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A. OPTICAL CHANNELS

1. UNIQUENESS OF THE OPTIMUM RECEIVER FOR THE M-ARY

PURE STATE PROBLEM

National Aeronautics and Space Administration (Grant NGL 22-009-013)

Robert S. Kennedy

We have seen1 that the necessary and sufficient conditions for a set of operators 7i

T. > 0
1

(1)
S r. = I

1

to be the optimum decision operators are that the operator X defined by X = pip 7Ti

satisfy

X= X

and

X - pip i > 0 all i.

We have further shown that, on the space spanned by the m linearly independent message

vectors (u i , the optimum 7ri are orthogonal projectors. 1 That is,

7T. = 6.... (3)

We now claim that the optimum 7. on that space are unique.
1

PROOF: Let us suppose to the contrary that there are two optimum measurements {i}
and {i } each satisfying Eqs. 1 and 2. Then any measurement { Tr} with
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i +  ( ) 0 1 (4)

also satisfies Eqs. I and 2 and hence is also an optimum measurement.

We have seen that the optimum measurement operators are orthogonal projectors

(Eq. 3). Thus it must be that for all values of L in the interval [0, 1] the operators

defined by Eq. 4 must satisfy 7T.T' = 6. i' or equivalently
1 L 1

A+ (1 p . T. + AI[ .. = 6 [ +(1- ^ ]

Since the {7i} and the {( } satisfy Eq. 3, this may also be stated as

- A A I =/IT 7

1 ]i 1 ]  ij i+

or

"+ vj = + (5)
1 j + j 7 i 1 1+ i)

Next, we show that Eq. 5 implies that the set of {7T} and the set of {i} are identi-

cal. To this end, we recall that the {i} are a set of m commuting projection operators

on an m-dimensional space. This implies that they possess a common set of eigen-

vectors, that each eigenvector is in the null space of all but one projection operator, and

that for that one operator its eigenvalue is one. Hence we must have

7i= jiKi' (6)

where the (i are an orthonormal set. Similarly,

I = i (7)

where the ( i are also an orthonormal set.

Introducing Eqs. 6 and 7 in Eq. 5 yields

0i) (pi j ) ( j + i) (ijo) (j= 0 for i¢ j.

Operating on qi) with this identity yields

0i ) cip j> ji> 0.

Hence ( ij) = 0 for i € j. That is, each of the ) are orthogonal to all but one of the

{ ) } and that one is j ). Consequently the L j) may be expressed as 4j.) = cj 1). More-

over, since the ), as well as the 4 ), are normalized, the magnitude of c. must be
' A J

one. Thus ) ( = 4.) (., and the 71 . and iT. are identical, as was claimed.
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B. COMPLEXITY OF NETWORKS AND ALGORITHMS

1. COMPLEXITY OF ACCEPTORS FOR PREFIX CODES

U. S. Army Research Office - Durham (Contract DAHC04-71-C-0039)

Donna J. Brown

Introduction

In the field of coding, a code is simply a (one-to-one) correspondence between some

sort of message "words" and a set of "code words" (strings of characters chosen from

some alphabet). For instance, the message that is transmitted might be

00010010101101110010111,

with the encoding

a: 00 e: 1100

b: 010 f: 1101

c: 011 g: 111

d: 10

This message would be decoded as

00 0101001 10 1101 1100 10 111,

which gives

abbdfedg.

There are several desirable properties for a code. One is that the code be uniquely

decodable; i. e., no string of code words may represent more than one message. Further-

more, we would in general like to allow code words of different lengths, and to avoid

the extra work involved in recognizing start and stop bits that indicate code word bound-

aries. To do this, the code must have the property that the code word boundaries are

obvious. A code for which it is possible to detect the end of a code word without

"looking ahead" to succeeding symbols is called an instantaneous code. Obviously, in

such a case no code word can be a prefix of any other code word; hence, such a code

is called a prefix code. Such codes have been studied in some detail, and the Kraft

inequality 1 states that a necessary and sufficient condition for the existence of an

instantaneous code with word lengths k1, P2, ... fr is

r -.
X s <1,
i= 1
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where s is the size of the code alphabet. Observe that any prefix code can be repre-

sented by a tree, as illustrated in Fig. X-l.

Given the prefix code C 1 , containing 8 code words:

a: 0 e: 11001

b: 100 f: 11010

c: 101 g: 11011

d: 11000 h: 111

This code can be represented by the tree T 1.

o0

0

0 1 Fig. X-1. Tree representation of code C 1 .
b c h

0 1 0 1
d e f g

Another desirable property, for speed of transmittal, is that the code have the

shortest possible word lengths. Thus, if the ith message word (and its corresponding

code word) has independent probability pi of occurring in any given r-word transmission,

we want a prefix code whose vector of word lengths (P, 2' ....' r ) for any such trans-
r

mission will minimize the average word length E pif .. In other words, we want to
i= 1

consider a vector of word lengths having the minimum average word length among all

vectors that satisfy the Kraft inequality. Such a code is called a compact prefix code.

