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1 Introduction

Recently there was some renewed interest in implementing gauge mediation [1] in explicit

supergravity framework and in string theory [2–7]. In models without anomalous U(1)
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symmetries, gauge mediation contribution to the soft supersymmetry breaking terms nat-

urally dominates over gravity mediation contributions [8, 9]. This happens, for example,

adding messengers in models of F-term uplift [9]. However, it is difficult to to find string

origin of such models. In string constructions, there are generically present anomalous

U(1) symmetries and the messenger fields, which are typically bifundamentals between

SM gauge factors and the U(1)’s, are charged under them, as well as the Green-Schwarz

moduli responsible for anomaly cancellation. It is therefore important to study if the domi-

nance of gauge mediation can be obtained in models where U(1) symmetry plays important

role in the supersymmetry breaking sector. Several explicit string models attempting to

implement gauge mediation in the presence of anomalous U(1) have been recently con-

structed [2–7] and it is generally believed that this framework can naturally provide a

viable gauge mediation transmission of supersymmetry breaking. However, as pointed out

recently in a particular example [4], there are some subtleties to take into account if D-term

contributions are present in this case.

The purpose of the present paper is to enter more into the structure of these class of

models and the various constraints arising from:

(i) gauge invariance via the Green-Schwarz mechanism;

(ii) stabilization of the Green-Schwarz moduli fields;

(iii) avoiding a Fayet-Iliopoulos term for the hypercharge and the existence of non-

standard gauge contributions to the MSSM soft terms, which naturally arise in the

presence of D-terms for U(1)’s under which messengers are charged, with important

phenomenological consequences;

We show that the correct implementation of these constraints implies that it is hard

to parametrically strongly suppress gravity contributions compared to the gauge ones,

though some dominance of gauge mediation, easing the FCNC problems of gravity, is

possible in some regions of the parameter space. Compared to uplifting models without

U(1)’s, the difference is that gauge invariance strongly correlates supersymmetry breaking

to the sector of moduli stabilization through the gauge scalar potential. This translates

into the fact that the moduli-dependent Fayet-Iliopoulos term cannot be parametrically

much smaller than the Planck mass. Thus, the vev of the field S breaking SUSY is large1

10−1 ≤ S ≤ 10−3 and as a result there is a phenomenological lower limit on the gravitino

mass m3/2 & 50−100 GeV . In addition, there are additional non-standard gauge mediation

contributions. For example, constraint iii) is hard to satisfy in some models with non-

zero D-terms [3, 5], whereas in models with zero D-terms [7] implementation of i) and ii)

generically creates new supersymmetric vacua.

In fact, once the above constraints are carefully taken into account, one is led to a class

of “hybrid” models, where both gravity mediation and gauge mediation are equally impor-

tant. In the second part of this paper we therefore pursue in some detail a generalization

of the model introduced in [4] where the above constraints are taken into account.

1Most of the expressions are presented in Planck units, namely, we set MP = 1. However, at some

instances, we keep MP explicitly to make the discussions clearer.

– 2 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
1

High energy physics approaches a new era with the LHC. It will be possible to test a

much larger part of the parameter space of SUSY models, exclude some of them, or confirm

the presence of supersymmetric particles. Through the measurement of physical parameters

(masses, couplings, branching ratios), we will be able to extract fundamental informations

on the SUSY breaking mechanism: gauge, gravity, anomalous U(1) mediation [10], the

anomaly mediation [11], gaugino mediation [12], mirage mediation [13], etc.

Here we point out that in the presence of anomalous U(1) and messenger fields, charged

under U(1) and under the SM gauge groups, one naturally obtains another type of mixed

supersymmetry breaking transmission mechanism, gravity and gauge mediation, with in-

teresting phenomenological signatures.

2 Gauge models of supersymmetry breaking and moduli stabilization

Both main mechanisms of supersymmetry breaking, Fayet-Iliopoulos (FI) [14] and

O’Raifeartaigh (O’R) [15] contain mass scales, which fix the scale of supersymmetry break-

ing. If the mediation of supersymmetry breaking is by Standard Model gauge interactions,

the corresponding mass scales are typically low. In the case of the gravity mediation, they

are typically at intermediate energy scales. In both cases, a dynamical origin for these

values, small in Planck units, is needed. The traditional viewpoint was to invoke some field

theoretical nonperturbative effects in a sector which dynamically breaks supersymmetry.

With the more recently studied stringy instantonic effects [17], there is the possibility of

replacing field-theoretical nonperturbative effects with stringy instanton effects which are

computable in string theory. These effects give mass scales of order

mi ∼ eSinst , where Sinst =
∑

m

cmTm (2.1)

is an instantonic action depending on moduli fields related to the cycle(s) the instantonic

brane is wrapping. In all effective string models we are aware, there are abelian gauge

factors which are gauged by some of the moduli fields, generating a Green-Schwarz mech-

anism of anomaly cancelations. The crucial point we would like to insist in what follows is

that, while finding string effective models reproducing at low-energy the basic features of

the FI or the O’R model in this framework is relatively easy, the dynamics of the moduli

fields Tm set severe constraints on the transmission of supersymmetry breaking.

Let us start with a quick reminder of some basic results in N = 1 supergravity with

U(1) gauged symmetries. As a starting point, let us recall that the scalar potential in

supergravity has the following form:

V = eG(GM GM − 3) +
1

2

∑

A

g2
AD2

A , (2.2)

where

G = K + log |W |2 , (2.3)

and GM = ∂G
∂zM , where z represents the scalar part of a chiral superfield. The index M

runs over all the chiral superfields present, matter as well as hidden sector and/or moduli
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fields. On the other hand, the auxiliary D-terms are given by

DA = zITA
IJ

∂G

∂zJ
+ ξA = z̄ĪTA

IJ

∂G

∂z̄J̄
+ ξA , (2.4)

where TA represents the generators of the gauge group with index A and ξA denotes the

Fayet-Iliopoulos terms for the abelian U(1) factors. Note that the equality between the

two last terms is a straightforward consequence of the gauge invariance of the Kähler

potential. We take into account the fact that in string theory, the Fayet-Iliopoulos terms

are moduli-dependent.

In the presence of anomalous non-linearly realized abelian gauge symmetries

δVA = ΛA + Λ̄A, δzi = 2Xa
i zi ΛA ,

δTα = δα
A ΛA , (2.5)

the auxiliary D-terms are defined as

DA = zi XA
i ∂iG − δα

A

2
∂αG . (2.6)

The last term in (2.6) is the moduli-dependent FI term

ξA = − δα
A

2
∂αG . (2.7)

In the following we will often use the standard definition of F-terms

F i = e
K
2 Kij̄ DjW , (2.8)

where DjW = ∂jW + W∂jK, such that (2.6) becomes

m3/2 DA = zi XA
i Fi − δα

A

2
Fα , (2.9)

where as usual m3/2 = exp(K/2)W . eq. (2.9) tells us that the supersymmetric D and the

F conditions are not independent. Therefore in order to find supersymmetric solutions it

is enough to check the minimum independent number of SUSY conditions.

Some comments are in order concerning moduli masses. In models with anomalous

U(1) and FI term much larger than the gravitino mass, which is the case of interest in

string theory and is the case considered throughout this paper, there is always a charged

field, of appropriate charge and large vev that compensates to a good accuracy the FI

term. This field is always heavier than the Kähler modulus transforming non-linearly

under U(1), which has masses of the order (or slightly larger) than the gravitino mass. In

the case of a twisted modulus, its mass is generically of the order of the string scale and

therefore generically very heavy. Even in this case which suggests that the twisted modulus

is irrelevant at low energy and therefore can integrated out, this has to be done with care.

Indeed, as we will see in detail later on, supergravity approximation and gauge domination

would require a very small vev for the twisted modulus. The explicit dynamics of the

modulus, on the other hand, constrained by gauge invariance, often prefers large vev’s.
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2.1 Dominance of gauge mediation over gravity mediation

In a generic model with (almost) Minkowski vacuum, and with F -terms larger than the

D-terms, the uplifting condition requires a cancelation between the F -term contribution

to the vacuum energy and the SUGRA correction −3m2
3/2. This implies that in a viable

SUSY breaking minimum no F -term can be much larger than m3/2. On the other hand,

if SUSY is broken by some field S, coupled to the messengers,2 then dominance of gauge

mediation over gravity mediation requires

g2

16π2

〈FS〉
〈S〉 ≫ m3/2 . (2.10)

Thus, we have gauge mediation dominance only if 〈S〉 ≪ 1, i.e. if the messenger masses

m ∼ 〈S〉 are very small in Planck units. Since FS ∼
√

3m3/2MP , we can define the ratio

between the gauge and gravity contributions to soft terms as

MGM

m3/2
≡ g2 α ≡ g2

8π2

√
3 N

MP

S
, (2.11)

where N is the number of messengers and g a Standard Model gauge coupling. In a

(minimal) model with only one field S charged under some anomalous U(1)X , the value

of S is roughly set by the value of the FI terms ξ, so that we can have a small 〈S〉 only

in the presence of a small ξ. By fixing ξ to be very small, we are always enhancing the

contribution of gauge mediation over the gravity mediation.

On the other hand, as explained above in (2.7), ξ is moduli-dependent and its value is

fixed by the dynamics. We cannot assume that ξ is fixed by some independent dynamics “at

high scale”, since such a dynamics involves moduli stabilization, that affects the form of the

D-term potential. The problems stated here could perhaps be avoided but only in a compli-

cated generalization of the minimal constructions, including more than one modulus field.

In what follows we show in detail how the minimal setups fail in achieving gauge

mediation dominance, due to the large vev’s of S & 10−3 and show a model where only

a marginal dominance α . 100 is allowed for a large number of messengers. Then, as

discussed later, experimental constraints on superpartner masses imply that there is lower

limit on the gravitino mass m3/2 & 50 − 100 GeV. The resulting, hybrid phenomenology,

will be the main subject of section 5.

2.2 Gauged Polony model and SUSY vacua

The simplest model falling in the description given above contains one single field S with

a linear superpotential term W ⊃ λS breaking SUSY. In order to have a viable model, λ

should be small, thus sourced by some instantonic effects involving, in a minimal string

setup, one modulus field T : λ ∼ e−αT . Assuming S to be charged under a U(1)X , as

it is always the case in a string model, gauge invariance forces T to have an anomalous

variation. Thus, under the gauge transformation V → V +Λ+Λ̄, we have S → Se−2qSΛ and

T → T + δGSΛ, qS being the S U(1)X charge. We use the notation δGS since we expect the

2We take S to have standard Kähler potential for simplicity.
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anomalous T variation3 to be linked with an anomaly cancellation in a string models, via

the Green-Schwarz mechanism, i.e. we expect T to be part of some gauge kinetic function.

