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Abstract. In this work we consider parallel algorithms for solution of nonlinear parabolic
PDEs. First mathematical models describing nonlinear diffusion filters are presented. The
finite–volume method is used to approximate differential equations. Parallel algorithms are
based on the domain decomposition method. The algorithms are implemented by using Par-
Sol parallelization tool and a brief description of this tool is also presented. The efficiency of
proposed parallel algorithms is investigated and results of the scalability analysis are given.
Theoretical predictions are compared with results of computational experiments. Application
of nonlinear diffusion filters for analysis of computer tomography images is discussed in the
last section of the paper.
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1. Introduction

The aim of this paper is to present parallel numerical methods and computational
results for processing two–dimensional images. The selected mathematical models
for image filtration are based on partial differential equations approach. Some very
popular image filters are obtained by convulsion with Gaussian function Gσ of in-
creasing variance. Application of the Gaussian filter is equivalent to solving a linear
parabolic problem [21]
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(1.1)

1 This work has been supported in part by Lithuanian State Science and Studies Foundation
grant V-04049 and Eureka grant CTBSTROKE E!2981.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/442080681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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where u0 is an initial image and t1/2 defines the the variance of the Gaussian func-
tion.

An important improvement of the edge detection theory has been proposed in the
pioneering work of Perona and Malik [17]. They introduced a nonlinear diffusion
equation of the porous medium type:

∂u(X, t)

∂t
=

2
∑

i=1

∂

∂xi

(

g(|∇u(X, t)| ∂u(X, t)

∂xi

)

, X = (x1, x2) ∈ Q, (1.2)

where g is a smooth nonincreasing function, which is tending to zero at infinity. Here
we use a notation

∇u(X, t) =
(∂u(X, t)

∂x1

,
∂u(X, t)

∂x2

)

.

The equation selectively diffuses the image in regions where u is smooth and stops
the diffusion where ∇u(X, t) is large. The diffusion is strongly slowed down on
edges of the image for large gradients. Outside of edges this nonlinear filter behav-
iuor is similar to the linear case of equation. Examples of function g were given in
[17]

g(s) =
1

1 + s2
, g(s) = e−s2

.

A direct application of this equation is restricted due to two difficulties:

• It can not be used for noisy signals.

• The equation itself can be unstable for some g. For example if sg(s) is decreasing
at some s then we get the inverse heat equation, which is ill posed (see [2]).

It was proposed by Catte, Lions, Morel and Coll [17] to define a modified non-
linear initial–boundary value parabolic problem in (X, t) ∈ Q × (0, T ]:
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+ f(u0 − u),

∂νu = 0, (X, t) ∈ ∂Q × (0, T ],

u(X, 0) = u0(X) , X ∈ Q .

(1.3)

Diffusion filters are extensively considered in the book of Weickert [20], a good
review on image processing with partial differential equations is presented by Mikula
[13].

The rest of the paper is organized as follows. In Section 2, we formulate nonlinear
diffusion problems, which add new nonlinearities and enable slow and fast diffusion
effects in image processing. In Section 3, we present finite–difference schemes for
solving numerically the given initial–boundary value problems. Parallel versions of
two algorithms are presented in Section 4. The domain decomposition is used to
construct parallel algorithms and the are implemented by by using the parallel array
object tool ParSol. This tool is described briefly at the beginning of this section. Then
a parallel version of the code follows semi-automatically from the serial one. We also
investigate the efficiency of parallel algorithms. In Section 5, we discuss numerical
experiments with real and artificial images.
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2. Nonlinear Diffusion Filters

In some applications it is important to make the image multiscale analysis locally
dependent not only on values of the intensity function u but also on the position in
the image X . For example we want to apply a different speed of diffusion process in
different parts of the image or for different ranges of the intensity function. In such
situations the following nonlinear diffusion problems can be used [11]

∂b(X, u)
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=
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In the points, where the derivative β′
u is small (b′u is large) the diffusion process is

slowed down, while where β′
u is large (b′u is small) this process is fasted up. In-

teresting examples of application of such nonlinear diffusion problems are given in
[11, 13].

3. Finite–Difference Approximations

Usually a discrete image is given on a structure of pixels with rectangular shape. This
fact defines a discrete space mesh

ωh =
{

(x1i, x2j) : xαk = kh, k = 0, 1, . . . , Nα

}

.

We also introduce a uniform time grid

ωτ =
{

tn : tn = nτ, n = 0, 1, . . . , M
}

.

