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Introduction

In a previous report1 we considered the excitation of ion acoustic, electrostatic ion
cyclotron, and magnetosonic waves by a strong pump near the lower hybrid frequency
in a highly magnetized uniform plasma (wpi =10 Qi’ Qe ~4.5 wpe)' We described the
derivation of coupling coefficients for two particular cases, (i) the pump at the lower
hybrid frequency coupling to two low-frequency (ion acoustic) waves and (ii) the pump
and an idler above the low hybrid coupling to a single low-frequency (electrostatic
ion cyclotron or magnetosonic) wave., In this report we describe computational methods
for deriving coupling coefficients by using the facilities of MACSYMA.2 There are
two advantages to deriving such expressions on MACSYMA, First, once the technique
has been developed, it should be relatively simple to apply it to new problems and to
obtain approximate answers in a short time. Second, with little additional effort on
the part of the user corrections to the dominant terms can be derived. This provides
a useful check on the accuracy of the approximations.

In the nonlinear coupling-of-modes theory we look for three waves such that

wn=wa+wb (1)

N ka+kb. (2)

= |
i

1(2)

We then calculate the second-order current3 a b

arising from the nonlinear
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interaction of modes a and b. This current is considered as a perturbing current to
mode n. The perturbation may be expressed in terms of the coupling coetficient M,

where

M= —. (3)
w

In this problem we take mode n to be the ion mode that we are trying to excite; a is
the pump and b is the idler. Note that, since the pump is normally at the highest fre-
quency, we have Wy < 0.

We assume that the plasma is infinite and homogeneous, and that the magnetic field

is uniform. We take the ions to be cold, and consider only modes described by the
2

pe’
For work with MACSYMA, we have normalized a number of quantities in order

. . . o B . 2
electrostatic approximation. We take Wi T wpi’ since Qe » W

to avoid having a large number of common factors. Also, since we use the electrostatic

_ E
approximation, E has been replaced by [—__—' k.
ki
Frequency: WN = w/Qi (4)
Wave numbers: KN = T{CS/Qi
KNM = |KN| (5)
KNX = kXcS/Qi, etc.
e
Conductivity SIGMAN: = 5 (6)
i€ w_.
o pi
VE
Electron and ion velocities: = SIGMAN.KN
VI
(7)
VET VE
= Transpose
VIT VI
VE
Ne| BN v
Electron and ion densities: ST (8)

NI

All of the common factors of the terms in the resulting expression for M are combined
and called CONSTFACT. The terms in M are shown in Fig. VI-1.
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cos 6 = €, = X26, (11)

where )\l’ Ny ™ 1. We may then proceed to take Taylor's series in 6 about zero. At the
end we need only substitute for 6, >\1 and )\2 to recover the original parameters u, € and
€, The weighting given to the small or large parameters need not have any physical sig-
nificance. The reason for assigning weights is merely to tell the Taylor's series routine
how to truncate the expressions. At any stage we may recover the original parameters by
substituting for the . In general, the X may take fairly large or small values, but the
aim is to have

& &N e =1 «A\ <<-1—,
a, b, c m, n, o X, ¥, 2 6

so that within each coefficient of & there is a further and more fine ordering in the \. If
such a fine ordering is eventually used, however, the Taylor's series truncation,

originally based on the order of 6§, may have to be modified.

Coupling to Two Ion Acoustic Modes

Consider a small k pump mode at the lower hybrid frequency (dispersion relation

W= Wy ® wpi) coupling to two jon acoustic wave modes b and n at approximately half the
lower hybrid frequency (dispersion relation wz = kzci). The pump propagates nearly per-

pendicular to the magnetic field. A typical case in k space is illustrated in Fig. VI-3. (In

<ubz-2—a> //’ |
- T !
K, ‘/ |
/ }
S |
I A (a2 r Fig. VI-3.
% ~ ! . = .
- I~ | Typical k space diagram for
- @ (ALP) | the case of one lower hybrid
- 1 mode (a) coupling to two ion
\\\Z\ \J 5 () ! e, acoustic modes (b and n).
T~ ] /
S =Y
7
choosing a coordinate system we make kay = 0.) The small parameters that we choose
are the following.
k c /w =€, =X &  KNXA|: LMI*DEL*WN[A] (12)
ax s’ "a 1 1
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BE e, = 0,6 kNz[A:LM1*LM2=DEL} 2+ wN[A] (13)
‘(ax

Q.

w—l = €5 = 2,65 WN[CI): LM3*DEL*WN[A] (14)
a

© 2

Q_a= €47 Ny0s WN[CE}:WN[AJ/DELT2/LM4 (15)
e

Me 2

_S-2-5% MU:l/DEL}2. (16)
m, p

On the right-hand side of these expressions we have shown the commands that give
MACSYMA this information. Note that in defining the MACSYMA variables we com-
pared frequencies and wave numbers to WN[A]. TAYLOR will, in effect, assume that all
undefined frequencies and wave numbers are of the same order as WN[A].

Figure VI-4 shows the steps in the calculation of the ion terms of the coupling coef-
ficient. A similar set of MACSYMA commands accomplishes the same calculation
for the electrons. Note that as a consequence of the cancellation of the leading terms
it is necessary to carry 3 significant terms throughout the calculation to be able to
obtain 2 terms in the answer.