Taking qS = −1 we have

W = W0 + ae
− 2T

δGS S ,

K = S†e−2V S + K(T + T̄ − δGSV ) ,

D = −|S|2 − δGS

2
∂T K , (2.12)

where the last term in the D-term is the field dependent FI term due to the anomalous

T variation. In this model, the relation (2.9) between F -terms and D-terms can be

rewritten as

S FS +
δGS

2
FT = − D m3/2 (2.13)

and a SUSY minimum is ensured if

D = −|S|2 − δGS

2
∂T K = 0, e−K/2FS = ae

− 2T
δGS + S̄W = 0 . (2.14)

These two equations generically have solution, but the specific details depend on the form

of K(T + T̄ − δGSV ). In what follows we consider some cases of particular relevance in a

string theory setup: first we study the case in which T is a standard Kähler modulus, with

logarithmic potential, then we consider the case of a twisted modulus, with polynomial

potential. Finally we consider the generalization to the case in which the sector of moduli

contains more than one modulus field.

Our aim is to show that under very general assumptions, it is difficult to have dom-

inance of gauge mediation over gravity mediation, since no viable minimum is present

with 〈S〉 ≪ 1.

T as a standard Kähler modulus. In this case

K = −3 log(T + T̄ − δGSV ) , (2.15)

thus the SUSY conditions can be rewritten, neglecting the imaginary parts of S and T , as

D = −|S|2 +
3δGS

2(T + T̄ )
= 0, e−K/2FS = ae

− 3
2|S|2 (1 + |S|2) + S̄W0 = 0 . (2.16)

The first equation fixes T as a function of S, then T was substituted in the condition

FS = 0. The second equation has a solution for |S|2 → 0, corresponding to the runaway

T → ∞. In the case W0 ≪ a there is another SUSY solution for 〈S〉 ≪ 1, and T ≫ 1.

Since typically a ∼ O(1), we have that in such a model, for essentially all the reasonable

values of W0, there is a SUSY minimum in a viable region for 〈S〉 and 〈T 〉 and therefore

this model does not break SUSY.

Moreover, even in case a metastable SUSY breaking vacuum is found, we can infer, on

a very general basis, that it is impossible to obtain a pure gauge mediation scenario. After

3If we force T = T0 this is the model recently studied in [7]
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coupling S to some messenger fields, we immediately find that the condition 〈S〉 ≪ 1 is

incompatible with the original supergravity dynamics. In fact, from D-flatness one finds

that the instantonic effect is of order

e
− 2T

δGS = e−
3

2S2 . (2.17)

In other words, the requirement of a very small FI term kills the SUSY breaking effects.

T as a twisted Kähler modulus. In this case we expect T ≪ 1, thus, the non-

perturbative effects are suppressed only assuming the gauge kinetic function to depend on

some extra modulus M , having no transformation under the anomalous U(1)X . Since M

is invariant under a U(1)X transformation, it does not enter in the D-term, its dynamics is

not constrained by gauge invariance, and it is reasonable to assume some hidden dynamics

to stabilize it at high scale and large vev. In this way, the net effect of M is a small

prefactor a in front of the instantonic superpotential term. Given the Kähler potential

K =
1

2
(T + T̄ − δGSV )2 + S†e−2V S , (2.18)

the SUSY conditions can be rewritten as

D = −|S|2 − δGS

2
(T + T̄ ) = 0, e−K/2FS = ae

2|S|2

δ2
GS (1 + |S|2) + S̄W0 = 0, (2.19)

where we assume δGS < 0, and we neglected the imaginary parts of T and S. Thus, under

the assumption S ≪ 1 we find viable SUSY solutions only for a ≪ W0: S ∼ −a/W0.

In other words, in case a ≪ W0 a SUSY solution is present at S ∼ −a/W0. Moreover,

in the limit a ≪ W0 it’s easy to check that any non-SUSY minimum eventually present,

with S ≪ 1, cannot be uplifted, since FS , FT ≪ m3/2. Thus, the only viable regime of

the parameters is a ≫ W0, but in such a case the requirement S ≪ 1 forces FS ≫ m3/2.

This implies that no cancelation between FS and W is possible, so that the cosmological

constant is set by the FS value to be larger than the gravitino mass. Of course, one could in

principle hope a viable SUSY breaking minimum to be present in case a ∼ W0, where the

problems raised above could be absent. On the other hand, it is unreasonable to expect

such a minimum for small values of 〈S〉. Indeed, assuming a ≪ 1 we see that the D-

term contribution will fix S close to the modulus vev (or vice-versa), plus O(a) corrections.

Replacing this in the other equation we essentially get just an algebraic function with order

one parameters, multiplied by an overall energy scale a2. Thus, no extrema exist at small

S (as it can also be checked by direct inspection).

Extensions to a generic number of moduli fields. A natural extension is to consider

more than one modulus to be charged under the anomalous U(1)X . Let us consider n

moduli Ti, i = 1, . . . n with Kähler potential4

K = −
∑

i

pi log(Ti + T̄i − δiV ) , (2.20)

4 In the case in which the moduli are all “twisted” we get results similar to the single twisted modulus

case.
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the superpotential

W = W0 + ae−
P

i biTiS (2.21)

with
∑

biδi = 2 and the D-term

D = −|S|2 +
∑

i

piδi

2

1

Ti + T̄i
, (2.22)

while the F -terms are

e−K/2FS = S̄W + ae−
P

i biTi ,

e−K/2FTi = − pi

Ti + T̄i
W − abi e−

P
i biTiS . (2.23)

A SUSY solution is present if we have all F-terms equal to zero. Thus, we can replace the

condition FS = 0 in the other conditions and find

pi

Ti + T̄i
= bi |S|2 . (2.24)

These conditions, that also imply D = 0, fix the real parts of Ti as functions of S. Thus,

neglecting the Ti phases, we can replace them in the eq. FS = 0 to find

S̄ W + ae
−

P

i pi
2|S|2 = 0 , (2.25)

that is, de facto, the same condition found in the single (untwisted) modulus case, having

solution in all the reasonable regimes for W , and with the same (negative) implications for

what concerns the issue of gauge mediation dominance.

A natural “complication” arising in the presence of more than one modulus is the

presence of extra instantonic effects, so that

W ⊃
∑

j

e−
P

i αj
i Ti , (2.26)

with
∑

αj
i δi = 0 for each j, due to gauge invariance. Such new terms can have an important

rôle in the stabilization of the moduli fields, but it is clear that the F-term equations will

be generically solvable, and we expect a generic model to have a SUSY minimum in some

viable parameters region. Of course, in very specific models the minima could be located at

unacceptable values of the moduli fields, and extra SUSY breaking minima could be present.

On the other hand, in such a case it would be precisely the moduli sector the main actor and

the most interesting part of the whole SUSY breaking mechanism. In such a generalization

one could hope to avoid the constraint of eq. (2.25), and fix the moduli so to have a small

induced FI term without destroying the instantonic effect breaking SUSY. Such a model

would be a good candidate for a model realizing gauge mediation in a realistic string model.

2.3 Fayet-O’Raifeartaigh models

The simplest model in this class is again based on a U(1)X gauge symmetry with a O’R

like superpotential

W = W0 + φ−−(λ1φ
2
+ − m2e

− 4T
δGS ) + λ2 χ−−φ2

+ ,
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K = φ†
+e2V φ+ + φ†

−−e−4V φ−− + χ†
−−e−4V χ−− + K(T + T̄ − δGSV ) ,

D = −2 |φ−−|2 − 2 |χ−−|2 + |φ+|2 −
δGS

2
∂T K . (2.27)

It is easy to check that in the supersymmetry breaking vacuum, we have

F̄φ+ = 0 F̄φ−− = −λ2

λ1
F̄χ−− = − λ2

2m
2
0

λ2
1 + λ2

2

D = 0 (2.28)

|φ+|2 =

∣∣∣∣
λ1m

2
0

λ2
1 + λ2

2

∣∣∣∣ |φ−−|2 =
λ2

2

λ2
1

|χ−−|2 =
1

2

(
ξ2
FI +

∣∣∣∣
λ1m

2
0

λ2
1 + λ2

2

∣∣∣∣
)

λ2

λ2
1 + λ2

2

where we have defined ξ2
FI = − δGS

2 ∂T K and m2
0 = exp(K/2)m2 exp(−4T/δGS). About the

chance of having gauge mediation dominance, we observe that

∣∣∣∣
Fφ−−

φ−−

∣∣∣∣
2

=

∣∣∣∣
Fχ−−

χ−−

∣∣∣∣
2

=
2λ2

2m
4
0(

λ2
1 + λ2

2

) 1

ξ2
FI +

∣∣∣ λ1m2

(λ2
1+λ2

2)

∣∣∣
<

6m2
3/2

ξ2
FI

. (2.29)

Once again, the only possibility to have pure gauge mediation requires ξ2
FI ≪ 1, but this

is incompatible with moduli stabilization, at least in case we have a single modulus with

logarithmic Kähler potential.

2.4 Fayet-Iliopoulos and Fayet-Polony models

The simplest generalization of the basic Fayet-Iliopoulos model is described by an U(1)X
gauge symmetry and two charged fields φ±, plus a mass term:

W = W0 + e−Mφ+φ− ,

K = φ†
+e2V φ+ + φ†

−e−2V φ− + K0(M + M̄) + K(T + T̄ − δGSV ) ,

D = |φ+|2 − |φ−|2 −
δGS

2
∂T K , (2.30)

where the last term is the field-dependent FI parameter. Under gauge transformations, the

various fields transform as

V → V + Λ + Λ̄, φ± → e∓2Λφ± ,

T → T + δGS Λ. (2.31)

Since T is (nonlinearly) charged under U(1)X whereas the operator φ+φ− is neutral, the

instantonic action generating the mass term m ∼ e−M cannot depend on T , but it should

depend on another, U(1)X neutral modulus (or linear combination of moduli) M . The con-

stant W0 in (2.30) was added for two reasons. First, it will help to adjust the cosmological

constant to zero in a supergravity framework. Secondly, as well-known, it also plays an

instrumental role in moduli stabilization. This model has the feature that, if the moduli

fields are assumed to be stabilized, in the rigid (global) limit it reduces to the FI model

of supersymmetry breaking. From the point of view of moduli stabilization, however, the

model (2.30) is not very satisfactory, since there are two moduli fields, M and T to sta-

bilize. Whereas M could be stabilized by string theory fluxes, along the lines of [18] and

simultaneously generating W0, T cannot be stabilized without further dynamics.
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A more viable model is what we could call a Fayet-Polony model, with the same Kähler

potential and D-term as in (2.30), whereas the superpotential is

W = W0 + e−Mφ+φ− + e−2qT/δGSφq
− . (2.32)

The powers q are selected such that 2qT/δGS represents an integer of the instanton action.