The following notation for discrete functions and finite-differences is used:

Un
ij = U(x1i, x2j , t

n), (x1i, x2j , t
n) ∈ ωh × ωτ ,

∂tU
n
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τ
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h
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ij

h
,

∂−
x2

Un
ij =

Un
ij − Un
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h
, ∂+

x2
Un

ij =
Un

i,j+1 − Un
ij

h
.

3.1. Explicit approximation

By using the finite volume method for approximation of space derivatives, approx-
imating the time derivative by the forward Euler formula and treating the diffusion
and nonlinear terms of equation (1.3) from the previous time step we get the follow-
ing explicit discrete scheme
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)

, (3.1)

where aα defines the discrete approximation of the nonlinear diffusion coefficient at
the boundary of each control volume, e.g.:[18]
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,

where V n
ij = Gσ ∗ Un

ij . The convergence of this scheme is investigated in [2].

3.2. Semi-implicit approximation

The explicit scheme (3.1) is stable only if τ 6 ch2. In order to get an uncondition-
ally stable scheme (with respect to the linear stability condition) we consider the
following semi–implicit discrete approximation:

∂tU
n+1

ij =

2
∑

α=1

∂+
xα

(

aα(Un
ij) ∂−

xα

Un+1

ij

)

+ f
(

u0,ij − Un
ij

)

. (3.2)

The convergence analysis of this scheme is presented in [14]. Some implicit and
semi–implicit finite–difference schemes for solving nonlinear parabolic problems
were proposed and investigated by Čiegis et al. [5, 6].

At each iteration the obtained sparse system of linear equations is solved by
iterative Conjugate Gradient (CG) algorithm. It is well–known that iterative methods
can be parallelized much more simply than the direct methods.

Let us write a linear system for solving one iteration of (3.2) as

AV = F , V = Un+1 , (3.3)

then the preconditioned CG algorithm can be written in the following form [8]:

procedure �-J�> @	>/7��XA�=������ A�=
	�O	7���V-J	S
begin

(1) V 0, n = 0, R0 = AV 0 − F,
(2) BW 0 = R0, P 0 = W 0 .
(3) while

(

(W n, Rn) > ε (W 0, R0)
)

(4) Gn = AP n ,

(5) τn+1 =
(W n, Rn)

(Gn, P n)
,

(6) V n+1 = V n − τn+1P
n ,

(7) Rn+1 = Rn − τn+1G
n ,

(8) BW n+1 = Rn+1 .

(9) βn =
(W n+1, Rn+1)

(W n, Rn)
,

(10) P n+1 = W n+1 + βnP n ,
(11) n := n + 1 .
(12) end while

end
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Here B is a preconditioning matrix. We restrict ourself to using only diagonal
preconditioners, since such preconditioners can be parallelized efficiently. More ef-
ficient preconditioners are known, e.g. the incomplete IC factorization precondition-
ing [8], but they are serial in nature. Thus there have been many studies of the use
of various ordering techniques to overcome the trade–off between parallelism and
convergence in incomplete factorization (see, e.g., [7, 15]). The scalability analysis
of parallel PCG algorithms is presented in [4, 10].

3.3. Kačur’s scheme

For completeness of the material we also present special approximations for nonlin-
ear parabolic problems (2.1) and (2.2) with slow and fast diffusion [11]. In the case
when b(x, s) is nondecreasing Lipschitz continuous in s, b(x, 0) = 0 and β(x, s) ≡ s
the solution of (2.1) is approximated by the solution θn+1 of the regular discrete el-
liptic problem

λn+1 θn+1 − Un

τ
=

2
∑

α=1

∂+
xα

(

aα(Un
ij) ∂−

xα

θn+1

ij

)

+ f
(

u0,ij − Un
ij

)

, (3.4)

where λn+1 is the relaxation function, which should satisfy the condition

1

2
τd

6 λn+1
6 min

{B
(

X, Un + α(θn+1 − Un)
)

− B(X, Un)

θn+1 − Un
, K

}

.

Here α ∈ (0, 1), K > 0, d ∈ (0, 1) are parameters of the method, α is close to 1,
and K is large. Function B is defined as

B(X, s) = b(X, s) + τds .

Then a new solution Un+1 is obtained by solving the algebraic equation

B(X, Un+1) = B(X, Un) + λn+1
(

θn+1 − Un
)

.

