
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and A(k x) is given in Fig. IX-25 for the case ny = 0. For parameters and modes of

interest, n would be negligibly small and the dependence of the results on k is weak.
y y

All dependent variables have the units of energy density to the 1/2 power. The x

distance coordinate is normalized to k x by the free-space wave number k - . We
o o c

did this because published work on this problem deals generally with the indices of

refraction n = kx/k , n , and n , rather than wave numbers k , etc. In turn, thermal

velocities are normalized to c, the speed of light. The elements of A are dimension-

less.

The wave-conversion condition generally exists at a density near the cold-plasma

LHR density, which is determined by w, B , ion-to-electron mass ratio, and ion charge,

and is independent of nz and temperature. Therefore the density pLHR is convenient for

normalization. Of course, with finite plasma temperature the actual physics of the cold-

plasma LHR is replaced by warm-plasma (moment equation) theory. An important

dimensionless parameter describing the plasma is pe/0ce , determined by pO , which

might correspond to the maximum plasma density, and the steady magnetic field Bo .

MhODE
AGINAR xN

4E

G -

j

REGION 1

n real

REGION 2

nx complex

REGION 3

nx imaginary

LHR DENSITY

DENSITY (LINEAR SCALE)

Fig. IX-26. Typical wave number (nx) vs density around condi-

tions of wave conversion.
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In regions of constant plasma density, the matrix A(k x) is constant and the eigen-

values X of A are directly related to the wave numbers nx of the exact modes of oscil-

lation of the system in the uniform region by X = -in . The dependence of these wavex
numbers on plasma density and the parameters nz , Te , and Ti has been discussed in

a previous report. 4 Figure IX-26 represents such a plot of the magnitude of the wave

numbers vs plasma density. Since the wave numbers appear in plus and minus pairs,

only three branches are shown. The density profile scale lengths for this problem are

much larger than the inverse of the wave numbers; therefore, these diagrams are useful

for describing the local characteristics of possible waves in different plasma density

regions.

We made a check on the validity of the electrostatic approximation for the parame-

ters of this problem. Through formulation of a similar matrix eigenvalue problem from

the same moment equation theory, together with the full set of Maxwell's equations, plots

of wave number against density were obtained. This is an eighth-order system. Essen-

tially, we found that when the accessibility condition 3 is well satisfied, the results in

the electrostatic approximation are in excellent agreement for the modes of interest.

The linear system here is of sixth order where two of the wave numbers are pure

imaginary with magnitude generally much greater than that of the remaining four. For

such densities, the magnitude of those two imaginary wave numbers can be given approx-

imately by

2
I I2 ce c2 2nI n - - nz

w Te

No physical significance is attached to these modes, and we shall neglect them for the

moment. When we find the mathematical solution to the system, they must be dealt with

appropriately.

The density dependence of the four wave numbers of interest is characteristic of a

system displaying the mode conversion process in the sense that two separate branches

of pure real nz merge at some density. In Fig. IX-26 diagrams indicate the nature of

the x-dependence of the waves and the signs of their x-directed phase and group veloci-

ties for the three density regions where the wave numbers of interest are real, complex,
and imaginary.

In his treatment of the problem by applying transform and asymptotic methods, Stix

first pointed out that such wave number vs density dependence implies that mode D (A)

with group velocity directed toward the conversion density region in an increasing den-

sity profile plasma should completely convert to mode B (C) whose x-directed group
velocity is opposite to that of the original mode. The absence of a reflected component

having its wave number of equal magnitude but with opposite sign of the incident mode
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wave number constitutes a complete conversion in the mathematical sense. An attrac-

tive RF plasma-heating scheme based on this concept was proposed by Stix. The nature

of the wave-number dependence vs density provides for a smooth transition for propaga-

tion from long wavelengths at an RF source located at the outside edge of the plasma to

short wavelengths at the center of the plasma. With mode conversion the wavelength

would continue to decrease until strong damping takes place. This heats the plasma

through short wavelength effects that are not included in the moment equation theory.

In the theoretical treatment by Stix, direct connection to a physical sense of power

carried by the waves in the plasma cannot be drawn. Also, the asymptotic solution can-

not be used to determine the nature of the fields in the plasma in the critical wave con-

version region. Our solution does not have these limitations.

Numerical Solution

The linear system that we have derived can be solved numerically as an initial value

problem in ordinary differential equations. Various effective routines are readily avail-

able; we use an Adams-Moulton multistep method. The plasma density profile chosen

for this problem is composed of two half-spaces of uniform and differing density joined

by a transition region of smoothly varying density taken to have a half-cycle cosine

variation with x (see Fig. IX-27). The two uniform density values are chosen so that

Po(kox)

P
LHR

2 Fig. IX-27.

SLPHR P P _ P Density profile of the inhomogeneous plasma.
LHR 2 p XX

LHR LHR ox

kox

koxl k x2

the wave conversion condition is satisfied somewhere in the transition region, and the

greater uniform density value corresponds to one in Regions 2 or 3 in Fig. IX-26.

Region 2 will be used in this discussion. The choice of two uniform density regions

about the transition allows exact analysis of the solution in those regions in terms of the

readily and precisely determined homogeneous plasma modes.

A source of radiation is taken to be located in the lower density region and to radiate

power toward Region 2 by mode D. The existence of the shorter wavelength mode A

in Region 1 is ruled out on the physical grounds that any radiation source would couple

mainly to the longer wavelength mode D which has its wavelength in the lower density

region much closer to the free-space wavelength than mode A does. Also, any com-

ponent of A that may be excited by the source would be strongly damped out very near
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the source, since the wavelength is so short.