By assuming as above that M is stabilized by fluxes (or that the mass m = exp(−M) is

generated by field-theory nonperturbative dynamics), this model was analyzed in detail

in [4] for the case of the volume-type T modulus

K = −3 log(T + T̄ − δGSV ) . (2.33)

Strictly speaking, only q = 1 corresponds to a linear, Polony-like term, but since φ− tends

to compensate the FI term and to get a large vev, the dynamics of the model is not

qualitatively different for q = 1 and q 6= 1. It is conceptually transparent that in a model

like (2.32) moduli stabilization cannot be ignored. First of all, the modulus mass T has a

mass that, for large FI term is parametrically smaller than the mass of φ− so cannot be

consistently integrated out. Secondly, even if this could be possible, freezing out T in (2.32)

gives a gauge non-invariant lagrangian. The computation of any physical quantity done in

this way differs considerably from the computation done by keeping the modulus dynamics.

In the following sections of the present paper we show that only a moderate dominance is

possible in very specific regions of the parameter space.

2.4.1 SUSY minima in the Fayet-Polony model

We think the modulus M stabilized at high energy5 and replace it with a constant m = e−M

in the model (2.32). A complete analysis of the vacuum structure of this model has already

been done in [4] and extended in the next sections. Here we explicitly show the role of the

parameter m in determining the presence or the absence of the supersymmetric solution.

For example, the relation between F-terms and D-term in the case q = 1, reads

φ+F+ − φ−F− − δGS

2
FT = D m3/2 . (2.34)

It is then enough to search for solutions of the following equations

e−K/2F+ = mφ− + φ̄+W = 0 ,

e−K/2F− = mφ+ + ae−2T/δGS + φ̄−W = 0 ,

D = |φ+|2 − |φ−|2 −
δGS

2
∂T K = 0 . (2.35)

It is straightforward to see that the model has a possible SUSY vacuum for

φ+ = − m̄

W̄
φ̄− ,

φ− =
ae−2T̄ /δGS W

|m|2 − |W |2 ,

∂T K =
2

δGS

|ae−2T̄ /δGS |2
(|m|2 − |W |2) . (2.36)

5Note that this is possible only because the modulus M can decouple from the dynamics of the U(1)X

sector.
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However, the last equation shows that, depending on the sign of ∂T K, a solution is allowed

in different regions of the parameters space. In particular, focusing on the case of a standard

Kähler modulus T (2.33), the equation

− 3

T + T̄
=

2

δGS

|ae−2T̄ /δGS |2
(|m|2 − |W |2) (2.37)

admits sensible physical solutions only for m ≪ W . This agrees with the limit m → 0,

recovering the gauged Polony model discussed above. However, choosing m ≫ W0 and

requiring φ+, φ− ≪ 1, is enough to assure that no SUSY solution exists: this is actually

the case studied in the rest of the paper. Note that the condition m ≫ W0 is also the same

assuring the uplifting of the SUSY breaking vacuum.

The crucial point is that now, since the dynamics of the modulus T is really decoupled

from the U(1)X sector, with the new parameter m in the model we can create a hierarchy

in the mass scales and SUSY can be spontaneously broken.

2.4.2 Gauge dominance in the Fayet-Polony model

As we will show later in section 4, in the metastable SUSY breaking minimum

Fφ+ ∼ m3/2 , Fφ− ∼ m3/2 ξFI (2.38)

φ− ∼ ξFI , φ+ ∼ φ2
− ∼ ξ2

FI, (2.39)

with

ξ2
FI ≡ −δGS

2
∂T K (2.40)

so that
F−
φ−

∼ m3/2 ,
F+

φ+
∼

m3/2

ξ2
FI

. (2.41)

Thus, the SUSY breaking field is φ+, the field S using the notation introduced before.

What is specific of our model is that S is not set to ξFI, but rather to ξ2
FI, and even in

presence of a “not-so-small” FI term we have a reasonable enhancement of gauge mediation.

In our case the minimization fixes ξFI . 10−1, and some dominance of gauge mediation is

possible, as we show later in some more detail.

From this we see that the last model is qualitatively better than the others discussed

in the rest of the section: it is the simplest model with one modulus where it is possible

to have a (meta)stable SUSY breaking vacuum, with the gravitino mass much larger than

the cosmological constant, tunable to small values, for vev’s of the fields falling in the

region where the SUGRA regime can be trusted. This is partially since, after modulus

stabilization, it seems hard to get a dynamically small FI term. Our results suggest that

strong dominance of gauge mediation in the present setup necessarily request a multi-

moduli setup with a non-trivial dynamics, which is beyond the goals of the present work.

In what follows, after a brief summary of general facts about gauge mediation of SUSY

breaking in the presence of non-zero D-terms (such as in our model), we turn to a detailed

study of the microscopic and phenomenological properties of this model.
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3 Gauge mediation: standard and non-standard contributions

Gauge mediation can be defined perturbatively as containing some messenger fields Mi, M̃i,

vector-like with respect to the SM gauge group, coupling to some chiral SUSY breaking

fields Sa, and eventually charged under the possible U(1)X factors present in the SUSY

breaking sector. The messengers are defined to couple directly only to Sa via couplings as

Wm = Mi (λijaSa + µij) M̃j , (3.1)

where λija and µij are fixed by hidden sector U(1)X gauge invariance constraints. It is

convenient in what follows to consider matrices in the messenger space λ̂a and µ. Non-

renormalizable couplings to Sa are also possible, but they do not change the conclusions

of the present discussion. Let us start the discussion for simplicity with one field S, and

µ = 0. The contributions to the soft terms from the messengers are encoded in their mass

matrix and in particular in the value of its eigenvalues and supertrace. The scalar mass

matrix for a couple of messengers generically coupled to a superfield S with a coupling λ,

and with charges q, q̃ under U(1)X is

M2
0 =

(
λ2〈S〉2 + qg2

XD λFS

λFS λ2〈S〉2 + q̃g2
XD

)
(3.2)

where D is the D-term of U(1)X , g2
X its coupling constant and FS the auxiliary field of S.

It is well-known (but sometimes overlooked) that in the presence of D-term contribu-

tions in the hidden sector, that are generic in string theory constructions, there are some

constraints and ingredients to take into account:

• The absence of the one-loop induced Fayet-Iliopoulos term ξY for the hypercharge

imposes the condition [19]

ξY ∼ Tr

(
Y

∫
d4k

(2π)4
1

k2 + M2
0

)
= 0 , (3.3)

where M2
0 is the scalar messenger mass matrix. Notice that the condition (3.3) is

stronger than the absence of the logarithmically divergent piece6

(Tr Y M2
0)mess ∼ (Tr Y X) 〈D〉 = 0 , (3.4)

where X is the generator of the hidden sector U(1)X , that is equivalent to the absence

of mixing between hypercharge and U(1)X . A sufficient (but not necessary) condition

which satisfies (3.3) that we will use in the rest of the paper, is to consider vector-like

(with respect to the SM gauge group) messenger fields with equal U(1)X charges q = q̃

U(1)Y U(1)X
M y q

M̃ −y q

(3.5)

6The quadratic divergence cancels since TrY = 0.
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where we displayed only the abelian charges of the messenger fields M,M̃ . Notice

that having vector-like messenger fields with respect to all gauge groups, i.e. charges

(y, q) for M and (−y,−q) for M̃ does generate a FI term for the hypercharge which

phenomenologically, if non-zero, has to be very small. Some recently proposed string

models with supersymmetry breaking and gauge mediation [3] fall into this category

and could therefore be phenomenologically problematic.

• If (Str M2)mess 6= 0, there are new contributions to the MSSM scalar masses

(but not to the gaugino masses) [4, 20]. They can generate phenomenological

problems [20] or, on the contrary, in a well-defined theory containing gravity, can

generate an original compressed low-energy spectrum, with squarks lighter than

sleptons at high energy [4]. These new terms are proportional to7

∑

i

(StrM2)mess,i log
Λ2

m2
f,i

∼
∑

i

(Tr Xi) log
Λ2

m2
f,i

g2
X〈D〉 , (3.6)

where i labels vector-like messengers and mf,i are the messenger fermionic masses.

More details about this formulae can be found in the appendix A2.

For one messenger pair of charge q = q̃, the two eigenvalues of (3.2) are given by:

m2
− =

[
(λ〈S〉)2 + qg2

XD
]
− λFS , m2

+ =
[
(λ〈S〉)2 + qg2

XD
]
+ λFS , (3.7)

whereas the fermion mass is given by:

mf = λ〈S〉 . (3.8)

The supertrace is then

(StrM2)mess. = 2q g2
X D 6= 0 . (3.9)

By standard gauge-mediation type diagrams, gaugino masses are induced at one-loop,

whereas scalar masses are induced at two-loops. However, as explained above, in the

presence of a non-vanishing supertrace for the messengers, the computation of the scalar

masses is slightly different compared to the standard gauge-mediation models [20]. In

particular the result is not anymore UV finite, there is a logarithmically divergent term.

Whenever we are interested in a predominantly standard gauge mediation spectrum,

in addition to the well-known condition

MGM ≫ m3/2 (3.10)

where MGM is the typical scale of the soft terms in standard gauge mediation, the vanishing

of the two additional contributions (3.3), (3.6) has to be imposed. On the more quantitative

level, standard gauge mediation contributions dominate over non-standard ones (3.6) for

M2
GM ≫ (Tr X) 〈D〉 . (3.11)

7 Notice that
P

i Str M2
mess, i ≡ Str M2

mess = 0 is not enough to guarantee the absence of non-standard

contribution.
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Whereas a small value of the induced FI term for the hypercharge (3.3) and some

of non-standard contributions (3.6) can be allowed, their complete absence entails the

following simple constraints

∑

i

(Tr Xi) log
Λ2

m2
f,i

= 0, T r

(
Y

∫
d4k

(2π)4
1

k2 + M2
0

)
= 0 . (3.12)

The first equation reduces to TrX = 0 in the limit of equal messenger masses.

4 A class of hybrid models

We have constructed in section 2 a model breaking supersymmetry in the ground state, with

hierarchically small SUSY breaking scale and uplift of vacuum energy to zero. Since we

are mainly interested in the gauge versus gravity mediation transmission, we add now the

most general messenger sector. We exclude U(1)X charges for MSSM fields, since otherwise

large soft masses are generated through the D-term potential.8 In [4], we considered only a

minimal messenger sector, non-chiral with respect to the MSSM gauge group, and having

positive U(1)X charge. In that case, the phenomenology of the model was characterized by

a strong competition between modulus/gravity mediation and non-standard GMSB. In the

present generalization we enlarge the standard GMSB contribution, and make (marginal)

contact with models of pure GMSB.