Similarly equation (2.2) is approximated by the finite–difference scheme
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=

2
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(

B(Un
ij)

)

∂−
xα
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ij

)

+ f
(

u0,ij − Un
ij

)

, (3.5)

The other interesting for applications case is obtained when β(x, s) is nonde-
creasing Lipschitz continuous in s, β(x, 0) = 0 and b(x, s) ≡ s. The solution of
(2.2) is approximated by the solution θn+1 ≈ β(x, Un+1) of the following regular
discrete elliptic problem

µn+1 θn+1 − β(Un)

τ
=

2
∑

α=1

∂+
xα

(

aα(Un
ij) ∂−

xα
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)

+ f
(

u0,ij − Un
ij

)

, (3.6)
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where µn+1 is the relaxation function, which should satisfy the condition

1

2
τd

6 µn+1
6 min

{B−1
(

X, B(Un) + α
(

θn+1 − β(Un)
))

− Un

θn+1 − β(Un)
, K

}

.

Here function B is defined as

B(X, s) = β(X, s) + τds .

The new solution Un+1 is obtained from the algebraic correction

Un+1 = Un + µn+1
(

θn+1 − β(Un)
)

.

Similarly equation (2.1) is approximated by the finite–difference scheme

µn+1 θn+1 − β(Un)

τ
=

2
∑

α=1

∂+
xα

(

aα

(

β(Un
ij)

)

∂−
xα

θn+1

ij

)

+ f
(

u0,ij − Un
ij

)

, (3.7)

4. Parallel Algorithms

The power of modern personal computers is increasing constantly, but not enough to
fulfill all scientific and engineering computational demands. In such cases, parallel
computing may be the answer. Parallel computing not only gives access to increasing
computational resources, but it also may be economically feasible – lots of computers
are connected to various networks now, and a large portion of them spend most of
their time idle.

The major difficulty in using parallel computers, however, is that writing a par-
allel program (or parallelizing existing sequential codes), requires the knowledge of
special methods and tools, which is not trivial to be mastered [16]. Hence the main
obstacle in the spreading parallel computing is the lack of specialists who may create
parallel software.

One of the ways to improve the situation is the creation of tools to simplify the
parallelization of algorithms. We have developed a new tool, which can be used for
semi–automatic parallelization of data parallel algorithms, that are implemented in
����� .

4.1. Parallel programming tools and standards

In this section we describe very briefly the main parallel programming standards and
tools used for parallelization of serial codes which can be parallelized using the data
decomposition method.

MPI (Message Passing Interface) is a standard for a � / ����� or Fortran libraries [19].
It is wide spread, has lots of implementations on different platforms, both com-
mercial and free. However, it is quite complicated, and parallelizing programs
using MPI is a tedious process [9].
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HPF (High Performance Fortran) is an extension of Fortran language standard. HPF
is well suitable for algorithms with parallel data. If program is written in stan-
dard Fortran following some simple rules (considering the usage of Fortran ar-
rays), then it may be parallelized just by adding several directives, describing
such things as processor topology [16]. The drawbacks of HPF are diminishing
popularity of Fortran language and the need to develop separate HPF compiler.

OpenMP (Open Multi Programming) is an Application Program Interface (API)
that may be used to explicitly direct multi-threaded, shared memory paral-
lelism [3]. It provides a standard among a variety of shared memory architec-
tures/platforms. OpenMP establishes a simple and limited set of directives for
programming shared memory machines. Significant parallelism can be imple-
mented by using just 3 or 4 directives.

We also mention Unified Parallel C (UPC), which is an extension of the C pro-
gramming language designed for high performance computing on large-scale paral-
lel machines. The language provides a uniform programming model for both shared
and distributed memory hardware. The programmer is presented with a single shared,
partitioned address space, where variables may be directly read and written by any
processor, but each variable is physically associated with a single processor. UPC
uses a Single Program Multiple Data (SPMD) model of computation in which the
amount of parallelism is fixed at program startup time, typically with a single thread
of execution per processor [1].

4.2. Parallel array objects

The aim of ParSol is to bring HPF parallelization simplicity to ����� language, using
popular parallelization standards. Hence, the current ParSol library features are:

• Created for ����� programming language;
• Based on HPF ideology;
• The library heavily uses such ����� features as OOP and templates;
• Only standard � / ����� features are used;
• Currently, MPI 1.1 standard is used to implement parallelization [9, 19];
• ParSol currently is open source library.