In particular, we shall look at binary codes (s = 2) for which the Kraft condition says
r -L.1 22 2 < 1. In 1952, Huffman described a procedure for the construction of a compact

i= 1
prefix code, given the (independent) probabilities of the individual words. It is possible,

however, to construct fundamentally different codes for which the set of code-word

lengths is the same and hence the code is still compact prefix. For example, in

Fig. X-2, even if labeling is ignored, trees T 2 and T 3 are not isomorphic, and

thus the codes that they represent are fundamentally different even though the set

of word lengths is the same.

Set of word lengths: 2, 2, 3, 3, 3, 3
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Trees T2 and T 3 represent codes C 2 and C 3 as indicated:

Code C 3

a: 01

b: 10

c: 000

d: 001

e: 110

f: 111

Fig. X-2.

Tree representations of codes C 2 and C 3 .

We shall consider the problem of detecting the ends of legal code words in a string

of code symbols (rather than actually decoding the message). A simple model for such

a detector is a finite-state machine with one accepting state, as shown in Fig. X-3.

Given the prefix code C4 :

g: 11010

h: 11011

i: 11100

j: 11101

k: 11110

1: 11111 Fig. X-3.
Tree representation of code C 4.

X-4.

code can be represented by the tree T4.
C4 can then be "recognized" by the finite-state machine shown in Fig.

START STATE

FINAL (ACCEPTING) STATE

Fig. X-4. Machine that "recognizes" code C4 .

For a given (arbitrary) set of messages and an arbitrary maximum code-word length,

we shall develop and analyze a method of code construction in which the word lengths

QPR No. 113

Code C2

a: 00

b: 01

c: 100

d: 101

e: 110

f: 111

a: 00

b: 010

c: 011

d: 100

e: 101

f: 1100

This

Code

133



(X. PROCESSING AND TRANSMISSION OF INFORMATION)

are those of a compact prefix code but the decoding will be optimal, in that a finite-state

end-of-word detector will have a minimal number of states as a function of n. We refer

to such a detector as an acceptor.

Because we analyze a code through its tree representation, we shall state some

preliminary definitions and make some observations. First, we use the term "tree"

to refer to a full binary tree; i. e., a tree in which each node has 0 or 2 sons.

Definition: The depth of a node i, represented d(i), is the number of nodes on the

path from the root to node i, not counting the root node.

For example, in Fig. X-3 node P 1 has depth 3, node P 2 has depth 5, and node P 3 has depth 0.

Definition: An R-set is a "set" of elements in which repetitions are allowed. The

notation [i1 , i 2 '... in] is used to represent the n (not necessarily distinct) elements

of an R-set, and the abbreviated notation 1 , 1 2 
... i1 k indicates that among

the n= al + a 2 + ... + ak elements in the R-set, the element i. appears a. times.

A simple inductive argument leads to the following theorem.

Theorem 1. For any (full binary) tree T, 2 2 -d(i) = 1.
i a terminal

node of T
For example, in Fig. X-1 we have

2 2 -d(i) = 2 -d(a) + 2 -d(b) + ... + 2 -d(h)

i a terminal
node of T1

= 2-1 + 2-3 + 2-3 + 2-5 + 2-5 + 2-5 2-5 + 2-3

= 1.

Definition: A length set (of size k) is an R-set of (k) positive integers that meets the

Kraft inequality with equality.

Now another inductive argument leads us to the following result:

Theorem 2. To any length set of size k there corresponds at least one tree with

k leaves.

Recalling the example in Fig. X-2, we observe that more than one tree may corre-

spond to a given length set. Thus, applying Theorem 2, we conclude:

Theorem 3. The number of unlabeled trees with k leaves is greater than the num-

ber of length sets of size k (for ka>6).

Theorems 1, 2, and 3 are well known and are given here for ease of reference (for

example, see Abramson 3 and Gallager ).
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Problem Statement

For a given set of messages and their assigned probabilities, Huffman's procedure 2

gives a method of computing a length set that is optimal in the sense that the average

word length is minimized. Corresponding to a particular length set, however, there

may be more than one code. Equivalently, as we have seen in Theorem 3, corre-

sponding to a particular length set

n, (n-)an-1  n-2 2 1
n , (n-1) , (n-2) , .. 2 , 1

of maximum depth n, there may be more than one full binary tree. Let L(n) be the

set of length sets of maximum depth n. Then, for any k E L(n), we are interested in

the value of S(f), where S(f) is the smallest number of states in any finite-state

acceptor that accepts a set of code words with length set f. We shall show that

O n " max S(f) < (n2).
log n E L(n)SfE L(n)

Upper Bound

By brute force, simply allowing a finite-state machine to model the tree, we can
ra I  a2  a- 1

recognize a length set 1 2, ... , n n in (al +a2+ ..+a -1) + 1 = al + a 2 +... + an

states, since al + ... + an - 1 is the number of internal nodes in any corresponding

tree and the one additional state is the final accepting state. To see how this

works, consider the following machine that recognizes code C4 and models tree T4 .