In Region 2, modes G and H are ruled out because they grow exponentially to unlim-

ited amplitudes with increasing x. Therefore we must find a solution to the linear sys-

tem in which there is no component of A in Region 1, and no component of G or H in

Region 2. The radiation boundary condition problem can be solved by initial value prob-

lem methods. Two separate numerical solutions to Eq. 7 have been found where the Y

initial values at some starting point located in Region 2 are the eigenvectors of the

matrix A corresponding to modes E and F. In general, each of the two solutions will

in part yield a component of mode A in Region 1. Based on the linearity of the problem,

a linear combination of these two solutions that has no component of mode A in Region 1

is formed. This result satisfies the differential equation and the radiation conditions

and, therefore, is taken as the solution to the problem.

Special treatment must be given to the two modes mentioned above which are of no

physical interest but have a certain mathematical presence. Round-off error in the

computation process quickly brings into the solution a component of the problem mode

that grows strongly in the direction of solution. Unattended, the violent growth of this

mode would quickly swamp the modes of interest numerically. We periodically analyze

the solution as it is generated for the component corresponding to this problem mode,

and subtract that component from the solution that is being generated. The justification

for this method in a homogeneous plasma is sound. The plasma considered here is

inhomogeneous. The problem mode, however, has weak density dependence and its

growth scale length is much shorter than the density profile scale length. Therefore

the mode is treated locally on a homogeneous plasma basis with apparent success.

In the actual solution of the problem we find that only the partial solution with the

eigenvector corresponding to mode E as the initial value in Region 2 is required, since

the result is that essentially modes C and A are completely absent in Region 1. There-

fore in Region 1 ingoing mode D completely converts to outgoing mode B.

The solutions for variables N and 1, among the 6 variables of the system, are pre-

sented in Figs. IX-28 and IX-29 in terms of RF amplitude and phase as a function of k x.

The solutions become exponentially small in Region 2, and give a standing-wave pattern

of the interference of two traveling waves of different wavelengths in Region 1. The

fields in the wave-conversion region are well-behaved and display a mild maximum

consistently in that region. Note that the two variables have different spatial dependence.

The phase plot indicates that in Region 1 the variable 4 is mainly the result of mode C,

while the variable Ne is mainly the result of mode B.

The parameters of the problem for the solutions presented here correspond to those

of a small laboratory type of plasma except that for clarity we have taken a small den-

sity profile scale length. Longer scale lengths result in more oscillations in the solution

and this is more difficult to present graphically. The general nature of the solution for
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greater scale lengths is similar and has properties in close correspondence with infor-

mation from the wave number vs density plots, as the solution here does.

The applicability of this purely numerical method of solution does have the limitation

that as the scale lengths are increased and/or the local wavelengths in the plasma are

decreased by a change in parameters, the number of cycles of oscillation in the solution

may increase to the extent that the accuracy of the numerical solution is poor. Physi-

cally meaningful plasma and source configurations that can be treated include lower den-

sity laboratory-scale plasmas. It is on such plasmas that the wave conversion might

most readily be observed, since diagnostic probes of various types may be inserted

directly into such plasmas to measure RF field patterns.

Small-Signal Conservation Theorems

A general small-signal conservation theorem for a set of linear differential equations

in nontransformed variables describing a physical system is of the form

V • P(r,t) + E(r, t) = L(r,t), (8)

where P, E, and L are made up of second-order combinations of first-order variables.

P would have the dimensions of power flux, E of energy density, and L of power per

unit volume. We were not successful in obtaining a relation of this form for the warm,

inhomogeneous, and anisotropic plasma system treated here, probably because of the

degree of complexity involved in such problems. Some results were achieved, however,

in the formulation of a complex small-signal conservation theorem in the transformed

variables. The theorem provided a means for checking the numerical solution.

To obtain this theorem we take the complex conjugate of the first-order continuity

equation, and the first-order momentum equation

yKT sPs,

Ps - i Ps,1 +  Ps, 1 s,o + Vs, Ps,o = 0 (9)
s,O

v . i m v + p m (v V) v + p m (v V)
s, 1 so s s, 1 s,os s,o s, s,o s s, ) s, O

+ Ps q V - Ps , X B 0- p q9 X B + VyKT sp = 0. (10)

, so qV o s, sso o s,1

We perform the indicated scalar multiplication and vector dot product operation, and

add together both equations for both species. After some manipulation, we find that for

real w, y = 1, and n 0,

-Re {Jtt yKT1± p v }= 0 (11)
dx Re Jtot, s s, s, 1s

fx s
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or

Re iJ + yKTp , I = constant. (12)

The requirement y = 1 results, since this is the condition for consistent zero- and first-

order pressure-density relations. Jtot, is the total small-signal current density that

is the sum of the true current and displacement current. The expression in parentheses

is interpreted as the small-signal power. Power orthogonality of the homogeneous

plasma modes can be proved along similar lines.

The numerical solution agrees with this continuity of small-signal power flux in the

sense that in the homogeneous plasma of Region 1 the power associated with the total

solution in that region was less than 0. 1% of the power carried by the individual homo-

geneous plasma modes making up that solution. The total power in that region should

go to zero because at the starting point in Region 2 the waves are evanescent and the

associated small-signal power flux is zero, and the power flux should be constant, zero

in this case, for all x. Such close cancellation was obtained only for the conditions y = 1

and that the proper zero-order configuration was maintained consistently in the first-

order system.

With the same expression for small-signal power, similar conservation was obtained

for the case when n is nonzero and sufficiently large to influence the solution. We have
Y

not yet succeeded in showing analytically that such conservation must exist for that case.

This is often a problem in small-signal power theorems, in that a relation is believed

to exist but it may be very difficult to prove analytically.

Plans for Future Work

Now that we have developed a technique that can be applied to parameters of labora-

tory plasmas, we shall make a Fourier synthesis of an nz spectrum of such solutions

in order to calculate the field pattern in the plasma driven from a spatially localized

antenna source. This is essentially an extension of the resonance-cone problem 3 ' 5 for

the case of a warm inhomogeneous plasma near lower hybrid resonance. We believe

that the solution to this problem may provide the key to successful observation of some

manifestation of the mode conversion process.