Due to compliance to general standards, ParSol is expected to be used on wide
variety of platforms. Currently ParSol has been tested on the following configura-
tions:

• MS-Windows OS, MS Visual ����� compiler, MPICH MPI library;
• Linux OS, gcc compiler, LAM MPI library ( J�V�V��������	L��	=	?�A�@ D�L�V	HWD =XV );
• IBM SP4 supercomputer, VisualAge ����� compiler, IBM MPI library

( J�V�V��������	�����ED58��KB�>�8	A%D ��V ).

At present, ParSol may be used for parallelization of data–parallel or domain–
decomposition algorithms.
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ParSol structure and usage

 

PS_CmArr ay< ElemType, DimCount > 

PS_CmArr ay_2D< ElemType > 

PS_CmArr ay_1D< ElemType > 

PS_CmArr ay_3D< ElemType > 

PS_ParArr ay< ElemType, 
DimCount > 

PS_CustomTopology PS_1DTopology 

PS_2DTopology 

PS_3DTopology 

… 

… 

PS_ParArr ay_2D<ElemType> PS_ParArr ay_1D<ElemType> … PS_ParArr ay_3D<ElemType> 

Figure 1. ParSol library class diagram.

ParSol class diagram is shown in Fig. 1. The main elements of the library are:

Sequential array classes

These are the classes to be used instead of native � / ����� arrays. No MPI or other
libraries, except ParSol itself, is necessary to use them. Comparing to native � / �����
arrays, ParSol sequential arrays have a number of advantages for programming math-
ematical algorithms, such as virtual indexes, built-in array operations, automated
management of dynamically allocated memory, periodical boundary conditions.

The main functionality resides in template class ����� �TS#;-7�7�A�� . However, general
functionality requires interface complexity. So children are derived for special cases
(1D, 2D, 3D arrays), that provide intuitive and user-friendly interface. It is recom-
mended for end-user to use those classes whenever possible.

Parallel array classes

If parallel arrays are to be used in place of sequential ones, it is natural to make them
the descendants of appropriate sequential arrays, adding parallelization code to the
sequential array functionality. However, parallelization is similar for different kinds
of arrays. So parallelization code is localized in class ����� ��A/7�;�7-7�A�� , and is used in
parallel array classes by multiple inheritance.

Parallelization

A general schema for construction of data parallel algorithms is illustrated on Fig. 2.
It consists of the following steps:

1. Determine the part of sequential array that belongs to given process;
2. Determine the neighbour processes that will participate in information exchange;
3. Determine the amount of data to be exchanged with every neighbour process;
4. Exchange information with neighbours, when required.
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a) b)

Figure 2. Transition from sequential to parallel array: a) serial array and an example of the
stencil, b) local part of one processor with the appropriately extended set of nodes.

Topology classes

The purpose of these classes is to ensure that all processes are in proper order for par-
allel array functionality. In HPF, this functionality is performed by special directives.
All general code resides in ����� �/HI@�V�O�S ��O	��O�=-O 	�� class. As with sequential array
classes, there are also descendants ��� _{1,2,3} ����O ��O�=	O 	 � , which provide end–user
with more friendly interface for one-, two- and three-dimensional cases.

Stencil classes

A stencil is determined depending on requirements of the computational scheme.
Based on stencil, different amount of information needs to be exchanged among
neighbours (see Fig. 2b). This part of data is required for parallel arrays to operate
properly.

To use ParSol, a programmer must develop his/her sequential application in the
same way as without ParSol, only using ParSol arrays wherever computational data
is stored. The other requirements are to specify the stencil, make algorithm indepen-
dent on the order in which array points are processed and use global array operations
provided by ParSol wherever possible. The last one may also be called an advan-
tage, because it frees programmer from implementation of simple tasks, allowing to
concentrate on problem solving, and makes code cleaner.

The parallelization of such a sequential program takes the following steps:

1. Replace includes of sequential headers with parallel ones, for example
��� � ��O�S�S�O	B�;�7�7�A��EDUJ to �����
��A	7�A�=�=->�=	;�7�7�A �ED J ;

2. Replace sequential classes with their parallel analogy in variable declarations
only;

3. Add MPI initialization code (one line at the beginning of the program);

4. Add topology initialization code (in its simplest case, one line at the beginning
of the program);

5. Specify when array neighbours should exchange data.

Finally, MPI library should be linked during a building process.
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4.3. Computational experiments

In this section we present some results of computational experiments. Computations
were performed on PC cluster "Vilkas" of Vilnius Gediminas technical university
and IBM SP4 computer at CINECA, Bologna.