The fields that are relevant in our construction are T , Φ− and Φ+, as introduced

above, and a set of N∗ messengers (M̃(∗)i) M(∗)i in the (anti)fundamental representation of

SU(5), with ∗ = positive (ni/2), negative (−mi/2), and zero U(1)X charge. We consider T

to have Kähler potential −3 log(T + T − δGSV ), and all the other fields to have canonical

kinetic terms. Anomaly cancelation sets a mild constraint on the U(1)X charges. The exact

constraint depend on the details of the MSSM gauge kinetic functions fa = const+ca T . In

what follows we take ca = c in order to obtain unification, and so the sign of the difference

between the number of the positively and negatively charged messengers is fixed by

Σ
N+

i=1ni − Σ
N−

j=1mj ∼ c . (4.1)

Working in Planck units, we introduce the superpotential

W = W0 + ae−bT Φq
− (Φ+Φ−)p + mΦ+Φ−

+Σ
N+

i=1λ(+)iΦ
ni
− M(+)iM̃(+)i

+Σ
N−

j=1λ(−)jΦ
mj

+ M(−)jM̃(−)j

+ΣN0
r=1

[
µr + λ0r (Φ+Φ−)lr

]
M(0)iM̃(0)i (4.2)

In what follows we briefly motivate the superpotential terms introduced above, and explain

why extra terms, allowed by the symmetries, can be neglected. In detail, W0 is what re-

mains after integrating out the moduli stabilized at high energy (e.g. the complex structure

8In principle one possibility is to give a charge to the first two generations only, in order to keep some

light superpartners and to minimize the electroweak fine-tuning [21]. However, the large hierarchy between

these two generations of squarks and the third one can generate other problems like for example a tachyonic

direction for the third generation after the RGE flow towards low-energy [22].
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moduli in a type IIB flux compactification), and can be (unnaturally) small with respect

to the Planck scale; the term e−bT Φq
− (Φ+Φ−)p is due to a condensating sector coupled

to the fields Φ− and Φ+, after hidden sector meson fields have been integrated out. In

principle we should include also terms like ηn (Φ+Φ−)n with n > 1. However, we assume

them to be irrelevant, as it is the case if their origin is allowed only at nonperturbative

level for n < n0 due to some discrete symmetry. Indeed the small value of the parame-

ter m, needed for the stabilization and uplifting procedure, is naturally explained in this

framework. Nonetheless, if n0 is big enough9 the contributions from this kind of term

for n ≥ n0 will be suppressed due to the smallness of 〈Φ+Φ−〉n. Finally, we avoid also

gauge invariant terms coupling the messengers with negative charge to the modulus, as for

example e−bT M
q
2
−M̃

q
2
− , since they do not change neither the minimizations procedure nor

the phenomenological results.

Mixing terms between messengers with opposite charges, like for example
[
λ (Φ+Φ−)k − µ

] (
M−M̃+ + M+M̃−

)
, (4.3)

could be more problematic and we discuss it in the section (4.1.3).

As we will see in the rest of the section, the presence of the new terms in the superpo-

tential with respect to the case [4] implies different problems and possibilities, concerning

the stability of the phenomenologically interesting vacuum and the mass spectra.

4.1 Vacuum structure of the model

The potential of the model is computed given: (i) the D-term potential

VD =
4π

T + T


|Φ+|2 − |Φ−|2 +

1

2

N+∑

i=1

ni

(
|M(+)i|2 + |M̃(+)i|2

)

− 1

2

N−∑

i=1

mi

(
|M(−)i|2 + |M̃(−)i|2

)
+

ξ2

T + T




2

, (4.4)

where ξ2 = 3δGS/2 is related to the ξFI introduced above as ξ2 = ξ2
FI(T + T ), and we

considered for concreteness a gauge kinetic fU(1)X
= (T/2π) (more general gauge kinetic

functions fU(1)X
= f0 + f1T do not change qualitatively our analysis below). (ii) the

superpotential of eq. (4.2), and (iii) assuming for simplicity canonical kinetic terms for the

Φ and messengers fields and the standard K = −3 log(T + T ) Kähler potential for the

modulus T . We observe that a more general Kähler potential for the Φ and messengers

fields would not affect sensibly the form of the potential around the relevant metastable

minimum, where these fields have small, or zero, vev’s.

The minimization of the complete potential is a complicated problem. We face it

in two separate steps: we first consider the minima where all the messengers have zero

vev’s. These minima are the only ones we consider for phenomenology, since a vev for a

messenger would induce an undesired breaking of the SM gauge symmetry. In the second

9Roughly speaking, this value will be greater than log(m)/log (〈Φ+〉 〈Φ−〉).
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step we consider the metastability of these minima, by studying the possible extrema with

non-zero messenger vev’s, and show that these extra vacua are “far enough” to ensure the

metastable vacuum to be long lived. Notice that for the minimal model [4], the SUSY

breaking vacuum was the absolute ground state. The new instabilities we are discussing

here appear due to the new messengers M0 and M−.

4.1.1 The metastable vacuum

Since the messenger fields cannot appear linearly in the potential, the point M = 0,

M̃ = 0, ∂Φ+V = 0, ∂Φ−V = 0, ∂T V = 0, is an extremum of the potential. Thus, an

effective approach to the minimization is to consider the locus M = 0, M̃ = 0, minimize the

reduced potential w.r.t. the other fields, and then check the mass matrix for the messengers

to ensure that the extremum is actually a minimum. The reduced potential has the form

V =
e−2bt

(2t)3

[
1

3

∣∣∣a(3 + 2bt)Φq
−(Φ−Φ+)p + 3ebT (W0 + mΦ−Φ+)

∣∣∣
2

(4.5)

+
∣∣∣aΦq−1

− (p + q + |Φ−|2)(Φ−Φ+)p + ebT (W0Φ̄− + mΦ+(1 + |Φ−|2))
∣∣∣
2

+
∣∣∣aΦq+1

− (p + |Φ+|2)(Φ−Φ+)p−1 + ebT (W0Φ̄+ + mΦ−(1 + |Φ+|2))
∣∣∣
2

−3
∣∣∣ebT (W0 + mΦ−Φ+) + aΦq

−(Φ−Φ+)p
∣∣∣
2
]

+
2π

t

(
ξ2

2t
− |Φ−|2 + |Φ+|2

)2

where we have neglected, in the prefactor eK the terms e−|Φ−|2−|Φ+|2 since we expect the

vev’s of the Φ fields to be small, and we defined 2t = T + T̄ .

The minimization can be done along the lines of [4]: in the p = 0 case, we have

Fφ+ ∼ eK/2mφ− ≫ Fφ+ , FT (4.6)

with in particular the contribution of the modulus F-term parametrically described by

ǫ̃ =
√

F T FT
F+F+

= 4+3q
2bt . Therefore uplifting requires Fφ+ =

√
3m3/2 and thus W ∼ W0 in

the minimum, while

φ2
− ∼ ξ2

FI ∼
3q

2bt
, φ+ ∼ −φ2

−/
√

3 ∼ −
√

3q

2bt
(4.7)

and t being implicitly given by bte−bT ∼ 3W0/2aφq
−. We can also link the value of the

fields to some phenomenological quantities, such as bt = log
(
m−1

3/2

)
+ κ where κ ∼ O(1).

Using the notation of section 2, the SUSY breaking field S must be identified with φ+, and

FS

S
≡ Fφ+

φ+
∼ m3/2

S
(4.8)

with S ∼
√

3q
2bt ≪ 1. On the other hand

Fφ−

φ−
∼ m3/2 . (4.9)
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Figure 1. Minimum for the potential reduced as a function of φ+ and t only, φ
−

having been

stabilized at
√

3q/2bt by its e.o.m. (substantially dominated by the D-term potential). The plot

on the left is made for W0 ∼ −4 × 10−13, p = 0, b = 1/2, a = 1, q = 1, and shows the presence of

an uplifted minimum (the uplifting is guaranteed by choosing the parameter m ∼
√

3|W0|/|φ−
|) at

φ+ ∼ −φ2
−

/
√

3 ∼ 0.02, t ∼ 60 in MPlanck = 1 units. The plot on the right is made changing q = 1 →
q = 1/4, so that the minimum value of φ

−
is one quarter than previously, and t is slightly increased.

We also have a good numerical control over the minimum, since under the assumption

that e−bT , W0, m ≪ 1, the derivatives of the potential are dominated by the D-term con-

tribution, and thus the field φ− is frozen by the requirement of a small D-term. In other

words, we can consider the e.o.m. for φ−, and study the potential on the locus ∂φ−V = 0.

Such a reduced two-field problem can be easily approached numerically, finding good agree-

ment with the analytic results. In particular, on the left hand side of figure 1 we consider an

uplifted minimum with p = 0, q = 1, b = 1/2, a = 1, and W0 ∼ −4×10−13, so that m3/2 ∼
4×10−16 (all the dimensionfull quantities are in Planck units); in this case the analytic study

would fix φ− ∼ 0.22, φ+ ∼ −0.029, t ∼ 60, in a very good agreement with the numerical

outcome. On the right hand side of figure 1, instead, we show the q = 1/4 case, keeping the

other parameters at the same values. One can see that, as analytically computed, the value

of φ+ at the minimum is now roughly 1/4 than before, and the value of t slightly increases.

If p > 0 an analytic study of the minimum is much harder, but we can still approach

the problem numerically, as explained above. We obtain, in the p = 1 case, that the value

of φ− doubles due to a dramatic growth of φ+, so that φ+ ∼ φ−, while the value of t

slightly decreases (see figure 2 for the minimization in the case W0 ∼ −4× 10−13, b = 1/2,

a = 1, q = 1 and m ∼
√

3|W0|/|φ−| to ensure the uplifting of the minimum).

The minima we found are consistent and (meta)stable provided that the messenger

fields, that we assumed to have zero vev, have positive masses. This can be always ensured,

by properly choosing the various messenger couplings. On the other hand, the absence

of tachyonic modes for the messengers is much weaker than the requirement that the

messenger masses are phenomenologically viable. Thus, we postpone the study of the

phenomenological bounds on the messenger couplings to the following sections.
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Figure 2. Minimum for the potential reduced as a function of φ+ and t only, φ
−

having been

stabilized by its e.o.m. (substantially dominated by the D-term potential). The plot is made for

W0 ∼ −4 × 10−13, p = 1, b = 1/2, a = 1, q = 1, and shows the presence of an uplifted minimum

(the uplifting is guaranteed by choosing the parameter m ∼
√

3W0/φ
−

) at φ+ ∼ 0.1, t ∼ 54 in

MPlanck = 1 units.

4.1.2 Lifetime of the metastable vacuum

In this section we consider the metastability of the vacuum by studying the other possible

vacua that can be present in case we allow the messenger fields to get non-zero vev’s.

Our aim is to prove that the probability decay is very small, the latter being given, in

the semiclassical case and in the triangular approximation [23], by e−Sb , Sb = (∆Φ)4/∆V ,

with ∆Φ the typical variation of the fields in passing from a metastable minimum to a

stable one, and ∆V being the corresponding variation of the potential. We approach this

problem in a simplified version, assuming that only one messenger field develops a vev, and

we distinguish the three cases in which such a field (i) is neutral (ii) has positive charge,

(iii) has negative charge; moreover, we consider here only the rigid SUSY case, neglecting

the T -modulus field. This is reasonable since eventual minima in which the position of

T varies sensibly are harmless. Indeed, the only problem would be a strong decrease of

T , but in such a case we can estimate ∆V < e−bt/(2t)3, while ∆Φ ∼ ∆t. Thus, we have

Sb ∼ 8ebt(t0 − t)4t3 with t0 ∼ 102, and, assuming t ≪ t0, t > 1, we have Sb ≫ 1. In a

similar way, we can argue that any vacuum displaced from the metastable one by a large

change in the other fields is harmless for metastability. Indeed, since all the fields (but T )

enter polynomially in the superpotential, and have canonical kinetic terms, we can argue

that ∆V ∼ W 2
0 /(2t)3, thus Sb ∼ (∆Φ)4W−2

0 (2t)3 ∼ (∆Φ)41030 in our case. Thus, in what

follows we will consider as dangerous only minima where the field vev’s are very close to

the metastable case.