It appears that the single-wave (nz) analysis is not directly applicable to laboratory

arrangements. The nature of the propagation near the mode conversion region puts

severe requirements on the degree of definition of the nz spectrum of a practical antenna

structure in an experiment if the single-wave analysis is to apply. Spatial harmonics

in the source nz spectrum will drive several coexisting modes whose individual character

may be impossible to isolate. Also, it is known that the group velocity of the waves near

the conversion layer has a direction nearly parallel to the magnetic field. This condition
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leads to strong finite antenna length (finite nz linewidth) effects. Both of these effects

are explicitly included in the case of a localized source (resonance cone) analysis.

As the local wavelengths in the plasma approach the ion Larmor radius, the moment

equation theory may fail. A study of the wave number vs density plots derived from the

Vlasov theory for a plasma in a magnetic field could be made which would indicate the

limitations of the moment equation theory. An objective in the design of a wave conver-

sion demonstration experiment based on this work will be to minimize the Larmor radius

effect. This can be accomplished in part by maintaining a small ope /ce parameter for

the plasma.
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D. General Theory

1. PARAMETRIC EXCITATION OF ION WAVES BY RESONANCE

CONE FIELDS NEAR THE LOWER HYBRID FREQUENCY

U.S. Atomic Energy Commission (Contract AT(11-1)-3070)

Charles F. F. Karney, Abraham Bers

Introduction

In previous reports, 1 '2 we described the excitation of ion acoustic, electrostatic

ion cyclotron, and magnetosonic waves by parametric coupling from waves near the

lower hybrid frequency in a highly magnetized plasma. We calculated coupling coef-

ficients for these processes for the case of a homogeneous plasma, but allowed the

waves to have various angles with respect to the magnetic field. In order to estimate

the usefulness of these interactions for Tokamak plasmas we must now include the

effects of finite geometry, inhomogeneity, and the fact that the RF energy of the pump

must originate outside the plasma. The linear propagation of the fields near the lower

hybrid frequency from the outside to the inside of an inhomogeneous plasma has been

studied recently.3 We adopt these results to describe the pump field inside the plasma.

This field, propagating along resonance cones, is of finite spatial extent. Thus its

various spatial Fourier components may couple to various low-frequency waves in the

plasma. We shall apply our three-dimensional calculation of the possible couplings to

describe the parametric down-conversion from a resonance cone pump field. The effect

of plasma inhomogeneity on the parametric coupling will also be considered.

Linear Propagation of Pump Fields

To study the problem of an inhomogeneous plasma, we assumed that the pump fields

are given by linear theory. Briggs and Parker 3 have studied this problem for a cold

plasma in the electrostatic limit, and we use their theory to describe the pump fields in

the plasma. We consider a plasma for which Vn is a constant and perpendicular to Bo

Such an arrangement is shown in Fig. IX-30.

We assume that a potential bo(z) is set up at x = 0. Then the fields that are set up

in the rest of the plasma can be Fourier-transformed in the y and z directions, which

are directions of homogeneity. (We shall assume no variation in the y direc-

tion, that is, ky = 0.) For any kz there will be a complicated functional depen-

dence of the fields on the x coordinate, but if the density gradient is weak enough,

WKB methods may be used. Under this assumption at any point a local k canx
be identified, which satisfies the local linear dispersion relation. The WKB solu-

tion is
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K (0) KI(0) 4 x
D (x, kz) = (k ) Ki(x) K (O)]exp i 0 k dx , (1)

z oz (x) KI (x) x / x

where Do(kz) is the Fourier transform of Go(z), and

kx(x) = kz[-K (x)/K(x) 1 / 2  (2)

KI and K are the x, x and z, z components of the cold-plasma dielectric tensor. In our
2 2 2 2 2

case we take 2 >> >> Q. For Tokamak-type plasmas we assume that 2 >> c . Thene i e pe

K 1 2- 2 (3)

K 1 - 2 / (4)
ii pe

Note that with these values for K± and K i there will be a small region of evanescence

in the low-density part of the plasma, where w exceeds the local electron plasma fre-

quency. This region is usually extremely thin, however, and numerical work by Puri

and Tutter 4 shows that fields easily penetrate it. So we shall assume that the fields are

given at a point of low density where the waves are propagating. (Note that for calcula-

tions of the impedance as seen by the external source this field would have to be calcu-

lated with special care because of the external electromagnetic structure that is used.

This problem does not concern us here.)

Energy at x = 0 propagates into the plasma along the locus of the group velocity.

This is given by the ray path z(x)

z(x) = + [-K /K] 1/2 dx. (5)

For KI and K as given by Eqs. 3 and 4 this path is shown in Fig. IX-30. (Notice the

greatly distorted scale of this figure.) The ray path, in fact, spends most of the time

traveling very nearly parallel to B (see Fig. IX-31). Note that the trajectory given in

Eq. 5 is independent of k . This means that if 4 (z) is confined to a region of widthz o

w , W0 will be the width measured in the z direction of the fields inside the plasma; so

the width measured perpendicular to the ray will be w - Wo(me/mi ) 1/2 (see Fig. IX-31).

The ray stops penetrating and travels only along the magnetic field when it reaches

the lower hybrid resonance layer x = xo at which point w = wlh c p The cold-plasma

assumption breaks down before this point is reached because the wavelength (1/kx)

becomes comparable to the ion-cyclotron radius, and an exact description of the ray

would have to include temperature effects. Some work along these lines has been done

by Simonutti and Parker.5 Their results (based on warm-fluid theory) indicate that wave
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x Pi

RAY PATH

Fig. IX-30. General arrangement for the inhomogeneous plasma and ray path.

kor Ea Fig. IX-31.