The resultant expressions for M are

(l—ZsinZa) kacs z ~cos a sin e sin B kacs 2 Qi
Mion=C - > ” ~ 101 5 - — (17)
a a a
k ¢ 2 m kc k ¢
M =C _< az s> iy cos ¢ sin a a’'s az s (18)
el “a me cos B(l~sin2a) “q “a
where
E E E>'<€ w

a b ™nopi g
C = CONSTFACT ———— ——— .

k kok of My
a b n's

2
In both cases the first part of the expression is of order 6“ and the second of 63. But

the second term in Mion is multiplied by a large numerical factor (10) and so the ratio
of the two terms in M, is
ion
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Qi i cos ¢ sin ¢ sin P

10 5
“a 1-2 sin” ¢
which is of order 1 (if we ignore special angles), since 31’1/ w ~ 0.1, and so in general
: . :

we should keep both terms. Note that the first term was dc-fived previously, under the
assumption that the ions are rnagnetizod,l so the second term is the finite magnetic field
term arising from the ellipticity of the ion orbits, and in order to maximize this term
we should try to make P as large as possible.

The ratio of terms in Mel (lg. 18) {with the trigonometric factors ignored) is
ka/kazp, which is only greater than unity if cos 6 < 1/u, but in that case the whole

electron term is small and so we are safe in discarding the second term in Mel to obtain

kazcs
M, =-C|—— (19
el a s )
This contribution comes from the clectron pressure.
Comparing M | and M, we find
b g Mey ion’
2
M k 5
el =2Z = cos” o (20)
M, k" a -
ion a
In choosing w, we were forced to take w, = wpi in order to be able to couple to 2 ion
acoustic modes. If the pump is a mode, we csn only achieve that if
2 . 1 .
cos B_ «=—, (21)
a p

ir which case we can neglect the electron contribution. But if we do not restrict our-
selves to the pump being a mode, then Eq. 21 does not apply and, depending on the value

of cos 6 that we have chosen, we may have to take M = M. , or M, + M L, or M
a - ion ion el e

]7’
with M. and M |, given by IXgs. 17 and 19, respectively.
ion el :

Coupling to a Lower Hybrid Wave and a Low-I'requency Wave

In this case we take both the pump and idler (modes a and b) to be lower hybrid
waves, which couple to some low-frequency wave (n), For the lower hybrid waves we

. 2 2 2 . . 2 2 2
may write w” = w_.(l+pcos” 68); we take mode n to be either magnetosonic {w™ = k;cs or

p1
L F2 220 2 2 2 2 A2
electrostatic ion cyclotron (cu =k Cg(og —Ccos ezzi \)/(w —SZ]. )) A typical case is shown

in Fig. VI-5. Note that we take k‘r‘ = 0 as before,
<y

An expression for the coupling coettficient s been derived,
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The source of these terms is the electron convective term. The real part is derived
to include only the z components of the velocities (infinite magnetic field limit), and
the imaginary part is the magnetic field correction resulting from E X BO velocities in

modes a and b,

Fig, VI-5. Tdypical k space diagram for the case of a pump (a) and
idler (b) above the lower hybrid frequency coupling to a
low-frequency mode (n).

Using a simple form of ordering, kz ~ké and v~ kcs/é for modes a and b, we have
found expressions for M in which the terms in Eq. 22 could be identified. The ordering
that was chosen, however, was not good enough to separate these dominant terms from
the others. In other words, the coefficients of the resulting polynomial in & are them-
selves of order 6 or 1/8& or greater.

We are, therefore, investigating other finer ordering schemes. Since in such a case
the order of the polynomial in the new small parameter 6 is likely to be high, we may

need a more efficient ordering and truncating function than TAYLOR. Most of the
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expressions with which we deal are polynomials or ratios of polynomials; so instead
of using TAYLOR which works on quite general expressions, we can use the MACSYMA
function WEIGHT. With this function we assign weights to any number of variables; then
if an expression that is a sum of products is put in a special rational form in MACSYMA,
a term in the sum will be dropped if its combined weight (the sum of the weights of the
terms of the product) exceeds a user set variable WILEVEL., Examples of the use of
these capabilities, and their application to the present problem, will be presented in a

future report.
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THIRD-ORDER NONLINEAR THEORY OF WAVE-WAVE INTERACTIONS
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D. C. Watson, A. Bers

Introduction

We present a theory of coherent wave coupling in the presence of a strong pump with
arbitrary wave vector. With this theory we give a unified description of the modified
parametrlc,l the nonoscillatory, and the modified nonoscﬂlatory3 instabilities. The

theory naturally admits a study of pump depletion and the effects of pump evolution.

Linear Behavior of Small Perturbations in the Presence of a Strong Pump

Consider a homogeneous medium with nonlinear conductivities to all orders. Let
the medium sustain a pump-wave E field that is finite and of the form

ik s x-iw t . —ik x+ie t
o = =0 = o

E x,t)= E e C+E e , (1)
=pump = =0 =0

where the spatiotemporal frequency (LEO, wo) is real. Then any small perturbing E field
at any frequency (k, «) gives rise to nonlinear currents that are linear in this perturbing
E field at all frequencies (1§+n150, w+ nwo). Thus, even the linear theory of small per-

turbations in the presence of the pump demands that we consider a set of such small
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perturbations {E(n)} separated by multiples of the pump frequency. The frequencies of

this set may be denoted by

Ky “n)) = Erg) Thkg 9oy 090 (2)

For each small perturbation in the set Maxwell's equations give

NL(2)

LINEAR o NL(3)
}E(m‘ 1”o‘“(n)[%) *dn) *:I

2 2 2 .
{5<n)5<n) ki * (/) Hitg o €

L.(1)

where JN
=(n)
d

is the ith-order nonlinear current at the frequency “(n) Clearly a current

) 3rd’ ... order in electric field and only 18t order in some perturbing field

must be ISt, an’ ... order in the pump field. Thus the current at (g(n)’w(n)) must

that is 2"

arise from perturbation fields at frequencies accessible via one, two, ... frequency
steps of magnitude (1_{0, wo). This observation enables us to write the right-hand side of

(3) in terms of E fields.