Neutral Messengers. In this case we consider the fields φ+, φ−, M(0), M̃(0) having

canonical Kähler potential. For these fields we take the superpotential (in the simple case

q = 1. The more general case q 6= 1 is similar)

W = mφ+φ− + (λ0φ+φ− + µ)M(0)M̃(0) + Λφ− . (4.10)
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That is a simplification of the general form given previously, in which we neglect the

constant term W0, irrelevant in the rigid case, and we introduce the constant term Λ to

mimic the term ae−bT . Introducing the D-term potential

VD =
g2

2
D2, D = φ2

+ − φ2
− + ξ2

FI , (4.11)

we can compute the rigid potential. With this at hand we can first check the extremum at

zero messenger vev’s, i.e. our metastable minimum. We find

φ2
− ∼ ξ2

FI, φ+ ∼ − Λ

2m
, (4.12)

in qualitative agreement with the study described above including all the SUGRA correc-

tions. The obtained φ+ value is only an order of magnitude estimate, but we will see that

this is more than enough for our purposes. We can now consider the extra solution in

the presence of non-zero messenger vev, looking for solutions “close” to the previous one.

In particular, assuming φ+ ≪ φ− and φ2
− ∼ ξ2

FI, we find that the e.o.m.’s admit a single

solution, in the µ = 0 limit, for

φ2
− = ξ2

FI, φ+ = 0, M(0)M̃(0) = −m

λ0
. (4.13)

We see that this solution is distinct from the previous one. Therefore, even assuming large

SUGRA corrections, we expect ∆φ+ ∼ Λ/m, big enough to ensure a long-lived metastable

vacuum. This result is stable against perturbations due to the presence of a non-zero µ,

as long as µ remains small enough. For large µ, on the other hand, the minimum (4.13)

disappear altogether.

Negative charge messengers. In this case we consider the fields φ+, φ−, M(−), M̃(−)

having canonical Kähler potential and superpotential

W = mφ+φ− + λ+φ+M(−)M̃(−) + Λφ− , (4.14)

motivated as above. We took for illustration messenger charges −1/2; again the result is

qualitatively similar for other negative charges. The F- and D-terms are

D = |φ+|2 − |φ−|2 −
1

2
|M(−)|2 −

1

2
|M̃(−)|2 + ξ2

FI ,

Fφ+ = mφ− + λ+M(−)M̃(−), Fφ− = mφ+ + Λ, (4.15)

FM(−)
= λ+φ+M̃(−), FfM(−)

= λ+φ+M(−).

In case we neglect the Λ corrections, a SUSY minimum is present at φ+ = 0, with the vev’s

of φ− and M(−), M̃(−) fixed by the D = 0 and Fφ+ = 0 conditions. The minimum is actually

a one-dimensional flat direction in the φ−, M(−), M̃(−) space, that can be dangerously close

to the metastable minimum only in case the messengers have similar vev’s (if an hierarchy

is present, then the value of φ− is significantly smaller than in the metastable vacuum,

and thus we do not expect a fast decay of the latter in the new minimum). We can thus
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study the most problematic case M(−) ∼ M̃(−) = M . In this case, fixing φ− via the F-term

condition, we have the requirement

λ2
+

m2
|M |4 + |M2| = ξ2

FI, (4.16)

that has solution M2 ∼ ξ2
FI for λ+ ≪ m, and M2 ∼ ξFIm/λ+ for λ+ ≫ m. The first (as

well the “intermediate” case λ+ ∼ m) is harmless, since the new vacuum is “far” from the

metastable one. A possible problem may arise in case λ+ ≫ m, since the variation of the

messenger fields vev in this case is very small. In such case, we argue that the vev φ+ varies

sensibly, such that the new vacuum is “far” enough from the metastable one, that remains

long lived. In order to have an estimate of φ+ in the new minimum, we have to introduce

the Λ corrections that, in the metastable case, lead to φ+ ∼ −Λ/2m. In the present case

we can use the e.o.m. and observe that, in the approximation λ+ ≫ m, φ+ is stabilized

at values much smaller than Λ/2m. In other words, φ+ is stabilized due to a different

mechanism then before. Indeed, in the presence of a non-zero messenger vev, we observe

a tension between the Fφ− = 0 and the FM− = 0 conditions, not present in the metastable

case, that pushes φ+ to smaller values. Thus, we expect this solution for φ+ to be distinct

from the metastable solution, even when considering the whole SUGRA potential, so that

∆φ+ ∼ Λ/m, big enough to ensure the metastable minimum to be long lived.

Positive charge messengers. In this case it was checked in [4] that no dangerous

new vacua are present. This provides an interesting example of a messenger sector that

introduces no dangerous minimum breaking charge/color. On the other hand, that model

does not realizes a standard GMSB transmission, but a combination of gravity and non-

standard gauge contributions.

4.1.3 Constraints and assumptions for messengers

Important constraints have to be imposed on the messengers sector from consistency re-

quirements of the theory, but also from a phenomenological point of view. These con-

straints concern in particular the number of the messengers, the relation between their

relative charges and their couplings to the supersymmetry breaking fields Φ+ and Φ−.

As discussed above, the only constraints on the numbers and charges of messengers

coming from the anomalies, is determined by the relation

Σ
N+

i=1ni − Σ
N−

j=1mj = c , (4.17)

where c is dictated by the peculiar expressions for the gauge kinetic functions . Therefore, in

particular, in the simplest case where all the charges are (±q) and c > 0, the relation (4.17)

is translated in N+ − N− > 0.

Nonetheless, it is well known [1] that whereas the presence of messenger fields at an

intermediate scale does not modify the value of MGUT, the inverse gauge coupling strength

at the unification scale MGUT receives extra contributions

δα−1
GUT = − N

2π
log

(
MGUT

mf

)
, (4.18)
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with N the number of messengers (when all of them are in the fundamental representation

of SU(5)) and mf their supersymmetric (fermionic) mass. Therefore there is an upper

bound on the total number of messengers given by the request of perturbativity of gauge

interaction up to the cutoff scale of the model, and depending on their mass scale. Thus a

conservative choice is

(N+ + N− + N0) log

(
MP

mf

)
< 150 , (4.19)

in the approximation that all the messengers are at the same scale mf . Moreover, this is

also a necessary condition in order to be able to do a phenomenological numerical analysis.

In fact, if some messengers appear at low-energy scale, and others at high-energy, the

dynamics at intermediate scale is governed not only by the MSSM fields, but also by the

low-energy messengers. This complicate the RG flow equations of the theory and makes

the model difficult to study, since the precise results really f depend on the details of the

model. Therefore, for simplicity, during our analysis we assumed all the messengers having

in first approximation the same high-energy supersymmetric mass (of the order of the GUT

scale), since in this way they do not change the RG flow equations for soft terms.

However it is useful to discuss in any case the limits on the couplings λ. Referring to

the minimization procedure in the case p = 0, we can write the conditions that couplings,

or equivalently, the supersymmetric masses have to satisfy in order to keep the minimum

stable and do not introduce tachyonic directions. This condition comes from requiring

positive eigenvalues for the mass scalar matrix (3.2).

It is easy to see that for the messengers with positive U(1)X charges, the eigenvalues

are automatically positive once reasonable charges are imposed.

The conditions for the negatively charged and neutral messengers read instead

(mf )j = λ(−)j |Φ+|mj >
√

3mj|Φ+|−1

(
1 +

|Φ+|
2
√

3mj

)
m3/2 ≃ 102mjm3/2 (4.20)

(mf )r = λ(0)r|Φ+Φ−|lrcr > lr

(∣∣∣∣
F+

Φ+
+

F−
Φ−

∣∣∣∣
)

≃ 102lrm3/2 . (4.21)

Therefore, the limits imposed by consistency are not stronger than those imposed by phe-

nomenology, which require messengers much heavier than the electroweak scale.

Finally, as introduced at the beginning of the section, we could in principle add to

the superpotential (4.2) terms of the form
[
λ (Φ+Φ−)k − µ

] (
a1M−M̃+ + a2M+M̃−

)
, if

there exists two couples of messengers with opposite U(1)X charge. Once diagonalized the

mass matrix for M+,M−, M̃+M̃−, it is possible to see that the picture is similar to that

of the neutral messengers, with the introduction of effective parameters like cr taking into

account sums and differences of masses. However in this case the masses are naturally

of the same order, or in other words these effective parameters cr can be very small and

generate tachyonic directions. The final result should then depend on the details of the

model. Therefore, in what follows we will forbid these terms for simplicity.
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5 Phenomenological consequences

In what follows we investigate the effects of supersymmetry breaking in the observable

sector, that we take to be the Minimal Supersymmetric Standard Model (MSSM). As

introduced above, the model described by the superpotential (4.2) modifies in a non

trivial way the results already obtained in [4], due to the presence of the messengers

with opposite and neutral charges. However, the main feature of the hybrid model is

preserved: gravity and gauge mediation give comparable contributions to the soft terms.

The non-universality in the scalar sector induced by gauge mediation, and the negative

non-standard contribution induced by D-terms have severe consequences on the mass

spectrum and relic density constraints.

5.1 General parameterization of Hybrid Models

The different contribution from the three mediation mechanisms (standard gauge, non-

standard gauge and gravity, see the appendix for details) can be parameterized by the

gravitino mass m3/2, and two dimensionless parameters α (defined in eq. (2.11)) and β

which measure the relative size of standard and non-standard gauge mediation contribu-

tions with respect to m3/2; by introducing them, we disentangle the microscopic description

of a hybrid model, given in section 4, from its phenomenological study. We can then write

the breaking terms:

Ma = m3/2

(
ǫ̃ + g2

aSQ α
)

m2
i = m2

0 + m2
3/2CiSQ

(
−β +

α2

N

)
, (5.1)

where SQ is the Dynkin index of the messenger representation (1/2 for the fundamental

representation of SU(N)), g2
a are the gauge couplings and Ci =

∑
a g4

aC
a
i , Ca

i being the

Casimir of the MSSM scalar fields representations (in our normalization the Casimir of

the fundamental representation of SU(N) is (N2 − 1)/(2N), that of U(1)Y is simply Y 2).