Segment of a ray at x = x /2.

conversion takes place at some point between x /2 and x for Tokamak plasmas.

Finally, we note that Eq. 1 predicts that as the field penetrates and its shape is dis-

torted, its amplitude increases. The amplification factor for the magnitude of the elec-

tric field is approximately

1/4
i x

m Xe o
(1-X/X )-3/4

For a hydrogen plasma, at x = xo/2 (w = 2 pi ) this factor is approximately 10.

Growth Rates and Thresholds for Uniform Plasma

We shall now refer to results for growth rates that have been given by Karney. 6 In

our notation a is the pump, b is the idler, and n is the signal, which is the wave that

we are trying to excite. In Fig. IX-32 o, k, and k diagrams are shown for coupling to

ion acoustic waves, and in Fig. IX-33 for coupling to electrostatic ion cyclotron or mag-

netosonic waves.

For coupling to ion acoustic waves the growth rate yo in the absence of damping is
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yo v . 0 .O al 1
cos 2a + i - 5 sin 2a sin , (7)

n 4 (wa/ka) Wa

where v ai = eE /(m.ia).

For coupling to electrostatic ion cyclotron waves

2 2 
y Wn _ Q peo n i v + - sin v a(8)wbwnl 1/2 4v k teknwnc aell + a ael8)

i/2 te ni ns

where aell = eE az/(mewa), and vae = E /B .

Finally, for coupling to magnetosonic waves

'oy 1 Vaell
4 (9)

1/2 4 vte

In the presence of damping the growth rate becomes y = yo-YbYn where yb and

Yn are the damping rates of modes b and n. This leads to a threshold for the interac-

tion. We take as an example a hydrogen plasma with parameters B = 30 kG, n = 2 X
13 -3

10 cm , T = 1 keV. Then if T /Ti is approximately five, we may expect the rela-

tive damping of the low-frequency waves to be -~0. 1 and that of the lower hybrid waves
-5 7 2

to be of the order of 10 . Then the threshold fields (determined from yo = YbYn) are
approximately as follows.

Relative Damping (T /T. i 5) Threshold E Field

For Coupling to: (V/cm)
Idler Signal

Ion acoustic 0. 1 0. 1 106

Electrostatic ion 10- 5  0. 05 102
cyclotron

Magnetosonic 10- 5  0. 1 103

These figures should be regarded as rough guides. Note the high threshold for cou-

pling to ion acoustic waves, as compared with the other interactions. The reason for

this is that we excite two relatively highly damped modes, whereas in the other cases

the idler is very lightly damped.

It should be noted that the threshold fields for a toroidal plasma may be quite dif-

ferent, since the damping rates that we have used are those for modes in a homogeneous,
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Fig. IX-32.

Coupling to ion acoustic waves: (a) in k
space; (b) in c, k space.

Fig. IX-33.

Coupling to electrostatic

waves: (a) in k space; (b)

ion cyclotron

in w, k space.
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infinite -extent Vlasov plasma.

Criterion for Growth with a Finite Pump

We shall examine first the conditions under which we can apply the theory for a spa-

tially infinite pump to the problem with a pump of finite extent in the center (homogeneous

region) of a Tokamak plasma such as is shown in Fig. IX-34.

The pump will appear to be of infinite extent to unstable pulses within the pump

region if several wavelengths of the excited waves can fit into the pump region. With

the plasma parameters given above, the wavelengths of the excited waves are approxi-

mately from 1 mm for ion acoustic waves to 10 mm for electrostatic ion cyclotron and

magnetosonic waves. Since the width of the pump ray is ~w (m e/mi)1/2, the required

extent of the pump fields at the wall is w >> 5-50 cm. (Note that the free-space wave-

length at w ~ pi is -10 cm, so the fields would have to be generated from multiple

sources.)

WAVEGUIDE

(a)

Fig. IX-34. Excitation of plasma with a plateau den-
sity. (a) Ray paths with multiple sources.
(b) Density profile.
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Under this assumption, we form the following picture. An unstable pulse originating

from noise begins to grow within the pump region. The behavior of such a pulse in a

uniform pump is well understood.7 It is found that the pulse is confined to a line between

two points, Vgbt and gnt, from the point where the pulse started. (Note that these are

points moving with the group velocities of the idler and signal.) The center of the pulse

grows temporarily at yo , in the absence of damping. After a while the edges of the pulse

move outside the pump region. We shall assume, however, that the rest of the pulse

grows as if the pump were uniform. Some time later, the center of the pulse, which
1

travels at - (vgb + gn) exits the pump region. We arbitrarily call the interaction strong

if this part of the pulse has e-folded several times at this point, or

1 -
S- (vgb + vgn) n i/o << w, (10)

where f is defined as a "growth length," w is the width of the pump region, and i isn
its normal (see Fig. IX-31).

We now focus on the excitation of electrostatic ion cyclotron modes, since this inter-

action has the lowest threshold, and seems the best candidate for plasma heating. Sup-

pose we take 1 kV/cm as the maximum reasonable field that we can excite at x = 0.

Assuming amplification by a factor of 10 as the ray penetrates the plasma, we have fields

of the order of 10 kV/cm inside the plasma. For the plasma parameters given, this is

considerably above the threshold field and the growth rate y is ~0. 1 b 1/2. We note

that we have considerable freedom in two choices of geometry for this interaction

because the pump will contain a spectrum in k. Although the growth rate is an insen-

sitive function of geometry, f is strongly dependent on the geometry, because of the dot
2

product in its definition (Eq. 10). For this interaction, v k c / i and Vg b  pe/kgn nx s nx gb pe b
and is perpendicular to kb. So v gb >> gn. To minimize I, we choose ka z 0, so

that ka and kb can be chosen to be nearly parallel, and vgb and in are nearly perpendic-

ular. In this case f - 1 mm and (10) is satisfied because w >> 10 mm (the condition that

the pump appear uniform to the nonlinear interaction). With k , kb  k , and with

the limited ranges for which weakly damped modes b and n exist, 0 b and 0 n have to

fall in the range ~83-86 ° . In that case wa would have to be approximately four times the

local lower hybrid frequency, and we do not expect to encounter wave conversion at this

point.