2 2,2\, . LINEAR| .,
{1—‘<n>5<n)‘k(n>+<“<n)/c ) i gy } En)
_ NL(2) NL(2),. .
= T “(n)[;-’ E(1’1—1)}—4:-30 +% =(n+1)=o
NL(3) . ) NL(3) . . NL(3) i
* (I/Z!)% P—J(n—Z)Eogoﬂl/Z!)% —(n+2)P—“oEo+§ E(Jn)—o—oJr J

(4)

For simplicity, the dependence of the nonlinear conductivities on frequency and wave
vector has been suppressed. Equation 4 holds for each value of (n) and the resulting set
of equations is linear in the set of perturbation fields {E(n)}' Thus the (infinite) matrix
of coefficients of the components of these {E(n)} must have a determinant equal to zero
if a solution is to exist at the frequencies {(E(n)’ w(n))}.

If the polarizations of all {E(n)} are known, then each E(n) is specified completely

by its scalar amplitude Un)- Here

The vector equation (4) may then be reduced to a scalar cquation by taking its dot

product with €(n)’
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[:m { T T IS E(Lf})NEAR} ﬁ(n)j U )
= —ipow(n) {[ §Zn) ‘_:’ l\L(Z)Q(n—l )Qouo} u{n—l ) - %_gf(j.n) % NL(Z)Q(HH )‘e'ouoj u(m—l)
+H(1/2! )Eét(kn) %NL(B) )\ﬂ—l)gogouii “in-2) " (/2 );gzkn)%NL(3)§(11+2\§Z§ZH;2:: Ynrz)
S Ean

A b

s S| i
g(n)gogououo;u(n) e j
(5)

This set of equations, linear in the set of scalar amplitudes {u(n)}’ is consistent if the
(infinite) matrix of the coefficients of the {u(n)} has determinant zero. Divide (5) by

2
2t and write it as

(n)’

, NILY2) t; NI(2)
€m) " dn-1), 0 ) " dn+1), 0
K(n)u(n) - €o%(n) U‘OJ Yn-1) 7 €a%n) Yo f Yint)
N [ e ]
1 =(n) ={(n-2),0,0 5 1 ’ =(n) 2(n+2), —o, -0 *2 u _
+ 51 . ) uo u(n_z) + 5 ’ €Ow/n) o (nt+t2)
o (n L { 3
B NL(3)
£m) " Ln), 0, -0
+ € m U UG | Y + (6)
Here
22 . LINEAR
- B B RS 1)
K(n) - 9(rl) w w B 2 t1+ € w e(n)
(n) (n) “(1) o (n)

is essentially the dispersion relation for the linear perturbation in the absence of the
pump. The square brackets on the right-hand side of (6} are essentially normalized
coupling coefficients multiplied by pump amplitudes. The {K(n)} and the square brackets
are coefficients of the {u(n)} and will therefore appear as entries in the matrix whose
determinant is to be equated to zero. In case only 3 perturbations are considered this

determinantal equation becomes finite and has the form
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together a plasma wave and an opposite-going electromagnetic wave by means of the
pump acting twice. This may be termed the 3rd-order hybrid instability. Since A, A', B
correspond to purely electrostatic perturbations, they cannot be driven unstable by a

transversely polarized pump unless l—{(o) is given a nonzero part

_ 2 2
ko)L =/ Boyx T Koy

in the transverse direction.

With the same pump wave as before, draw the graph of (8) for k # 0. The func-

(o)L
tions wEM(k(l)z)’ wBG(k(l)z)’ wIA(k(O)Z)’ _wBG(k(-l)z)’ -wEM(k(—l)z) are now replaced

. 2 2 2 2 2 2
by the functions wEM( k(o)_l_+k(1)z>’ wBG< k(o)i+k(l)z>’ L°IA< k(o)l+k(o)z>’

2 2 2 2
_wBG< k(o)i+k(-1)z>’ _wEM< k(o)l+k(—l)z>'
The lowering and raising of the resulting curves to form possible loci for (k

(0)z” “(0)
goes through as before. The graph of (8) then looks as shown in Fig. VI-7,

(1?}/[) = 0 are roughly displaced upward and
. 2 2 ES

downward, respectively, by k(o)lc /pr. The curves for K(il)

upward and downward, respectively, by 3kfo)lvée/2wp' The two halves of the curve for

K(h;s) = 0 are displaced at the center, upward and downward respectively, by k

Compared with Fig. VI-6, the curves for K
= 0 are roughly displaced

(0)L¢s"