The gravitational contribution for the scalar fields is indicated here as m2
0, but it will be

taken equal to m2
3/2 in our analysis. The extra parameter ǫ̃ includes the effects of gravity

mediation for gauginos. Whereas the coefficient relating m2
0 and m2

3/2 is of order 1, we

will see in the following that ǫ̃ is instead of order O(10−1). N is the “effective” number

of messenger fields contributing to GMSB. Unlike the classical GMSB at low energy, the

mediation in the hybrid models occur around the GUT scale where the gauge contributions

to the gaugino masses Ma (proportional to their gauge couplings ga) are approximately

universal. Thus, the non-universality only affects the scalars masses. Concerning the

trilinear couplings Ai=t,b,τ , there is no 1-loop messenger contribution to the susy-breaking

trilinear terms. However Ai terms are generated in the leading log approximation by

the RG evolution and are proportional to gaugino masses. At GUT scale we will make

no assumption on the value of the trilinear couplings. They will be considered as free

parameters thorough the phenomenological study. The reader can find in the appendix the

explicit expression of the mass terms for each generation of squarks and sleptons.
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5.2 Link with microscopic models

The parametrization of eq. 5.1, and in particular the allowed values for the parameters

therein, is the main information with phenomenological relevance we extract from any

microscopic construction.

In the high-energy model defined by the superpotential (4.2), after the minimization

procedure shown in the section (4.1.1), in the first approximation it is possible to express

all these low-energy parameters in terms of m3/2 and the messengers masses and charges.

In a simplified case, where all the subleading contributions are neglected, all the

messengers are taken at the same mass scale mmess and couplings λi, all the charges

ni,mj , lr = 1, the mass parameter µr = 0 and, as before, p = 0, the correspondence is

ǫ̃ ≃ (4 + 3q)

2

[
log

(
1

m3/2

)
+ κ

]−1

,

N ≃ N− + N0 ,

α ≃
√

3N

8π2

1

〈φ+〉
≃ N

4π2 q

[
log

(
1

m3/2

)
+ κ

]
,

−β ≃ 3

(8π2)2
1

〈φ−〉2
c

[
1 − log

(
Λ2

UV

m2
mess

)]

≃ 1

32π4 q

[
log

(
1

m3/2

)
+ κ

]
c

[
1 − log

(
Λ2

UV

m2
mess

)]
, (5.2)

where anomaly cancellation fixes c ≃ N+ − N−, c having been defined in eq. 4.1, and the

SUSY breaking field S has been identified with φ+. Moreover, β can be positive of negative;

in what follows we consider the most interesting case β > 0. Finally, κ is an O(1) parameter.

The qualitative picture does not change much in the most general case. Nonetheless in this

approximation we can estimate a reasonable range of values for these parameters in our

phenomenological analysis, imposing some constraint required by consistency, coming for

example from the link between the gravitino mass and α and β, or the constraints on the

numbers of messengers as discussed in section (4.1.3), depending on their mass.

In the models of sections 4,5 α can vary between 0 and O(100), β can vary between 0

and O(10). Thus we can describe/motivate a regime where gravity mediation is dominant,

one where standard gauge mediation is (marginally) dominant and an intermediate regime

where the model is truly hybrid.

5.3 Gravity vs. GMSB

Gauge mediation is dominant either by enlarging the number of messengers (indeed, α

grows linearly with N), or by choosing the microscopic parameters to fix the vev’s of

the fields with relevant F-term to small values. Moreover, we will consider ǫ̃ = 10−1 in

all our phenomenological discussion, in a qualitative agreement with the formula given

above. It is evident that for α ∼ 0, the exact value of ǫ̃ should be very important for the

numerical results.
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It is easy to see that in a large region of the parameter space the model is really

hybrid, in the sense explained in section 3. In that region, the parameters α, β,N and q,

are ∼ O(1), whereas ǫ ∼ O(10−1).

However, it is compelling to check if it is possible to obtain pure gravity or pure

standard gauge mediation in some corner of the parameter space.

Actually pure gravity mediation, or something undistinguishable from it, is obtained

when the parameters α and β are negligible. This happens for example when the total

number of messengers is small and in particular N ∼ 0 . In particular, the example

analyzed in [4] flows into this scenario by lowering the number of the positively charged

messengers or increasing their mass.

More difficult instead is to obtain pure standard gauge mediation, taking into account

the condition (4.19) and the minimization result 〈φ+〉 = −ξ2
FI/

√
3 =

√
3q/(2bt). The

requirements are then α2

N ≫ 1 but also α2

N ≫ β2. The following example illustrates the

limits we can reach. Take q = 1/5, ǫ̃ ∼ 1
15 and N = 15 and obtain:

〈φ+〉 ∼
1

400
, m3/2 ∼ 100 GeV α ∼ 75 β ∼ 1 . (5.3)

We are allowed to choose q at an apparently unnatural small value (1/5), crucial in order

to lower the 〈φ+〉 value, interpreting the coupling e−bT Φq in the superpotential as coming

from the condensation of a strongly coupled sector. In this case in fact, q ∼ Nf

Nc
with Nf and

Nc respectively the number of flavors and colors of such a nonperturbative theory [4, 10].

Lowering the value of the gravitino mass acts in the direction of increasing α. However,

while 〈φ+〉 (and then α) depends logarithmically on m3/2, the soft terms decrease propor-

tionally to the gravitino mass. Fixed all the other parameters, the phenomenology impose

therefore a lower limit for the value for m3/2. The resulting soft terms at high energy are

Ma & 1 TeV m2
i ∼ (1 TeV)2 (5.4)

Although the gauge to gravity contribution to scalar mass squared is only 100:1, the

diagonal entries (in flavor space) in the scalar mass matrix are enhanced by the RG evo-

lution to low energy, making in this way negligible the non-universal terms dangerous for

the FCNC problem [24].

However, after a more detailed analysis, described in the rest of this section, it is

possible to see that at low-energy, even if the FCNC problem is reasonably solved in the

squarks sector, it is still open in the sleptons one, as shown in table 1. Finally, another

possibility could be to decrease the factor cr coming from the contribution of neutral

messengers. For these fields we are in fact allowed to add an explicit mass term µr with

µr +λ(0)r(Φ+Φ−)lr ≪ 1, in order to enforce by tuning a light neutral messenger mass. The

net effect is the increasing of the gauge mediation contribution coming from this kind of

messengers; therefore α grows keeping fixed all the other parameters. However, one has

to be careful to not produce tachyonic directions in messengers directions (4.20), so this

possibility need to be investigated in more detail before concluding about its viability.

As last remark, whereas gauge mediation provides a natural solution to the FCNC

problem of supersymmetric theories, it has serious problems in generating the right order
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of magnitudes for the µ, Bµ mass parameters of MSSM. On the other hand, hybrid models

with a moderate gravity contribution (m3/2 ∼ 10− 100 GeV) can provide a viable solution

of the µ – Bµ problem [8, 25].

5.4 Predictions-general discussion

The main prediction of the class of models with anomalous U(1)X symmetry considered

in this paper is the existence of a lower bound on the vevs of the fields relevant for

supersymmetry breaking of order of 10−3 in the Planck mass units. This implies an upper

bound on the parameter α present in eq. (5.1) for the soft superpartner masses. The

bound on α also depends on the acceptable number of messengers consistently with the

gauge coupling unification. For necessarily heavy messengers N can be even around 20.

Both effects together give an upper bound on α of order of 100 and this has important

phenomenological consequences.

It is convenient to organize our phenomenological discussion into two cases, depending

on weather the LSP is neutralino or gravitino. Indeed, a quick look at eq. (5.1) tells us

that for α larger than ∼ 8, m3/2 . 2M1(GUT), implying m3/2 . M1(EW): for such values

of α, the gravitino is the LSP and the stable relic candidate.

Thus, in the region where neutralino is the LSP (small values of α), gravity media-

tion contribution to the soft masses remains important or can even be the dominant one.

The sfermion soft masses are then necessarily of the order of the graviton mass and, for

instance, the indirect limit on the stop mass following from the experimental lower bound

on the higgs mass implies gravitinos in the several hundreds GeV range. However, the new

element of models with anomalous U(1)X and messengers is the presence of non-standard

gauge mediation contribution to sfermion masses generated by D-terms. As already shown

in [4], when gravity and gauge mediation are comparable, they lead to interesting effects

in the sfermion spectra. As will be shown below in a couple of concrete examples, the pre-

dictions of the model in this parameter range can be fully consistent with all experimental

constraints and in particular neutralino is a good dark matter candidate.

For larger values of α gravitino becomes the LSP and the role of gauge mediation is

increasing. However, the first important point to notice is that, since there is an upper

limit on α, the ratio of soft masses to the gravitino mass remains bounded from above and

the mentioned above limits on the stop mass imply a lower limit on the gravitino mass of

order 50-100 GeV (the role of the left- right mixing in the stop sector, i.e. of A terms is

important here). This is interesting since gravitino LSP in such mass range allows for high

reheating temperature, consistent with leptogenesis.

However, important constraints on such scenarios come from the life time of the NLSP,

to be consistent with nucleosynthesis. It is know that neutralinos as NLSP are acceptable

only if very heavy. Better candidates for NLSP are staus (for a recent discussion see [34]

and references therein10), although the lower bound on their masses is in a TeV range, too.

It is clear from eq. (5.1) that staus can be NLSP only for sufficiently large N. The question

of course is if such values are still consistent with our upper bound for α. A detailed study

10We thank David Cerdeño for pointing out this issue to us.
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of the full range of values of α is beyond the scope of this paper. However, as we show

below in our third example, the model can account for gravitino LSP with around 100 GeV

mass and a stau as NLSP with its mass in the TeV range. To our knowledge, this is a rare

example of a microscopic model with such properties.

5.5 Examples

We illustrate the previous qualitative discussion and the phenomenological viability of the

model in a few concrete examples.

The soft terms are defined in our parametrization (5.1) by three free parameters at

the GUT scale: the gravitino mass m3/2, the standard gauge to gravity mediation ratio

parametrized by α and the non-standard gauge to gravity mediation ratio parametrized

by β. Moreover, we have to take into account N, the number of messengers, the µ mass-

term and the bilinear B-term. The absolute value of µ is determined by the minimization

condition of the Higgs potential (assuming CP conservation), but its sign is not fixed.

Furthermore, instead of B it is more convenient to use the low energy parameter tan β =

〈H0
2 〉/〈H0

1 〉, which is a function of B and the other parameters. Thus the parameter space

for a complete phenomenological study of such a model can be restricted to the following

set of five parameters:

m3/2 , α , β , N , tan β , sgn(µ) . (5.5)

In the following we first discuss the constraints we place upon the model. It includes

theoretical constraints (electroweak symmetry breaking condition, color and charge break-

ing minima, dark matter abundance) as well as current bounds from accelerator experi-

ments. Then we present our results.

(i) The mass spectrum constraints:

We have implemented in our analysis the lower bounds on the masses of SUSY

particles and of the lightest Higgs boson. In the squark and slepton sector we checked

for the occurrence of tachyons. We applied in our analysis the LEP2 lower bound limit

on the mass of the lightest chargino mχ̃+
1

> 103.5 GeV. In the non-tachyonic region,

typically, the most constraining is the lightest Higgs boson mass constraint. In the

decoupling limit (MA ≫ MZ , applicable in all our parameter space), mh > 113.5 GeV

at 3σ. This bound is very sensitive to the value of the top mass. We have taken

mt = 171 GeV throughout our analysis.