In order to reach the homogeneous region shown in Fig. IX-34, the pump fields have

to traverse an inhomogeneous region. Electrostatic ion cyclotron waves will be excited

in this region, with a growth rate similar to that for the homogeneous region. As the

pulse moves through the density, however, there will be a "detuning" in kx, since the

dispersion relation for lower hybrid waves is a function of density. This phenomenon

is important when the kx mismatch, 8kx , is of the order of the spatial growth rate in
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the x direction, f k , for this detuning and we find

Ik ~ Lo/a, (11)

where L is the density gradient scale length. For the parameters that we have been

using f k is -0. 01 L. This will clearly limit the excitation of electrostatic ion cyclotron

waves in the inhomogeneous region. Therefore for this case we can expect the main

excitation of low-frequency waves to take place in the center of the plasma.
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2. THREE-DIMENSIONAL PULSE EVOLUTION OF COUPLED

WAVE-WAVE INTERACTIONS

U. S. Atomic Energy Commission (Contract AT( 1-1)-3070)

Abraham Bers, Frank W. Chambers

In a previous report1 we presented a complete solution for the one-dimensional

time-asymptotic pulse shape of coupled wave-wave interactions. In this report we extend

our results to describe the time-asymptotic pulse shape in two and three dimensions.

The three-dimensional coupled wave equations resulting from nonlinear interaction

are of the following form 2

+ v2 V+) a2(r, t)= -P2 K al 0 a3 (r, t) (1)

t + v 3 V+Y 3 ) a 3 (r, t) -P 3 K alOa 2(F, t), (2)
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where the notation is the same as in our previous report. The Green's function solu-

tion of these equations is

ds -ist dK K e r 1 (3)
G(r, t) = - e n D( (3)

L F (2T) D(K, s)

where the dispersion relation is

D(K, s) = (s-K V2 +iyz)(S-K V3 +iY 3) + y (4)

and

2 K 2 a 12y P2P lK2 3 al01 (5)

is the maximum possible growth rate (for p 2 P 3 > 0), which occurs when y2 3 = 0.

The time-asymptotic pulse shape can be found by examining the absolute instability

growth rate of G(r, t) as seen by an observer 2 ' 3 with velocity V(r= Vt). Thus we seek

the absolute instability growth rate for the observer's Green's function

- ds' -is't d3K 1
G(Vt, t) = e 3 (6)

S3 (2T) D(K, s')
V

where

D,(K, s') = D(K, s'+K -). (7)
V

The absolute instability as seen by the observer is characterized by the complex fre-

quency so(V) and the complex wave vector K (V). These are determined from the sim-

ultaneous solution of

D_ = 0 (8)
V

and

aD

= 0, (9)

provided that K (V) represents a coincident pinching of the deformed F contours as

s' (V) is approached from the L contour.
o

For the dispersion relation (4) we find that the corresponding observer
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dispersion relation (7) is

2D = (s'-K V 2 +iy 2 )(s'-K. V 3 +iy 3 ) + 2
V

where

V2= V2 -V

V 3  3 - V.

Equation 9 then gives

V 2 (s'-K V 3+iy 3) - V3(s'-K V 2 +i 2) = 0.

Nontrivial solutions to (13) demand that

V 2 X V 3 = 0,

that is, that V 2 and V3 be collinear, and, by (11) and (12), join in a straight line

the tips of the unperturbed group velocity vectors v2 and v 3 , as shown in Fig. IX-35.

-- N I

-17" I /
\ I //-£.- i \' I I

Fig. IX-35. Geometrical constraints between the group velocities

(v 2' v3 ) of the interacting waves and the velocity V of
an observer on the time-asymptotic Green's function
pulse. The time-asymptotic, growing pulse extends at

most from the arrow tip of V2 to the arrow tip of V3 .
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We let = KII + iK, respectively, be parallel and perpendicular to either the direction

of V2 or V3' and carry out the K integration in (6) along these coordinates. By taking

II along V3 , the dispersion relation (10) becomes

D i = (s'+K 11V 2 +iy 2 )(s'-K lV 3 +iY 3 ) + y', (15)

and the pinch-type singularities in the (s', KI) integrations, which give the absolute

instability as seen by the observer, are determined from the simultaneous solution of

D = 0 (16)
I I

and

s'oit e, I G ( x,y,t - c) I

VVx
x=V, t

Fig. IX-36. Illustration of the method for constructing the time-asymptotic
Green's function pulse for a two-dimensional interaction. In
the soi-V 2 , 3 plane the calculation is entirely analogous to the

one-dimensional interaction. s . vs Vt is shown for two dif-
ferent times, t 1 and 2t 1 .'
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8D

K 0. (17)

Equations 15-17 are recognized to be analogous to the one-dimensional problem solved

in our previous report.1 Hence, for the three-dimensional problem, the growth rate

of the absolute instability as seen by the observer is

_ 2y(V 2V3)/2 - (22 V3 + 3 V 2)
Soi(V) = - + (18)o V2 +V 32 3

where, by (11) and (12), V 2  K2  , and V3 = 3 -V!. A plot of s as a function
of V gives the time-asymptotic pulse-shape evolution, since s' t - In G(t-co)I and
Vt = r. From (18) we find that the unstable (soi> 0) part of the pulse shape extends at

most over the range of V from V = v 2 (that is, V 2 = 0) to V = v 3 (that is, V 3 = 0). As

shown in Fig. IX-36, this can be illustrated for the two-dimensional case for a particu-

lar set of group velocities v 2 and v 3 . By applying (18) to interacting waves with group

velocities that have all possible spatial directions, and with associated variations in

coupling (y) and damping (y 2 ' - 3 ) ' we get the complete time-asymptotic pulse-shape

evolution in three dimensions. This is applied to two- and three-dimensional stability

analysis for second-order laser-plasma interactions in Section IX-A. 1 and to three-

dimensional dispersion relations for third-order plasma interactions in Section IX-A.2.
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3. THIRD-ORDER NONLINEAR WAVE-WAVE INTERACTIONS:

A DIFFERENTIAL-EQUATION APPROACH

National Science Foundation (Grant GK-37979X)

Duncan C. Watson, Abraham Bers

Introduction

The theoretical approach presented here is an outgrowth of the approach used in a

previous report. 1 It is therefore useful to recall briefly the earlier work, before

sketching the plan to be followed here.