Evaluation of the Normalized Coupling Coefficients

Specialize to a driftless unmagnetized plasma and use the two-warm-fluids model. A
wave specified by g, lga, w, then induces a first-order velocity and density for each

species given by

where np is the unperturbed particle density, and

Two waves specified by €, ga, w, and S Eb’ W, regpectively, induce a second-order
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Note that within this approximation we cannot consider interactions C and D in Fig, VI-6,
These will be treated separately. Assume the LE phase velocity is not near the ion
thermal velocity., Then the ion contribution to the second-order coupling coefficients

is smaller than the electron contribution by a factor of order m /h‘ Ip/Ti)’ and the
ion contribution to the third-order coup]mg coefficients is s:malle than ihe electron
contribution by a factor of order (m /m (T / f The electron contributions may

be evaluated rapidly by using these appr ommatlons Without loss of generahtv define

the pump amplitude u, to be real and positive and define A= cu /mE/ D“;‘ The quan-
E () o e 0

tity A is a measure of the pump strength:

peak clectron excursion induced by the pump

A=

¥

2(electron Debye length)
To within the approximation introduced above,

peak electron velocity induced by the pump

A=

2(electron thermal velocity)

Then the coupling coefficients as represented by their electron contributions (take y=1

for coupling to a low phese-velocity mode) are

DL
( ) —(0 . ~ A p*
—rr Y, e ——
co“xl; k(o))\l)e S
SN S
Ko pe A
s A
koY De  ©
* NL{2S
o) " -1, 0 \
~ — Uf\ T i’;**—lj—— 1 A
o (o) - (0)"De
e* NI(3)
(1) <(=1), 0.0 .
- u =2 T
gow(l) O S \
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*  NI(3)
g-1) " 1), =0, -0 4y pin 2y
u = - Mgh
c ) o SUTA
e* NIL3)
-(1) —(1)’0’_0 ! ~ A 2 2
€ W Yoo T -iA IHS’
(1)
e>:< INL(3)
£(-1) " 4(-1), 0, -0 £ m a2 2
€ w gl = ik bl
(-1)
e* NIL(3)
=(o) =(0),0,-0 kN 2
€ o Uty kA "
(o)

Here the p are geometrical factors defined as follows.

Fs = S " &) describes the relative alignment of the pump and positive HF perturbation
polarizations;

Ba = gz g describes the relative alignment of the pump and negative HF pertur-

bations;
B is a complicated geometrical factor that can be shown to be of order unity pro-
o), “(0)/ “pe Yoy,
vided — < k, A , and of order ——— — in case >k AL . We substitute the
wpe (o) De k2 )\2 wpe (o) De
results (13) in (7), and get (o) De
2 2 . sk 2 3k
Ky + A% g S kM) kg ATegi
) 2 ) _
1(A/k(o)7\De) hg K(O) + AT 1(A/k(o)>\De) pa | =0
2 % : 2 2
Apgh -1(A/k(o)xDe) ba K +A )HA] (14)

Multiplying the rows by l/p;, ik(o)xDe, I/HZ and the columns by l/pS, _ik(o)xDe’ l/pA,

regpectively, we obtain

2 2 2
(K(l)”“s‘ ) +a A A
.2 .2 2 _
A k(o)k(o))\De +x A A = 0,
2 | 2 2
A A (K(_l)/“LA’ ) +A (15)
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. 2 2 . . N .
where x is of order k( )\De or of order w(o)/wpe’ whichever is larger. Expanding

o)

(15), we obtain

. 2 2 2
K K K K K, kX -
(1) =1 Y (-1)\ (0)5(0) pe ~ 1 T XA
—s % T - + (16)
2 2 12 2 - 2 2 2
legl™ iyl bl ' / Koo e + XA
Note that for an electrostatic high-frequency (ESHF) perturbation
2
w
- p
B =1 T2 a2 G2 (17)
(1) (£1) Te
Note that for an electromagnetic high-frequency (EMHE) perturbation
<w2+kzcz>
- ~ p
K(il) = l-——‘wz——. (18)
(£1)
Note that for an electrostatic low-frequency (ESLF) perturbation
2 2
2 .2 ~ “(o)°s
N = - 9
K(o)k(o)\De ! 2 (19)
w
(o)

a. Parametric Decay Instability

Let A be small but nonzero and examine the neighborhood of the intersection

’A for possible instability. Set (k(o)z’w(o)) = (kA, wAJerJ), where Aw and hence
K(l)’ K(o)k(zo))\i)e are of order A. Then (16) reduces to
K
(1) 2,2 _ 2
2 Ki0)%(0) De =
Kpsf

Now expand in Taylor's series about wp-

<2Aw> —2Aw - ‘?ZAZ. (20)
w

“p 1alKa)

The root of (20) is Aw = iy, where
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2 2 2 “pUIA
vT = A kg 4
VZ( e )2 R
5 o\%o =(1 p IA
Y = 2
16 Ve

This is the usual decay instability growth rate,

b. Modified Decay Instability

Asgsume that K<1) « K(—l)’ then (16) reduces to
2 2 2
Ko L Koo toe A
= A (21)
|2 2 .2 2
lus; K(O)k(o)xDe +xA
This is the same as the 2 X 2 determinantal equation obtained by truncating (15):
12 2
I<K<1)/“*s’ ) +A A
=0 (22)
A K, k= % +xA“
(0)%(0)"De "

It describes the parametric coupling of modes which incorporates self-corrections to

their dielectric constants that are due to the pump. Assume

2 2 .2
IXAT] « }K(O)k(o)xbe[

2 2 .2
IXA“] « 1 -K(O)k(o)xDe[

so that the LF self-correction is negligible, then (21) reduces to

LK ol )
By ol (0)5(0)* De

2 " 2 .2 (23)
[bg] K o)Ko) e

Assume finally that wip fw(o)f « “oe so that the LI dielectric function is strongly
modified, whereas the HF dielectric function may be approximated by its Taylor's

series expansion in w about w Then (23) becomes

A
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Zw( ) 2 AZ , ] 2 2
2Aw © _ AZ’ IZ “1a - sl “ra
w w Fs 2 _ 2 |~ 2
P “(o) T “1A “(0)
3 2 2 2
Zw(o) =A r}.LS’ ©IA®p: (24)
This has a root for which
1/2 1/3
_.._3 2/3 ( 2
Im (ug) = v = e (Al D (wIAwp> . (25)
2