0 1

1 0 1
0

0, o, 0 1 Fig. X-5. Acceptor for C4 that models T4.

0 1 0 1

0,1 0,1 0, 1

(Notice that the machine in Fig. X-5 is not the simplest possible acceptor for C4 ; the

one in Fig. X-4 is simpler.) This method of machine construction causes the number
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of states to grow exponentially with the depth of the tree. And, given an arbitrary code,

the growth in minimal number of states in an acceptor may indeed be exponential. But

in general we are free to design codes, and we shall present a procedure to construct,

from any length set, a code for which the number of states in a recognizing machine

grows only as the square of the length of the longest code word. We then see that

this is "almost" the best possible result.

In order to obtain the n2 upper bound, we define what we mean by a tree in "block

form." We use the term block to refer to a (full binary) subtree of uniform depth. Fig-

ure X-6 shows examples of blocks. Thus each leaf of an arbitrary tree is a leaf in

Fig. X-6. Examples of blocks.

some block. And for each tree T there is a corresponding trimmed tree T', which

is obtained from T by removing all blocks and leaving only the roots of the blocks (see

Fig. X-7). A tree is in block form if there are no two blocks of the same size

T5  T5

Fig. X-7. Tree T 5 and its corresponding trimmed tree T'.

at the same depth. In other words, a tree in block form has its leaves grouped so that

it forms maximum size blocks. In Fig. X-8, T6 is not in block form because blocks B 1

and B 2 are of the same size and at the same depth. In tree T7 , however, B 1 and B 2
have been combined, and T7 is in block form. A code is in block form if its corre-

sponding tree is in block form.

Perhaps the best way to understand what is meant by block form is, given a length

set, to see how a corresponding block-form tree can be constructed. Suppose there

are a i leaves at depth i. Let the binary expansion of a. be1 1

QPR No. 113 136



(X. PROCESSING AND TRANSMISSION OF INFORMATION)

= b 20 + b. 21 +b 22 +... + b. 2
i bi bil i2 Ip

where b.. = 0

with 2j leaves

or 1. This

at depth i,

tells us immediately that for b.. = 1 there is a block

and also that the trimmed tree will have a leaf at

T
7

B1 B2

Fig. X-8. Example of a tree T 6 not in block form and a tree T7 in block form.

depth i-j. Consider as an example the length set [2, 43, 58,

that T 8 is a tree representing this length set.

611, 712, 812], and suppose

Leaves in T 8

12

14

42

58

61

Corresponding
Leaves in T'8

- 2

- 4

-- 3

- 2

- 6

- 5

Leaves in T8

Corresponding
Leaves in T'8

- 3

- 5

- 4

- 6

- 5

We may now construct, in any way desired, a (trimmed) tree T8 with length set

[22, 32, 42, 53, 62]. The block-form tree can now be obtained from T8 by adding on to

the appropriate leaves of T? the blocks removed in the trimming process (see

Figs. X-9 and X-10).

We now deduce an upper bound on the number of states required to recognize a given

a-length set. We have already seen, a] 
how we can

-length set. We have already seen, for a length set .1 .2 ,. . .. n n, how we can

QPR No. 113 137



Fig. X-9. Trimmed tree T'8'

Fig. X-10. Block-form tree corresponding to T '8"

-Qilili.

Fig. X-1l.

Fig. X-12.

Block- recognizing machine.

Acceptor for the code represented by the block-
form tree corresponding to T8 .

QPR No. 113
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construct a corresponding tree T in block form. Since T has aI +a 2 +... +an - 1 inter-

nal nodes, its trimmed tree T' has (al+a2 +. . . +an-1) - r internal nodes, where r is

the total number of nonleaf nodes contained in blocks of T. But notice that a machine

of the form shown in Fig. X-ll can recognize any block of depth less than or equal to p.

Thus, if we combine this block-recognizing machine with the machine that models T',

then we shall have a machine that will recognize T and has only

a 1 + a 2 + . . . + an - r + p states,

where p, the depth of the biggest block, is [(log 2 (max(a1 , a 2 ... , an))], and r is the

number of nonleaf nodes in blocks of T. As an example of this construction,

Fig. X-12 illustrates an acceptor for the code represented by the block-form tree in

Fig. X-10.