In the earlier report we presented a theory of coherent wave coupling via second-

and third-order conductivity in a homogeneous unmagnetized plasma. In the presence

of a strong pump, small perturbations separated by multiples of the pump frequency

and wavevector are coupled. Three such perturbations were considered. The electric-

field polarizations were assumed in advance. The electric-field amplitudes were then

related by a set of three coupled linear equations. The consistency condition for this

set was a 3 X 3 determinantal equation:

E* eNtL(3)
e( 1 ) 3(), o, -o

K( 1) + i (1) u uL o(i) o

[-* -NL(2)
e(o) (1),-o

1 0 (o) 0

[-* -NL(3) 
1

e(- ) 0 (1 ), - o 0

E 0o o-) o

*r -~NL(2)

i E o (1) u

F-* -NL(3)
e(0) ' 0(o), , -o

K(o
) + i Eo O(o)

* -~NL(2)
e(1) 3 (o),-o

0
L 0(-1)

-* -.NL(3)
i e(1) (-1), 0,o 2

21* L NL(2)

Se(o) (-1), o

0Eo (0) uu 0
e* -~NL(3)
e(-1 ) (-I), o, -o

K ) +i uu) 0 (_-1) 0 0

The coupling coefficients in this equation

derived from the warm-fluid plasma model

formalism:

- * -NL(2)ea 3b, c

o a

spec im

species 6 permutations
of (-a, b, c)

were evaluated by using general formulas

by the generalized coupling-of-modes

1 1 n-anbnc
2 n-(v b'c) + 2 y(y-2) v .

f n E
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- .NL(3)e a ' b, c,d I 1

Eow E 0 J n-avb+c Vd + nEV-a+b Vc+d
species 24 permutations

of (-a, b, c, d)

S1 n-a+bnc+d 2 1 n-anbncnd 28 nE  vT n4 3 y(y-2)(y-3) vT . (3)
E n T 24

E

From the determinantal equation (1) we then extracted one-dimensional dispersion

relations corresponding to specific instabilities, both modified and unmodified.

In this report we present a theory of coherent wave coupling via second- and third-

order conductivity in a homogeneous unmagnetized plasma. Three small perturbations

are considered. This time the electric-field polarizations are not specified in advance.

The three electric-field components of each of the three perturbations constitute a total

of nine unknowns. These nine unknowns are related by a set of nine coupled linear

equations. The consistency condition for this set is a 9 X 9 determinantal equation which

we shall derive. This equation can be written to show the analogy with the constrained-

polarization case, by using the notation of partitioned matrices.

NL(3) * NL(2) NL(3) 2
K(1) + (1),oo* o o (o),o o (-1), c, o o

NL(2) NL(3) -NL(2)

0 CNL() E K N + C EE C (4)
(), o* o (o) (o), o, o' o o (-I), o o

-NL(3) E*Z NL(2) ' NL(3)
C E C E K(_1 + C E E(1), o*, o o (o), o (-1) (-l), o,o* oo

where, for instance,

("NL(3) i * -NL(3) (5)
(),oo AB W(1 ) e (1)A (1)B, o, o* 

(5)

Now the polarizations and relative amplitudes of the three perturbations can be obtained

directly from the relative magnitude of the appropriate entries in the matrix (4).

The coupling coefficients in the determinant may be evaluated by using Eqs. 2 and 3.

An alternative method of evaluation is desirable for gaining increased physical under-

standing and for ease of comparison with other theoretical treatments.2,3 We have evalu-

ated the coupling coefficients by expanding the warm-fluid plasma equations about the

oscillating equilibrium set up by the pump. We obtain directly the differential equations

describing the behavior of small perturbations in the pump-modulated medium.
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Again we shall extract from the determinantal equation those dispersion relations

corresponding to specific instabilities, both modified and unmodified. These disper-
4-6

sion relations are now three-dimensional, and the stability analysis (see also

Sec. IX-D. 2) may then be applied to find the corresponding three-dimensional time-

asymptotic pulse shapes.

Pump-Coupled Perturbations with Arbitrary Polarizations

The initial steps in this discussion are very similar to those in our previous report.1

Therefore they will be stated briefly.