This is the modified decay instability growth rate. The assumptions K(l) « K(—l) and
@A « fw(o>f are consistent only if the intersection B lies at a point (kB, wB) so that
(wB/chS) is very large. This requires that the pump, while pr, satisfy ko)\De »
rne/mi. For an electromagnetic pump, this is not trivial, but with an electrostatic
pump wave this may be satisfied easily. The assumption [XAZ’ « Il -K k2 )\ZDe’ is

(o) (o)
consistent with the result (24) only if

This is consistent with the assumption lw(o)’ » wp, only if 1 « (wp/wIA)1/3, If this is
not satisfied, (24) must be replaced by (21), which results in a more complicated cubic

equation for 90"

c. "Nonoscillatory" Instability

Let A be small but nonzero and examine the neighborhood of B for possible insta-

bility. Note that B is not near the ion-acoustic dispersion curve so that K(o)k(zo))\zDe is

large and the term XAZ may be neglected in (16); hence, (16) reduces to

2 2
o Feno L P Ben ) [ Fo)fot e !
2 2 " 7 * 2 2 .2 (26)
legl™ ual YN K(0)%(0)* De

Set (k ,w, 1) = (ko + Ak, wy, + Aw). Note that K, ,, K are of the order of (Ak, Aw)
(0)z” “(0) B B 5 (1) 7 (-1)
which must therefore be of order A”. Make a Taylor's series expansion in k
. 2 (2
and w of K(l) and K(—l)’ and approximate K(o)k(o))\De by a constant. Then (26)

becomes
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- -1
Z(Aw—]v(gl)JAk> z(-Aw-fvEg”jAk> . -z}vg)l zfv(g )| e | el
2 . 2 2 o |2 22|
“’p“‘slz wp’”Al IHS‘ IPA’ “p wp~kpCg
(27)
Take !501 « IE(—I) ) k(l)“ Then [HS’ = 'HA‘ and
( (1) ( K5es
(1) -1) a2 2 1 -1) B°S
4(80- | v, ak) (a0+ VI [ ak) = 2% g (zivg EEI% ) ko ZEo2
Set
(1Y _
'Vg ,—ug*kwg
)V _1)[ =u_-w
g g
2 2
kZc
IHSIZ 2 ]2352 = M.
ki Co = w
B°s T “B
Then
(Aw-w_ AK)Z - u® ak? = -A°Mu_ Ak . (28)
g g g p
Completing the square gives
2
2 1,2 o1 422
(Aumw, Ak)% - (ugAk -1a wa) - - AR (29)

For real Ak, from (29), the maximum growth rate is
= — Mw ,
Y > P

which occurs at ugAk =% Azwa. From (28), for fixed Ak = —6/ug, where & is the

frequency mismatch for each half of the plasma dispersion curve,

1 2+ 8%

LY rh e

M -bw :
p

R C 2 . .
This is Nishikawa's result™ generalized to the case when the pump wave vector is

QPR No. 111 96



(VI. APPLIED PLASMA PHYSICS)

nonzero. Although the growth rate is the same (up to a factor of order unity) as for
ko = 0, the low-frequency growing mode can now feed energy into the ion distribution
function. It would seem that the previously labeled "nonoscillatory" instability is just

a special case of nonlinear Landau damping by coherent waves.

d. Modified Nonoscillatory Instability

Examine the form taken by the nonoscillatory instability for growth rates large com-
pared with the ion-acoustic frequency k(o)CS but still small compared with the plasma

frequency. That is, assume

’k(O)CS’ « '“(o)l <o

Assume also that the LF self-correction is negligible.

2 2 .2
IxA7] « Jl-K(o)k(o))\De"
Then (16) reduces to
K K K K K k> 22 -1
(1) (-1) > (1) (=1) (o) (o) De
3 5= - 5t 3 N ; (30)
lhgl ™ iyl gl N Ko Koy e

as for the unmodified nonoscillatory instability. For the growth rates considered here,

however, the exact form for K(o)kizo))\i)e must be inserted in (30), although the Taylor's
series expansions for K(l)’K(—l) are still valid. We now have an equation corre-
sponding to (29):
2 2
k(ZO)c2 k(zo)cg
2 1 2,2 o1 2,42

(Aw—WgAk) - ugAk—E “LS‘ A wp s 5 =-3 IHS’ A wp 575 5

kK .co~w k7 co—w

\ (0)”S (o) 0)"S (o)

1 2,2
ugAk=—E !HS‘ A oop

since |Aw| = ’w(o)’ » lngk!, (31) becomes
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Ko
(0)”S
2 o~ 1 2,4 2
w(o) =7 ‘]HS’ A wp w4 (32)
(o)
which has a root
1/2 1/3
_._3 2/3 2
m {oy} = v = a7 (uglM®? (o oty ) (33)

where wip = k(o)CS' This is the modified nonoscillatory instability growth rate. Now,

from (32), |ugAk} = yw(oﬂ so that the assumption |Ac] » w Ak is justified only if

u_ » w_; that is, if !k L« |k |, Furthermore
g -0 B

Aku
g

kBCS

“o) |1%(0)

k(O)CS kB

Akcs

kpcs

s

=
g

‘s
u

g

which may be large, so that the value of @I in (33) may be very different from the

unmodified value kBCS'
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1. C02 SHORT-PULSE AMPLIFICATION STUDIES