Explicit nonlinear algorithm (3.1)

We have filtered an artificial image of dimension N ×N . First we consider a parallel
implementation of the explicit nonlinear algorithm (3.1). Table 1 presents experimen-
tal speedup Sp(N) and efficiency Ep(N) values for solving problems of different
size on PC cluster "Vilkas". Here p is the number of processors,

Sp(N) =
T1(N)

Tp(N)
, Ep(N) =

Sp(N)

p

and Tp(N) is CPU time required to solve the problem with p processors. A two–
dimensional data decomposition p1×p2 was used with p1, p2 values as close to each
other as possible. If p is a prime number then we get one–dimensional data decom-
position. The image processing was done till time moment T (N) and the following
CPU times T1(N) (in s) were obtained for the sequential algorithm

T (160) = 0.1, T1(160) = 213.3, T (240) = 0.03, T1(240) = 332.8,

T (320) = 0.01, T1(320) = 361.6.

Table 1. The speedup and efficiency for explicit algorithm (3.1) on PC cluster.

p Sp(160) Ep(160) Sp(240) Ep(240) Sp(320) Ep(320)

2 1.56 0.780 1.76 0.880 1.87 0.934
4 2.36 0.590 3.00 0.750 3.45 0.862
6 2.78 0.463 3.93 0.655 4.77 0.795
8 2.95 0.369 4.69 0.585 5.88 0.735
9 3.16 0.351 5.04 0.560 6.28 0.698

11 3.33 0.303 5.50 0.500 7.09 0.644
12 3.35 0.279 5.64 0.470 7.47 0.623
15 3.39 0.226 6.38 0.425 8.56 0.571

Table 2 presents experimental speedup Sp(N) and efficiency Ep(N) values for
solving the same problem on SP4 computer. The following CPU times T1(N) (in s)
were obtained for the sequential algorithm

T1(80) = 57.24, T1(160) = 471.2, T1(320) = 770.4.
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Table 2. The speedup and efficiency for explicit algorithm (3.1) on SP4.

p Sp(80) Ep(80) Sp(160) Ep(160) Sp(320) Ep(320)

2 1.975 0.988 1.984 0.992 2.004 1.002
3 2.794 0.931 2.950 0.985 2.970 0.990
4 3.741 0.935 3.928 0.982 3.986 0.996
6 5.168 0.861 5.463 0.910 5.916 0.986
8 6.766 0.846 7.293 0.911 7.831 0.979
9 6.784 0.754 7.604 0.845 8.467 0.941

12 8.701 0.725 10.19 0.849 11.216 0.934
16 10.84 0.677 12.75 0.797 15.041 0.940
24 14.18 0.591 18.24 0.760 21.961 0.915

Scalability Analysis

In this section we will estimate the complexity of the parallel implementation of
discrete scheme (3.1). The complexity of the serial algorithm is given by

W = γMN2 ,

where M is the number of iterations, N × N is the dimension of the image, and γ
estimates the CPU time required to implement one basic operation of the algorithm.

The parallel algorithm is based on the domain decomposition method. This data
decomposition is implemented automatically by parallel array objects. The nodes of
2D image can be partitioned among the processors by using 1D and 2D Cartesian
mappings.

Let p1 × p2 be a topology of processors. Then the computational complexity of
parallel algorithm (3.1) depends on the size of largest local grid part, given to one
processor. It is equal to

Tp,comp = γM
⌈N

p1

⌉

×
⌈N

p2

⌉

,

where dxe denotes a smallest integer number larger or equal to x. The efficiency
of the parallel algorithm depends on the disbalance of sizes of the distributed local
subgrids. We define the computational overhead of the parallel algorithm

Hcomp(p1, p2) = p Tp,comp − W .

It is always important to reduce this disbalance by selecting a proper topology of
processor distribution. We illustrate this statement by two simple cases. First let us
assume that N = 84 and p = 16. Considering three possible distributions of proces-
sors we obtain the following computational overheads of the parallel algorithm

Hcomp(1, 16) = 504Mγ, Hcomp(2, 8) = 336Mγ, Hcomp(4, 4) = 0 .

Let us assume that no additional overhead is introduced by the parallel algorithm.
Then the efficiency Ep(N) can be written as
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Ep1×p2
(N) =

W

W + Hcomp(p1, p2)
=

1

1 + Hcomp(p1, p2)/W
.