Let an arbitrary homogeneous medium sustain a monochromatic pump wave

Eo = ELe L exp(ikL ' x-iwLt) + complex conjugate. (6)

Here eL is a unit vector describing the polarization of the pump. Consider a pump-

coupled triplet of linear perturbations

{E+(kW+),E(kw)E(k_ , (7)

where

(k, ±,) - (k± kL' W±WL). (8)

We now depart from the discussion in our previous report by allowing the perturbations

to have arbitrary polarizations. We describe each electric-field perturbation in (7) in

terms of a (different) basis of unit polarization vectors

E+= EM+eM+ + EN+eN+ + ES+eS+

E = E1MveM + ENeN + ESe S  (9)

E_ = EM eM_ + EN-eN- + ESeS_

These bases of unit vectors are unrestricted at present, but will later be restricted

in such a way that they acquire immediate physical significance. We denote the second-

order nonlinear currents arising

from fields eL and eB by jB, from fields eL and eB_ by jB-'

from fields e L and e B by j3, from fields eL and eB+ by jB+. (10)

We denote the third-order nonlinear currents arising
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from fields e L , e L , e B by jB , from fields e L , e L , eB± by j

. .++
from fields eL, e L , eB_ by JB-, from fields e L , e L , eB+ by jB+'

Substituting (9) and (10) in Maxwell's equations, we obtain

K+eB+ EB+ + ELEL

B

0B+

o+
EB+) + EL

B

.E+ 2

EoW+ B L

.++

SB- EB - = 0o +

E I

B

EZL
B

.--

iJB+

E w

o-

KeBEB

EB+ + E L

B

+ ELE L
B

E3B

0-

+-
ij B

ZO¢O
E B) + EL

B

KeBEB

i B _
Eo

+ ELEL

B

EB = 0

B+-

EO
0-

(13)

EB) =0

(14)

where K+, K, K_ are the uncoupled linear dispersion tensors, for instance,

+ k -k (c/w + 1 + iLINEAR(k+, w+)/E oW.

These three vector equations may be converted into an equivalent set of 9 scalar equa-

tions.

We take the dot products of (12) with fm+, fn+ f s+, the dot products of (13) with

fo f n f s, and the dot products of (14) with fm-' fn- fs-" Then we have a set of 9 scalar

equations linear in the nine unknown field components EM+, EN+, ES+, E M , E N , E S,
EM-, EN-, ES-. The set of 9 scalar equations is consistent, provided the 9 X 9

matrix of coefficients of the unknown field components has a zero determinant.

consistency condition may be written by using the partitioned matrix notation.

K + : +-
+ ELEL+ +

ELC+

*2 ---
E CL - +

+ +
ELCL+

K + ELELC

E LCL-

2 +++EL C
L+

ELC

_E +-
K+EE C

L L- -

= 0,

This

(16)

where the uncoupled linear dispersion tensors have elements typified by
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(K+)AB = fA K+eB (17)

and the tensor coupling coefficients have elements typified by

C ++AB = ifA+ JB~/Eo'+. (18)

Now we specialize to an unmagnetized plasma. The eigenvectors of K now lie parallel

and perpendjcular to k regardless of the value of w. By taking em , e n , e as eigen-

vectors of K and fm, fn' f as eigenvectors of Kransp , the determinantal equa-

tion (16) assumes a form in which K appears as a 3 X 3 diagonal matrix. Similarly

K+ and K_ may be diagonalized. The e-basis vectors for each perturbation now cor-

respond to the polarizations of the uncoupled modes of the plasma having the same prop-

agation vector as the perturbation. This greatly facilitates various simplifications of

the determinantal equation.

Coupling Coefficients for Plane-Polarized Electromagnetic Pump

We derive the coupling coefficients appearing in (16) directly from the differential

equations describing the plasma model.

We choose the two-species warm-fluid model of an unmagnetized plasma. The equa-

tions describing the fluid model are the momentum conservation and the particle con-

servation equations for each species separately:

8v - 8v vT nvy-2 8n8-+ v - + -n (E+vXB)at at n n mE+VXB)
o o 8x

(19)
an aat+ nv = 0at

Let the electric field of the laser-light pump be described by (6). Neglect the response

of the medium at harmonics of the pump. Then the oscillating equilibrium set up by

the pump is described for each species rr by

v = LI exp(ikL x- +iwL) + complex conjugate

a (20)

vLT= lq TELeL/m L

Consider the small linear perturbations described by E 1 and B 1 and by an n1 and

v 1 for each species. The equations obeyed by these perturbations are obtained by

expanding (19) about (20). They are the linearized momentum conservation equation

and the linearized particle conservation equation for each species separately:
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( a l~-~t o O- O 2 o rr X B 1 j(8v T/t)+vo 'V l +Vrr Vv +yvTV(n /n )=(q /m )( +vl XB +v XB 1 )

(an r/at) + V (n v Tr+n oTr ) 0
(21)

From (21) and Maxwell's equations, after some algebraic manipulations, we may obtain

the expressions for nonlinear currents excited by a perturbation field E(k, c). This

perturbation, together with the positive frequency component of the pump, gives rise

to a second-order current at (k + kL, +L):

2
yVTk k +
2 2 2

S-TykvT

vLk

CO

k +vL

W+

yvxkk
+2 2 2

C - yk v T

E. (22)

The perturbation E(k, co), together with the negative frequency component of the pump

field, gives rise to a second-order current at (k-kL, C-L):

yv kk

2 2 2
o_ - T

- -
vLk

Co•
k-V
W_

/2--
+ /Tk k

S2 2 2
o -y{kv

T

E. (23)

E(k, C) and the positive-frequency pump component acting twice give a third-order

current at (k+ 2 kL, Cw+2coL):

Tk++k ++ 1 ( 2- k++ 2 2
+ 2 -- 2 2 2 v 2 Lk +VL +  T(k + v L)

S- yk++ T -yk+v T

S k- - k ++ - VL)V• -(
+ vL+(k+ VL)+ + + L L)S ++

2-
yvTkk

c2 - "yk vT
1+ 2 2

E(k, o) and the negative-frequency pump component acting twice give a third-order

current at (k-2kL, w-2CL):

2-
v Tk k .