(ii) The b → sγ branching ratio:

One observable where SUSY particle contributions might be large is the radiative fla-

vor changing decay b → sγ. In the Standard Model this decay is mediated by loops

containing the charge 2/3 quarks and W−bosons. In SUSY theories additional con-

tributions come from loops involving charginos and stops, or top quarks and charged

higgs bosons. The measurements of the inclusive decay B → Xsγ at CLEO [29] and

BELLE [30], leads to restrictive bounds on the branching ratio b → sγ. We impose

in our analysis 2.33 × 10−4 ≤ BR(b → sγ) ≤ 4.15 × 10−4 at the 3σ level. Our anal-

ysis considers standard model contributions up to the next to leading order (NLO)
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and takes into consideration the tanβ enhanced contributions in MSSM beyond the

leading order. We mostly choose µ > 0 allowing cancelations between chargino and

charged Higgs contributions.

(iii) The anomalous moment of the muon:

We have also taken into account the SUSY contributions to the anomalous magnetic

moment of the muon, aµ = (gµ−2)/2. We used in our analysis the recent experimental

results for the muon anomalous magnetic moment [31], as well as the most recent the-

oretical evaluations of the Standard Model contributions [32]. It is found that when

e+e− data are used the experimental excess in (gµ − 2) constrains a possible SUSY

contribution to be 7.1×10−10 . aSUSY
µ . 47.1×10−10 at 2σ level. However when tau

data is used a smaller discrepancy with the experimental measurement is found. In

order not to exclude the latter possibility, when analyzing the parameter space with

µ > 0 we will simply plot contours with the relevant value aSUSY
µ = 7.1 × 10−10.

(iv) Relic Density:

Our basic assumption is that the LSP is stable on cosmological time scales.

Furthermore we will assume that the LSP abundance is thermal. Within such a

framework, the regions of the parameter space that lead to overproduction of dark

matter are excluded. On the other hand, the regions that yield LSP abundance

below the WMAP limit are not considered as excluded (though as less favored), but

simply require non-thermal production or a dark matter candidate beyond the soft

spectrum. The WMAP collaboration gives the 3σ narrow limit [33]

0.087 . Ωχh2 . 0.138 (5.6)

on the dark matter relic abundance.

We show in table 1 three examples of low-energy spectrum in the case of “standard”

hybrid mediation (A), with a non-standard contribution (B) and case (C) of a moderate

dominance of gauge mediation based on the example of eq. (5.3). The selected points (A)

and (B) respect accelerators and WMAP constraint. The example (C) is also consistent

with accelerator constraints and the gravitino LSP with 100 GeV mass is a good dark matter

candidate for the reheating temperature of order 10−8 (see [34] and references therein).

The points (A) and (B) are selected from a big sample of points obtained by the

following procedure: Once tan β and sgn(µ) are fixed (positive thorough our study), we scan

over the gravitino mass 0 < m3/2 < 2TeV and 0 < α < 10. The low energy mass spectrum

is calculated using the Fortran package SUSPECT [26] and its routines were described in

detail in ref. [27]. The evaluation of the b → sγ branching ratio, the anomalous moment

of the muon and the relic neutralino density is carried out using the routines provided by

the program micrOMEGAs [28]

The first remark is that the scalar particles are relatively heavier than the gauginos.

This mainly comes from the fact that scalars receive at tree level a gravity-mediated con-

tribution proportional to m3/2, whereas this contribution is suppressed by a factor ǫ̃ for

the gauginos, (eq. 5.1).
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Figure 3. Scan on m0versusα with Ai = −3m0 and tanβ = 35, with 6 messengers and different

values of β.

Concerning the influence of the negative non-standard gauge-mediated term, if we

compare points (A) and (B) we observe that to obtain a similar amount of relic density,

the model (B) requires a heavier gravitino. This comes from the fact that the WMAP

constraint is achieved through the coannihilation channel χ0
1 − τ̃1 and gauge-mediated

negative contributions acts on mτ̃L
at GUT scale reducing considerably the τ̃1 mass at

electroweak scale (whereas not acting on the gaugino mass): we need a higher value of m0

to obtain mτ̃1 ∼ χ0
1 where the coannihilation is efficient. This effect is clearly depicted in

figure 3 where the parameter space excluded because the lightest stau is the LSP, increases

for increasing values of β. The cosmological allowed region follows the line mτ̃1 ∼ χ0
1 where

the coannihilation channel is dominant. We illustrate also the effect in figure 4 where

we plot the allowed region as function of β: the parameter space is almost completely

excluded for β & 0.5 because the τ̃1 becomes the LSP for any m3/2 . 3TeV.

We also have calculated the mass spectrum for the case of moderate dominance

of gauge-mediation (point (C) in table 1). In this case, the 100 GeV gravitino is the

LSP. A relatively heavy gravitino is necessary to respect the LEPII limit on the higgs

mass. The NLSP is stau and its mass is at the border line of the limits given in [34].

As mentioned earlier, no systematic study has been performed of the parameter range

corresponding to gravitino LSP.

We illustrate the influence of the trilinear coupling on the parameter space in figure 5,

where we reproduce the figure 3 except for A0 = 0 at GUT scale. We do not observe any

point where the stop is tachyonic at the electroweak scale, but a region where the stop

can be the LSP for β = 1. However, no region of the parameter space respect the LEPII

constraint on mh: lower values of A0 implies lower radiative corrections to the Higgs mass.
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A B C

m0 385 1050 100

α 5 4 75

β 0 0.4 1

N 6 6 15

tan β 35 35 35

µ 890 1971 2070

M1 220 506 840

mχ0
1

218 504 830

mχ+
1

418 953 1542

mg̃ 1207 2524 3943

mh 118 124 122

mA 792 1716 1996

mũ1 1213 2500 3484

mt̃1
747 1450 2852

mẽ1 482 1303 865

mτ̃1 227 504 686

Ωh2 0.091 0.096 *

Table 1. Sample spectra. All masses are in GeV and A0 = −3m0
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Figure 5. Same than figure 3 for Ai = 0.

6 Conclusions and perspectives

Supersymmetry breaking in models with gauged U(1) symmetries and Green-Schwarz

mechanism is naturally realized in string theory [4, 5, 7, 10, 16]. Whereas at first sight,

in this framework gravity mediation, gauge mediation or a mixture of the two are equally

possible, in this paper we found that the constraints coming from gauge invariance and

moduli stabilization are surprisingly strong. In particular we found that explicit realizations

of models in which gravity transmission could be highly suppressed compared to the gauge

contribution are very difficult to obtain; new supersymmetric vacua within the supergrav-

ity regime appear and/or gauge mediation vacua are incompatible with a small value of the

cosmological constant. Our results therefore imply that, in simple string models, gravity

(or moduli) mediation is the main mechanism at work, while models with strong gauge

dominance should probably contain at least two moduli fields, with a highly-nontrivial

dynamics. It is useful to compare the situation to models with no gauged U(1), where the

dynamics is much simpler and all possibilities of supersymmetry breaking transmission are

realized. From this viewpoint, the situation is similar to the models of moduli stabilization

and uplift of the vacuum energy: whereas models with anomalous U(1)’s, very natural from

string theory perspective, are hardly compatible with a TeV supersymmetry spectrum [35],

uplifts with F-terms are naturally compatible with it [4, 36]. On the other hand, models

with purely F-term dynamics, with no gauged U(1) constraints of the type we discussed in

the present paper, are difficult to realize in string theory.

We generalized a previously proposed model which incorporated all the constraints of

gauge invariance and moduli stabilization by considering the most general messenger sector

compatible with anomaly cancelation. The resulting model, coupled to MSSM, automati-

– 30 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
1

cally contains gravity, standard and non-standard gauge contributions, which are roughly

of the same order. In some regions of the parameter space, standard gauge contributions

can moderately dominate over gravity contributions and correspondingly the FCNC effects

are below per-cent level. It is however impossible without severe fine-tunings to suppress

further the gravity contributions.

The class of models we consider here is phenomenologically fully viable. They can give

either neutralino or gravitino as good dark matter candidate. In the latter case, gravitino

is necessarily relatively heavy (50-100 GeV). This is cosmologically interesting since it is

consistent with high reheating temperature needed for leptogenesis. The BBN constraints

on the NLSP can be satisfied (at least at a qualitative level studied in this paper) by the

stau, for number of messengers of order 15.
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A Gravity mediation contribution

The scalar mass matrix is defined as

M2
0 =

m2
IJ̄

m2
IJ ,

m2
ĪJ̄

m2
ĪJ

, (A.1)

where the various entries are:

m2
IJ̄ = 〈∂I∂J̄V 〉 = 〈∇I∇J̄V 〉 , (A.2)

m2
IJ = 〈∂I∂JV 〉 = 〈∇I∇JV 〉 . (A.3)

The general expressions of the masses, for vanishing vacuum energy, are of the form [16]:

m2
IJ̄ = eG(GIJ̄ + ∇IG

K̄∇J̄GK̄ − RIJ̄KL̄GKGL̄ ) +
1

2

∑

A

g2
AD2

A(GJ̄GI − GIJ̄)

−
∑

A

g2
ADA(GJ̄∂IDA + GI∂J̄DA − ∂I∂J̄DA) +

∑

A

g2
A∂IDA∂J̄DA , (A.4)
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m2
IJ = eG(2∇JGI + GK∇I∇JGK) −

∑

A

g2
ADA(GJ∂IDA + GI∂JDA − ∂I∂JDA)

−1

2

∑

A

g2
AD2

A(GIGJ + ∇IGJ) +
∑

A

g2
A∂IDA∂JDA , (A.5)

where the function RIJ̄KL̄ is the Riemann curvature of the Kähler manifold.

The standard results for the soft terms coming from the gravitational effects, depend on

some details concerning the coupling of the modulus to the gauge multiplet of the MSSM,

and the Kähler potential of the MSSM scalar fields.

From the point of view of a IIB string theory realization, irrespective on which type of

brane MSSM sit (D7 or D3 branes), if they contain magnetic fluxes [37] the gauge kinetic

functions contain a T-dependence

fa =
ca

4π
T + f (0)

a , (A.6)

where ca are positive or negative numbers, and f
(0)
a effective constants generated by the

couplings of the MSSM branes to other, stabilized fluxes (e.g. the dilaton S).