National Science Foundation (Grant GK-37979X)

A. H. M. Ross

Recent advances in high-pressure gas discharge technology have made possible the
deposition of as much as 300 joules/liter in carbon dioxide laser media. Because of
the several vibration-rotation degrees of freedom of the CO2 molecule, this energy is
stored in a great many molecular states, and therefore efficient extraction of it requires
cptical pulse lengths that are large compared with the kinetic collision times governing
the energy-exchange processes in the medium. Operation of high-pressure devices as
oscillators yields as much as 50 joules/liter from the afterglow of a pulsed discharge,
and quasi cw operation has given hundreds of joules/liter in 10-100 us pulses. Extrac-
tion in ns pulses is far less efficient. In this report we summarize theoretical results
from a multitemperature kinetic model formulated to describe ns pulse amplification by
devices operating at pressures above 1 atm. Numerical results for 1-atm and 5-atm
pulse amplifiers are presented.

Amplification of pulses comparable to, or faster than, kinetic collision times
requires consideration of the polarization of the molecules, and of inertial effects in the
molecular dipoles (for example, see Hopf and Rhodesl). Theoretical models incorpo-
rating only two vibration states and the full rotation spectrum will be adequate
descriptions. If energy is to be extracted efficiently, the pulse length must be several
collision times, in which case the coherence effects can be neglected, and the medium
can be described by a rate-equation model.

In the rate-equation limit the growth of a plane wave in a transversely uniform
medium with nonresonant loss « can be described by a first-order differential equation
in distance

gy

8I> . .
R N <|00°1,J'| - = [10°0,J] ¢ I, 1
(az " a o(w) c [ ] gJ[ | (1)
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where the stimulated emission cross section is

2
(o) = v T Yo (2)
olw) = Il E5 (oma )2 442
O O

with Nc the CO2 density, g7 the degeneracy of the Jth rotational state

gy=27+1, (3)

and [n1n2n3, J| is the fractional co,

(that is, the diagonal element of the density matrix for a single molecule). The spon-

population in the state of these quantum numbers

taneous emission time written here is that for the entire band; an individual line has

a matrix element proportional to the rotational matrix element

J for a P(J) line (J'=J-1)
= (4)
J+1 foranR(J)line (J'=J+1)

2
Tyg

We shall neglect frequency pulling effects, although in high-gain systems they will be
important if the input pulse is detuned appreciably.

We assume that the molecular kinetics can be described adequately by rate equations
in which only binary collisions are important. Even with the rate-equation model, the
six degrees of freedom of the CO2 molecule in its electronic ground state give rise to
so many important vibration-rotation states that the problem would be intractable with-
out further simplifying assumptions. The fact that the molecule is reasonably harmonic
in its low vibrational states, and that the interaction of vibration and rotation is weak
allows us to treat the relaxation of the various degrees of freedom substantially
independently. We also make use of the observation of Osipov and Stupochenk02 that
relaxation of molecular vibrations from a nonequilibrium distribution takes place in two
phases: first, a rapid relaxation to quasi equilibrium in which the various normal
modes of the molecule acquire a Boltzmann distribution of excitation, which can corre-
spond to a temperature far different from the kinetic temperature of the gas and second,
a slow relaxation of these quasi-equilibrium distributions to the kinetic tempera-
ture.

Since we are concerned with amplifiers in which the pumping takes place over a time
scale that is large compared with the kinetic collision times, it is reasonable to assume
that prior to the arrival of the electromagnetic pulse the vibrational states are dis-
tributed according to the partial equilibrium distribution

n n, n
[n,n,n,|= (l—s)(l—b)2 1(r12+1) b Za 3, (5)

17203 (1-a) s
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where s, b, and a are Boltzmann factors for the symmetric stretch, bending, and

asymmetric stretch modes (vl, Vos ¥ of the CO2 molecule. We have taken the state

)

3
. { .

[n1n2n3] to include all of the states [nln2n3], of which there are n, +1 (£ represents

an angular momentum around the symmetry axis of the molecule, and hence can take

-2, n.).

- -n_+2. -
on the values -n,, —-n , n2+4, R 5

2 2

(6)

w
i
®
>
o]
]
-
m | m
=110
w
| |

lon
n
o
e
ge}
|
-
o] m
|
o
| A |
3

o
1

€
= exp[— ﬁf—;] (8)

The rotation states also reflect a Boltzmann distribution
( 1 [ hcB heB
[HIHZHB’JJ = [n1n2n3J2gJ T exp[——k—T J(JH):I, (9)
Br B'r

where we assume that the rotational constant B is independent of the vibrational state

(CO2 has ¢cB = 11606 MHz and 11698 MHz in the upper and lower laser levels, respec-
tively). Doppler broadening of the laser lines is less than 1% of the homogeneous line-
width at 1 atm, so the velocity distribution of the molecules will be neglected.