T T+2 , 2 >
Co-- T

1
2 2 2

Co -kvT

2 , k 2-V~VT-k_'-L2 - k O

v k v + Yv kk
(L- L W T -L w

+ (k v ko+ Co

2--
yvykk

+22~2 4

E(k, co)

give a

and the positive- and negative-frequency pump components acting in succession

third-order current at (k, co) which forms a self-correction to the perturbation:
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iJ + +

++o 0

2

P

oWWCo++

2
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CoCo

iJ
co E

-- o

(24)

E. (25)
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2 2
ifJ+- p V T k k  1 2- k k

E + 2 2 2 vL T - - v L vL
T+ ( - ( ) -vLT

+v k o v - + v T  (k kv )v- -(k"- v L

2 2 2 LkVL + T k -L(k - Vk k 2-- - kvL +  T W- + yk+v T

-- ~ k k -- * T
+ v - k + k+ - -V+.) v I + 2 E. (26)
+ VL +(k + v L  vW L +2 2 2L) - yk vT)

The nonlinear currents excited by another perturbation E at frequency(k±k L , ± L )

can now be obtained simply by raising (lowering) all frequencies in (22)-(26) by

(kL' WL)

Next, we substitute (22)-(26) and their frequency-shifted analogues in the expres-

sions for the coupling coefficients (e. g., Eq. 18). The resultant forms depend on the

polarization basis vectors f and e only through their dot products with their associated

propagation vectors and with vL and v L . Specializing to a plane-polarized laser, for

which v L, vL are collinear, we find that the coupling coefficient (25) depends on

f A+ only through the quantities fA+ ' vL fA+ k+

and on

eB- only through the quantities vL . eB_, k - eB-

For an unmagnetized, dissipation-free, warm-fluid dispersion tensor the f and the e

may be taken to be identical. We have already chosen eM and eN to be perpendicular

to k, eM+ and eN+ perpendicular to k+, and eM_ and eN_ perpendicular to k_. We now

demand in addition that e N , eN+ and eN_ all be perpendicular to vL. Then any coupling

coefficient involving eN, eN+, eN_, fN' fN+ or fN- is identically zero. Physically

this means that we decompose a perturbation field E at (k, c), say, into an electrostatic

field ESe S parallel to k, an electromagnetic field ENeN perpendicular to both k and

vL which takes no part in any coupling, and an electromagnetic field EMeM perpen-

dicular to both e S and e N .
The resultant 9 X 9 determinant (16) will not be reproduced here in full. Instead

we shall describe its use for deriving an underlying specific interaction. We shall

describe the manner in which specific entries in the 9 X 9 determinant are combined
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to give dispersion relations for specific instabilities. The resultant dispersion rela-

tions are presented in Section IX-A. 1.

Isolation of Specific Instabilities from the Determinantal Equation

The determinantal equation (16) factors into the three uncoupled electromagnetic

roots

(K+)N = 0, (K)N = 0, (K_)N = 0 (27)

and a coupled equation formed from (16) by striking out the central row and central col-

umn from each 3 X 3 subdeterminant. We shall focus our attention on the latter.

We find that for very small IELI not all of

(K+)M, (K+) S, (K)M , (K) S, (K_) M (K_) S  (28)

can be of order unity simultaneously.

Let (K) S , (K_)S be of order IELI and the rest of (28) be of order unity. Then to

order IEL 12

(K)S (K_)S = EL 2 (C (C)S (SS29)

This describes either the unmodified plasmon-phonon instability or the unmodified

plasmon-plasmon instability, depending on the region of k-w space that is being con-

sidered.

Let (K_) S be small and the rest of (28) be of order unity. Then to order IEL 2

(K)S (K)M SS

-EL 2 G_, say. (30)

This describes the modified plasmon-phonon instability. It will soon prove useful to con-

sider also the form obtained by taking (K+)Sto be small and the rest of (28) of order unity:

(K)S= E 12 +c) (cSS C)SS + SM MS -(C +-)
EL (K)S (K)M SS

E EL 2 G+, say. (31)

Let (K)S, (K_)M be of order IELI and the rest of (28) of order unity. Then

to order EL 1 2
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(K)S (K_)M = EL 2 (C) (C +)SM (32)

This describes unmodified stimulated Brillouin or Raman scattering, depending on the

region of k-w space that is being considered.

Let (K) S , (K_)S, (K_)M all be of order IELI and the rest of (28) of order unity.

Then to order IELI

(K)S= EL 2  (K + ( (33)
(K _) (K )

This describes the coalescence of the unmodified Raman and unmodified plasmon-

plasmon instabilities.

Let (K_)M be small and the rest of (28) be of order unity. Then to order IEL12

(K)M = EL 2  C-MS +SM -C-)MM MM - (C +-) (34)

(K) S  (K)M MM

This describes modified stimulated Brillouin scattering. It also describes the form

of modified stimulated Raman scattering in extremely underdense plasma.

Let (K)S be small and the rest of (28) be of order unity but with K+)M and (K+)S >>

(K_)M and (K_) S. Then to order IEL 2

(KS = IEL2  + ( )M (MS - (C,+-)ss (35)
(K ) (K )

This describes the form of modified stimulated Raman scattering near the 1/4 critical

density surface. Note the close connection between (33) and (35); we shall find that (33)

is adequate.

Let (K+)S , (K_)S be small and the rest of (28) be of order unity. Then to order IEL 14

(K+) S (K_) S = (EL 2 (K+)S G _ + (ELI 2 (K_) S G+

- EL 14 G_G + IEL 4 H_H+, (36)

where G_, G were defined in (30), (31) and
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H ( +(C - (37)

(K) S  (K)M SS

c) c SM ( cM ++
H + + - C (38)

(K)S (K)M S

Equation 36 describes the so-called nonoscillatory instability. Sometimes we insert

for (K)S, (K)M their values at the wavevector and frequency (k, w) so that (K+)S = (K )S
= 0. This approximate version is called the unmodified nonoscillatory instability, which

was first described by Nishikawa 7 for kL = 0. The version in which (K) S , (K)M are given

their true values is called the modified nonoscillatory instability. Note the close con-

nection among (30), (31), and (36).

Equations (29)-(38) form the basis on which the explicit dispersion relations in Sec-

tion IX-A. 2 are derived.
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