Moreover, by denoting in what follows by i, j matter fields and by greek indices α any

field contributing to SUSY breaking, a relevant quantity for computing the soft terms is

the coupling of the matter fields metric Kij̄ to the SUSY breaking fields. For our model in

sections 4 and 5, this can in turn be parameterized as

Kij̄ = (T + T )ni

[
δij̄ + (T + T )mij |φ+|2Z ′

ij
+ (T + T )pij |φ−|2Z ′′

ij

+(T + T )lij (φ+φ−Z ′′′
ij

+ h.c) + O(|φi|4)
]
, (A.7)

where G = K + log |W |2, Kij̄ = ∂i∂j̄K, i and j representing the matter fields, not partici-

pating to the SUSY breaking mechanism (Gi = 0). The metric Kij̄ in (A.7) is written as

an expansion in powers of the charged vev fields φ±/MP ≪ 1, up to the quadratic order.

Gaugino masses. The gaugino masses for a general gauge kinetic function fa are given

by [38]

MGrav.
a =

∂T fa

Re[fa]
eK/2KTTDT W . (A.8)

For the phenomenological analysis, we use the hypothesis of a gauge kinetic function given

in (A.6) and in particular the unified case

αa =
ca

ca + 4πf
(0)
a /T

≃ 1 . (A.9)

Under this assumption, using the definitions and the formulas given in the previous sections

we obtain

MGrav.
a = m3/2αa

(T + T )

3

DT W

W
= m3/2αa

(T + T )

3
GT ≃ ǫ̃ m3/2 . (A.10)
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Scalar masses. Using the classical formulas at the linear order in the D-term [16, 38]

m̃2
0|ij̄ = m2

3/2

[
Gij̄ − GαGβRijαβ

]
+
∑

a

g2
aDa∂i∂j̄Da , (A.11)

and with the standard definitions

Rijαβ = ∂i∂jGαβ − Γm
iαGmnΓn

jβ
, Γm

iα = Gmk∂αGik , (A.12)

for the neutral scalar mass terms we obtain, after normalization of the kinetic terms:

(m̃2
0)ij = m2

3/2

[
δij̄ +

ni

(T + T )2
|GT |2δij̄ − |G+|2(T + T )mij+

ni−nj
2 Z ′

ij

−|G−|2(T + T )pij+
ni−nj

2 Z ′′
ij

]
. (A.13)

As for the gauginos, for the phenomenological analysis we study in detail the universal

case, where the gravity-mediated contributions are dominated by the term

(mGrav.
i )2 = (m̃2

0)ij̄ ≃ m2
3/2δij̄ . (A.14)

This is actually a strong assumption, since whereas the contribution to the scalar masses

coming from the moduli and the field Φ− are suppressed compared to the universal first

term, we have not enough information about the third term in the rhs of (A.13). Indeed,

this term is negligibly small if rij ≡ mij + (ni − nj)/2 ≤ −1, whereas it is comparable to

the universal contribution for rij = 0 and dominant for rij > 0. Whereas this last case

cannot arise in a string compactification, the case rij = 0 could and deserve a more detailed

study from the viewpoint of possible flavor-dependent Φ+ couplings.

B Standard and non-standard GMSB contributions

The exact calculation of the radiatively induced gaugino and scalar masses, due to one

messenger multiplet, gives [1] for the gaugino mass

MGMSB
a =

g2
amfSQ

8π2

y− log y− − y+ log y+ − y−y+ log (y−/y+)

(y− − 1)(y+ − 1)
(B.1)

and for the scalar masses [1, 20]

(mGMSB
i )2 =

Ci SQ

128π4
m2

f F (y−, y+,Λ2
UV/m2

f ) , (B.2)

with yi = m2
i /m

2
f and mi, i = ± the two scalar messengers mass eigenvalues. The function

F is given by

F (y−, y+,Λ2
UV/m2

f ) = −(2y− + 2y+ − 4) log
Λ2

UV

m2
f

+2(2y− + 2y+ − 4) + (y− + y+) log y− log y+

+G(y−, y+) + G(y+, y−) , (B.3)
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where

G(y−, y+) = 2y− log y− + (1 + y−) log2 y− − 1

2
(y− + y+) log2 y−

+2(1 − y−)Li2

(
1 − 1

y−

)
+ 2(1 + y−)Li2(1 − y−)

−y−Li2

(
1 − y−

y+

)
. (B.4)

Li2(x) refers to the dilogarithmic function, defined by Li2(x) = −
∫ 1
0 dzz−1 log (1 − xz). If

λFS ,D ≪ λ2〈S〉2 , (B.5)

in (3.7), then it is easy to see that one can expand the above expressions and have a sim-

plified one in terms of the ratio
∣∣∣ FS
〈S〉

∣∣∣ and D. In particular, coming back to our model (4.2),

we can distinguish between the different contributions from the (positively and negatively)

charged messengers and the neutral ones. In what follows we will distinguish between the

“standard” and the “non-standard” contributions. We give the general result in terms of

F-terms and vev’s, and also the approximate result in the case p = 0.11 For a coupling

Φ
n′

i
− M(+)i′M̃(+)i′ the charge for both the messengers is denoted by

(
+

n′
i

2

)
, whereas for a

coupling Φ
m′

j

− M(−)j′M̃(−)j′ by
(
−m′

j

2

)
.

Messengers with positive charge. A messenger i′ contributes with

MGMSB
a =

g2
aSQ

8π2
ni′

F−
〈Φ−〉

≃ g2
aSQ

8π2
ni′ m3/2 , (B.6)

(mGMSB
i )2Stand. =

CiSQ

64π4
n2

i′

∣∣∣∣
F−
〈Φ−〉

∣∣∣∣
2

≃ CiSQ

64π4
n2

i′ m2
3/2 , (B.7)

(mGMSB
i )2Non−Stand. = −CiSQ

64π4
ni′
(
g2
XD

) [
log

(
Λ2

UV

(mf )2i′

)
− 1

]

≃ −CiSQ

32π4
n2

i′

m2
3/2

q

[
log

(
1

m3/2

)
+ κ

] [
log

(
Λ2

UV

(mf )2i′

)
− 1

]
, (B.8)

where the fermionic mass is given by (mf )2i′ ≃ λ2
(+)i′

(
3q
2

)ni′
[
log
(

1
m3/2

)
+ κ
]−ni′

.

Messengers with negative charge. A messenger j′ contributes with

MGMSB
a =

g2
aSQ

8π2
mj′

F+

〈Φ+〉
≃ g2

aSQ

4π2
mj′

m3/2

q

[
log

(
1

m3/2

)
+ κ

]
(B.9)

(mGMSB
i )2Stand. =

CiSQ

64π4
m2

j′

∣∣∣∣
F+

〈Φ+〉

∣∣∣∣
2

≃ CiSQ

16π4
mj′

2
m2

3/2

q2

[
log

(
1

m3/2

)
+ κ

]2

(B.10)

11The case p > 0 is difficult to study in details, since the lack of analytic formula. Nonetheless,

qualitatively it is possible to say that since we expect in that case 〈Φ+〉 ∼ 〈Φ−〉 (whereas for p = 0,

〈Φ+〉 ∼ 10−1〈Φ−〉), all the quantities related to the ratio
〈Φ

−
〉

〈Φ+〉
will decrease by a factor 10. In particular we

expect that the standard contributions for the soft masses coming from all the messengers will be of the same

order, and moreover smaller by an order of magnitude with respect to the contributions in the case p = 0.
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(mGMSB
i )2Non−Stand. =

CiSQ

64π4
mj′

(
g2
XD

)
[
log

(
Λ2

UV

(mf )2j′

)
− 1

]

≃ CiSQ

32π4
m2

j′

m2
3/2

q

[
log

(
1

m3/2

)
+ κ

] [
log

(
Λ2

UV

(mf )2j′

)
− 1

]
, (B.11)

where the fermionic mass is given by (mf )2j′ ≃ λ2
(−)j′

1
3

(
3q
2

)2mj′
[
log
(

1
m3/2

)
+ κ
]−2mj′

.

Messengers with zero charge. A messenger r′ contributes with

MGMSB
a =

g2
aSQ

8π2
lr′cr′

(
F+

〈Φ+〉
+

F−
〈Φ−〉

)

≃ g2
aSQ

4π2
lr′cr′

m3/2

q

[
log

(
1

m3/2

)
+ κ +

q

2

]
, (B.12)

(mGMSB
i )2Stand. =

CiSQ

64π4
l2r′c

2
r′

(∣∣∣∣
F+

〈Φ+〉
+

F−
〈Φ−〉

∣∣∣∣
)2

≃ CiSQ

16π4
l2r′c

2
r′

m2
3/2

q2

[
log

(
1

m3/2

)
+ κ +

q

2

]2

, (B.13)

where cr′ =

[
1 +

µr′

λ0r′ (Φ+Φ−)l
r′

]−1

.

In this case there is no non-standard contribution for the scalar soft masses, since the

supertrace for these messengers vanishes.

C Anomaly mediation contributions

The contributions to the terms soft coming from the anomaly mediation mechanism, are

typically of order

mAnom.
i ∼ g2

16π2
m3/2 (C.1)

and then are naturally suppressed in our case already by the universal terms coming from

the gravity mediation mechanism for ǫ̃ & O
(
10−1

)
.

It is interesting to note that this is different from the scenario studied in [13] where

the gravity mediation contributions are suppressed with respect to the gravitino mass by a

loop factor, and then become of the same order of those produced by anomaly mediation,

allowing the so-called mirage unification.

D Explicit soft terms

We explicit in the appendix the charge dependence of the soft breaking terms at high scale

for the scalar fields, in the framework of our phenomenological parametrization.

m2
QL

= m2
3/2

{
1 + SQ

(
−β +

α2

N

)[
4

3
g4
3 +

3

4
g4
2 +

3

5

(
1

6

)2

g4
1

]}
,
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m2
UR

= m2
3/2

{
1 + SQ

(
−β +

α2

N

)[
4

3
g4
3 +

3

5

(−2

3

)2

g4
1

]}
,

m2
DR

= m2
3/2

{
1 + SQ

(
−β +

α2

N

)[
4

3
g4
3 +

3

5

(
1

3

)2

g4
1

]}
,

m2
EL

= m2
3/2

{
1 + SQ

(
−β +

α2

N

)[
+

3

4
g4
2 +

3

5

(−1

2

)2

g4
1

]}
,

m2
ER

= m2
3/2

{
1 + SQ

(
−β +
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]}
,
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,
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)[
3

4
g4
2 +

3

5
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2

)2

g4
1

]}
, (D.1)

where as usual SQ is the Dynkin index of the messenger representation (SQ = 1/2 for

the fundamental representation), gi are the gauge couplings at GUT scale (αi = g2
i /16π

2)

whereas α, β and N have been defined in sections 4 and 5. In all our discussion we assumed

for simplicity the messengers in complete representations of SU(5).
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breaking in string compactifications, JHEP 02 (2006) 020 [hep-th/0512170] [SPIRES].

[3] O. Aharony, S. Kachru and E. Silverstein, Simple stringy dynamical SUSY breaking,

Phys. Rev. D 76 (2007) 126009 [arXiv:0708.0493] [SPIRES].

[4] E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, Moduli stabilization with

Fayet-Iliopoulos uplift, JHEP 04 (2008) 015 [arXiv:0711.4934] [SPIRES].
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