Passage of an optical pulse will introduce deviations from these distributions. In
particular, a fast pulse will create a "hole" in the state [00°1,J'] (that is, it will
depress the population below that given by (5)), and a "peak" in [10°0, J| because of the
stimulated emission process. Judicious approximations allow a description of the kin-
etics in terms of variables giving the average occupations of the three vibrational
modes and the depths of the "holes" in both vibration and rotation. In particular, we

assume that the two laser states have the forms
[00°1] =z a + @ (10)
v

[10°0]:Z;ls+6 (11)

and that the other states retain their previous occupation probability exclusive of nor-

malization

-1 ™M o, N3
[nln2 3] =Z.s (n,+1) b “a ~, (nlnzng) # laser state. (12)
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The normalization condition requires

z ! = (1=a—f)(1-8)(1-b)° (1-a). (13)

Defining the occupation fractions for the individual modes

x = ¥ [mngq] (14)

9 mn

v, = = [mnq] (15)
mq

z =% |mnq], (16)

m

and with the assumptions (10), (11), and (12), we find the following expressions.

<
Xq = (l—a—ﬁ)(l—a)aq, q#0 orl

X, = 1 —-a—a+(a+ﬁ)a:(1—a—ﬁ)(l—a)+B& (17)
X = (1=a—-p)(1-a)a + a )

y, = (1-a=p)(nt1)b" (18)
z = (1-a-p)(1-s)s™, m+0 or]l

z, = 1 -s-L+ (atf)s = (1l=a—-P)(1-s) + a (19)

zZ

] (I1-a—B)(1-s)s + B.

These distributions are illustrated in Fig. VI-8.

While this assumption of "holes" in single vibrational states is a convenient approx
imation, the corresponding ansatz for the rotational distribution is supported experi-
mentally by the work of Cheo and Abrarns.3 They have found that the rotational
relaxation may be J-independent and all rotational levels are thermalized in one

collision time, so that the expression

[00°1,J'] = [00°1]| {z;l 2 g5, exp[— <khcf > J'(J'+1)j| + & (20)

B'r

with
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(21)

-1 hcB
Z = (1-§)

r <kBTr‘>
€ measures the depth of the "hole"

correctly parametrizes solutions of the model.
the other levels are populated

in the rotational sublevel depleted by the radiation;

_
E{
N
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~
~
X ~
q ~
—
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\\
-
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m \\
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Fig. VI-8. Assumed distributions of COZ normal vibrational
mode excitations.

in proportion to a Boltzmann distribution scaled in amplitude by 1-£ so that the net
A similar expression is

vibrational-state population is held constant as § varies.

[10°0,J] = [10°0] Z;I 2 gj exp {—(khcf > J(J+l)}— n (22)
B'r

assumed for the lower level:

with

hcB
r B .

Z—l = (].“T‘]) <k T

This rotational distribution is illustrated in Fig. VI-9.
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Assumed distributions of CO2 rotational -state

Fig. VI-9.
excitations.

. 4

The Landau-Teller assumption that the dependence of energy exchange cross sec-
tions is that of harmonic oscillator matrix elements can be used to determine the cross
We have taken into

sections for the processes to all orders from the measured rates.

account the following processes.

V-T in the Vo mode:

Ky
P
(n1n2n3) + M ~<__(nl, nz—l,n3) + M + eb

Intermode V-V between V3 and ONE

kan .
(nl’ n,+1, n;) + NZ(V) F(nln2n3) + N,(v+l) + 18 cm
Intermode V-V between Vg and 31/2:
kab -1
(nlnz, n3+1) + M T—— (nl,n2+3,n3) + M +.346 cm
104

QPR No. 111



(VI. APPLIED PLASMA RESEARCH)

Intramode V-V in vy

k
aa

(nyn,, ng+tl) + (nn'n):(n

1
1% n,n3) + (n

1 +1)

H 1
1 Hos 13

k
r
N

(i) + M <—(j') + M.

In addition, the lower laser state has been assumed to have a V-V relaxation of inde-
terminate nature which has been modeled by a simple exponential decay. Other V-T
processes could be included, but the principal loss rate from both Vs and VN is by the

Vo mode. Also, because of the close coupling of the v and v, modes by the Fermi reso-
nance (that is, large cross sections for the conversion of one member of a Fermi reso-
nant pair into the other), we have assumed that the v, and v vibrational temperatures

1 2
are equal. The proper variable for the description of the combined bath of states is

Q=2S+3, (24)
where S and B are the average occupancies of vy and Vot
- _,-1 _s
S= mz_ =2  1-5th (25)
m
-1 2b
= = e 26
B=Xny =2 =% (26)
n
A =7 gx =zl &2 4. (27)

For simplicity, we have also assumed €47 2 €}, SO that

s = b2. (28)

The derivation of the equations for A, N, Q, ¢, B, £, n and the kinetic-rotational energy
per particle is straightforward but tedious. Neglecting the e +  terms in (17)-(19) com-

pared to 1, we find (w= wo):

A
e

/kBT]

—€
=R [A(N+1)—(A+1)Ne an

e 2] ) - (B S

-R. (29)
i
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g1
R; = o(w) {[OO°1,J'] -2 [10°O,J]} }TIV (42)

Equations 1 and 29-36 (which are in the canonical form of a set of hyperbolic equa-
tions if t' is the retarded time t — z/c) have been solved numerically for a 30% CO2
gas mixture at I atm and 5 atm total pressure, The input pulse was a 1 ns (FWHM),

1 MW/Cm2 Gaussian shape. Initial conditions were calculated under the assumption
sufficient to give the small-signal gains

of equilibration of Q at TO, and of Ta = Tn

SMALL -SIGNAL GAIN PER cm]

5% /4%/ 3% T 5 atm
1

9 i

INTENSITY (W /em 2)

S | i |
O 2 4

L (meters)

Fig, VI-10. Peak intensity of amplified short pulse in CO2

media of known small-signal gain at 1 and 5 atm
total pressure. Gas mixture: 0,30:0,05:0,65
(COZ: NZ:He). Input pulse: Gaussian shape, 1 ns

FWHM, peak intensity 106 W/cmz.