Having obtained an upper bound on the number of states required to recognize a given

length set, we now want to analyze how good (or bad) this upper bound actually is. An

inductive proof gives our main result:

Theorem 4: To any length set with maximum length n (n >2) there corresponds a

tree of depth n that can be recognized by a finite-state machine with at most

n(n+l)/2 = 0(n 2 ) states.

Although the details of the proof of this theorem are a bit tedious, we can give an

intuitive argument that shows that block form does actually lead to an upper bound of
a l  a 2  a 3  an]

0(n 2 ) states. Given a length set 1 , 2 , 3 a ... n , a corresponding block-form

tree has 2(al+a 2+... + an) - 1 nodes. Consider again a i written in binary expansion,

0 1 2  P
a.i = bio 2 + b il 2 + b. i2 + . . . + bip 2

We see that the trimmed tree has I b.. leaves and therefore 2 b.. -1 internal
1i- i-< n 1< i<n
0 j<p 0< j< p

nodes. Thus T can be recognized in

< e b.. - 1 + p + 1 states
1 < i< n
0-< j< p

Sb.. + p states
1- i< n

< n(p+l) + p states

< n2 + 2n states,
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since p < n. We conclude, therefore, that T can be recognized by a finite-state

machine with at most O(n 2 ) states, thereby giving the upper bound max S(2) < O(n2).
PE L(n)

Lower Bound

We have succeeded in obtaining an upper bound of O(n 2 ) states, and a counting argu-

ment now gives a lower bound of O(n2/logn). We obtain this lower bound by com-

paring the number of length sets of depth n and the number of acceptors with at most

k states. If there are not enough acceptors to recognize all of the length sets, then k

must be a lower bound on the number of states required.

To obtain an upper bound on the number of acceptors with k states, suppose we

have a sequence of k numbered states and want to determine how many machines can

be constructed. Without loss of generality, let state number 1 be the start state and

let state number k be the (final) accepting state. For each of the states 1, ... , k-l,

there are k states to which we might move upon receiving a 1, and k to which we might

move on receiving a 0. Thus there are k possibilities for each of the k-l states, which

gives an upper bound of k2 (k - l) possible machines.

Lemma. There are at most k(k - l) finite-state machines with two input symbols

and k states.

What we are really concerned with, however, is the number of acceptors with at

most k states and the following theorem gives that.

Theorem 5. There are at most k2 k finite-state machines with two input symbols and

at most k states.

k
Proof. (Number of machines with <k states) = Z (number of machines with i states)

i=1

k< i 2 (i - 1)
i=l1

< k. k 2 (k- l)

< k 2 k

The following theorem gives the number of length sets of depth n.

0(n2
Theorem 6. The number of length sets of depth n is 2 0(n

2
Proof. We show first that the number of depth n length sets <2 n . Each length set
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of depth n can be written in the form

n , (n- 1 ) (n-2) n-2 ... 2 a 2  1  0 a. 2.

We want to know in how many ways the al, ... ., a n can be chosen. Certainly a i < 2n

for all i, and so in binary notation ai has at most n digits. Thus a l a 2 . . an has at

most n digits, and each of these n digits can be chosen in two ways. So there can
2

be at most 2 n sequences ala2 ... a n . A detailed counting argument will show that

the number of length sets of depth n > 2 0(n 2 ), and this gives us our result.

We have shown that there are at most k2 k acceptors with at most k states and that

the number of length sets of depth n is 2 (n 2 ) . Thus, if we can find a k such that k2 k <

2 0(n2 , then k must be a lower bound on the number of states required. It can be

shown that n 2/log n is such a value for k; thus we obtain our lower bound,

max S(') n
E L(n) log n

Conclusion

For any length set f of maximum depth n, we have succeeded in obtaining the

fairly tight bound on the maximum over f E L(n) of S(f), the minimum number of states

in any finite-state acceptor that accepts the worst set of code words with maximum

length n:

O - < max S(f) < O(n2
logn EL(n)

The block-form procedure gives a method of code construction in which we are guar-

anteed that the number of states in an acceptor will grow at most as fast as the square

of the length of the longest code word. It can also be shown that there actually are block-

form codes for which the number of states in the acceptor does grow as fast as this;

thus the 0(n 2 ) upper bound cannot be improved by using block-form codes. In the com-

putation of the lower bound, we determined that the number of length sets of depth n

is 2 0(n2 Our count of the number of finite-state machines with at most k states, how-

ever, gave us only the gross upper bound of k2 k ; a more careful count might improve

our lower bound result of O(n2/log n).

Another approach to problems of this kind is to find a length set that is "close" to

the given length set and for which it is easy to build an acceptor. Such approximation

questions are considered by Elias. 5
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