QPR No. 111 107



(VI. APPLIED PLASMA RESEARCH)

illustrated; these are typical of those to be expected in various high-pressure
discharges. Peak pulse intensity as a function of depth in the amplifier is

shown in Fig. VI-10, and the output pulse shapes are shown in Fig. VI-11.

INTENSITY ( 108 w,/cmZ)

Z=0
(X 500)

-2.0 -1.0 0 1.0 2.0

TIME (ns)

Fig. VI-11. Temporal pulse profiles for amplifiers of
Fig. VI-10, 4%/cm small-signal gain at
1 atm, 3%/cm at 5 atm.

Note that there is substantial broadening of the pulse at 1 atm, while at 5 atm the output
is a reasonably faithful diplicate of the input, even after amplification by more than 1000
in intensity. Note also the extremely large saturation intensity at 5 atm; elementary
considerations of the saturation process show that it should scale approximately as

the square of the total pressure.
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2. AMPLIFICATION OF TWO HIGH-INTENSITY NANOSECOND
TEA CO2 LASER PULSES (AHN)

National Science Foundation (Grant GK-37979X)
U.S. Army - Research Office — Durham (Contract DAHC04-72-C-0044)

Y. Manichaikul
Experiment

We have previously reported on the generation and amplification of high-intensity
nanosecond pulses.1 Two or three of these pulses were produced. They were from
the P(16) transition, 2 ns wide (FWHM), separated by 12 ns. When these pulses were
focused into a three-electrode laser amplifier as shown in Fig. VI-12, a peak intensity
of 2-3 MW/cm2 was obtained, A beam splitter was used so that the intensity of the

pulses could be monitored. The input and output detectors were as shown in Fig. VI-12.,

In this experiment the detected input signals were delayed 100 ns by using 60 ft of

R - 100%, FLAT MIRROR
\

A INPUT
—
R = 100%, 2-m ~ ) \
, 2=m COPPER-DOPED
RADIUS OF CURVATURE NaCl BEAM AMPLIFIER o DETECTORS %

\ SPLITTER

/ /

¢ OUTFUT/

THREE-ELECTRODE TUBE

N

FROM CSCILLATOR OF HIGH -INTENSITY ne PULSE
GENERATING SYSTEM DESCRIBED PRE‘/IOUSLY.]

Fig. VI-12., Experimental arrangement for amplification of

high-intensity ns pulses. (See Y. Manichaikul.l)

RG-8 cable. The add mode of a Tektronix oscilloscope was used to display the signals
for both input and output pulses on the same screen. The two detectors were calibrated
against each other by comparing the oscilloscope picture of the input and output pulses

without discharge exciting the three-electrode laser amplifier. Figure VI-13a shows
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Fig., VI-14. LSGZ/LSCH vs partial CO,
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0.8 [ % pressure.
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Table VI-1. Experimental results,

No. Peo, SSG LSG, T ANy
(Torr) +10% +10% (°K) Nu(o)

1 3.5 0. 50 0.30 1180 0.12

2 6.5 0.70 0.36 1150 0.11

3 11.0 1. 50 0.76 1155 0.14

4 20,0 1.00% 0.52 845 0.11

5 23.0 1.50% 0.75 860 0.13

6 24,0 2. 00% 0.96 890 0.14

7 27.0 2. 50% 1.15 935 0.15

8 35.0 2. 00 0.81 830 0.10

Notes: >'=No1: measured directly; calculated from LSGl and the
peak intensity of the pulse.
I -1

SSG = in out

is the small-signal gain across the tube.
in
Here the intensity is less than 1 W/cm?.

LSGl, large-signal gain of the first pulse.

ij’ temperature of the asymmetric stretching mode cal-
culated from SSG.

AN

, fractional depletion of the 00°1 population by an
Nu(O) ns pulse.

AN , calculated from the large-signal gain and the inten-
sity of the pulse.

Nu(O), obtained from SSG.
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Figure VI-14 shows LSG’Z/LSG1 vs the partial pressure of CO2 studied. We have

LSG, A Iouti._' ini
ini

where i =1,2, with 1 and 2 representing first and second pulses. LSG1 (LSGZ) is
the large-signal gain of the first (second) pulses. The following observations can be
made from these measurements. (i) LSGZ/LSG1 is less than unity. This is to be
expected, since the first pulse had depleted a fraction of the population from the 00°1
level of COZ' (i1) The ratio LSGZ/LSGl is approximately 0.8 at CO2 partial pressure
of 3.5 Torr and the ratio increases slowly to 0.9 as CO2 partial pressure increases
to 20 Torr or higher, which is as expected, since the 00°1 level of CO2 was being
repopulated by the higher O nﬂm levels at a r'ate3 that is directly proportional to the
co, partial pressure.

Table VI-1 gives other experimental results of interest. We found that the large-

signal gain of our pulses is approximately one-half the small-signal gain, and the frac-
AN
u ,is between 0.10 and 0.15.

N, (0)

A theoretical model for the amplification of high-intensity nanosecond pulses is being

tional depletion of the 00°1 level,

developed. We shall present the theory, and make a comparison of theory and experiment

in a future report.
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