Thus we get

E1×16(84) = 0.933, E2×8(84) = 0.955, E4×4(84) = 1 .

The second example illustrates the statement that in some cases a parallel algo-
rithm can be faster if the number of processors is reduced. Let assume that N = 80,
then we compare the speed-up of the parallel algorithm with 12 and 13 processors:

S3×4(80) = 11.85, S1×13(80) = 11.43 .

Additional overheads are introduced by any parallel algorithm when one proces-
sor sends data to other processors. Let assume that two processors are exchanging n
elements. This can be done in α+βn time by using e.g. the odd–even data exchange
algorithm [12]. Here α is the message startup time and β is the time required to send
one element of data.

Data Exchange Protocols

Three different data exchange protocols are implemented in ParSol tool and users
can select each of them by specifying simple directives.

All-At-Once

In the first part of this scheme, every process initializes all sends and receives with all
possible neighbours at once, using ����� � �	V�A/7�V . In the second part, the process simply
waits for all started communications to complete (using cycle with ����� �
��>�@�V ). In
this scheme, it is up to MPI implementation to determine the best way to manage
sends and receptions. It is expected that the developers of MPI library will optimize
this part of the library for each type of parallel computer.

This protocol leads to a non-blocked data communication between processors
and some computations may be performed between the first and second parts of data
communication algorithm.

Pair-By-Pair

In this scheme, every process communicates with all possible neighbours in strict
order by using the odd-even communication algorithm separately for each dimen-
sion. Communication with the next neighbour will not start until the communication
with previous neighbour is finished. When communicating with the given neighbour,
both send and receive are initialized at the same time, using � ��� � �/V�A/7�V , then wait-
ing till completion of both operations (using ����� ����A ��V ). We note that all processors
communicate in parallel.

Pair-Ordered

This scheme is similar to Pair-By-Pair scheme, and differs only in the way communi-
cation between two specific neighbours takes place. In this scheme, it is strictly deter-
mined which neighbour sends data first. Data is send and received using ����� � �/V�A	7�V –
� ��� ����A ��V combination, which is analogous to � ��� � ��>XB�C or ����� ����>�8TL .
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4.4. Analysis of communication costs

In this section we investigate how data communication costs depend on the number
of processors and on the selected topology of their distribution. We restrict our anal-
ysis to the odd-even algorithm and will assume that the communication network of
the parallel computer is a 2D torus.

Let the size of image is N × N and the number of iterations is M . First we use
one-dimensional topology p × 1 of processors. Then data communication time is
given by

Kp×1(N) = (2α + 2βN)M .

In the case of
p

2
× 2 topology this additional overhead of the algorithm is equal to

Kp/2×2(N) =
(

3α +
p + 2

p
βN

)

M .

If processors are distributed as
√

p × √
p torus, then data communication time is

given by

K√
p×

√
p(N) =

(

4α +
4N√

p
β
)

M .

Thus for the torus topology communication costs are decreased when a number of
processors is increased.

Now we will investigate results of computational experiments in order to estimate
communication costs for PC cluster "Vilkas" and IBM SP4 supercomputer. First, we
note that computational speed of one PC node is two times faster than SP4 node.
Second, it is known that the network of the given PC cluster has comparatively very
large latency, i.e. α � β. This explains why the efficiency of parallel algorithm is
better for IBM SP4 computer and why the speedup Sp saturates more fastly for PC
cluster.

In Table 3 we present overheads of the parallel algorithm implemented on the
PC cluster. As was stated above they coincide with communication costs. Since the
number of iterations is different for different values of N , we have scaled the results
with respect to N = 160.

Table 3. The communication costs for explicit algorithm (3.1) on PC cluster.

p Kp(160) Kp(240) Kp(320)

2 29.8 34.2 32.1
4 37.0 41.8 36.0
8 41.3 44.0 40.8

12 45.8 46.9 45.7

It follows from results presented in Table 3 that communication costs depend
only slightly on N and thus the latency error component α dominates the total com-
munication error. Using this information we can predict that no practical speed-up
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can be expected for solving a smaller problem with the image size 80 × 80. The
computation time of the serial algorithm is T1(80) = 26.03 (iterations are done till
T = 0.2). Applying our theoretical model we predict the following complexity of
the parallel algorithm:

T2,pred(80) =
26.03

2
+

29.8

2
= 27.9, T4,pred(80) =

26.03

4
+

37

2
= 25.0,

T8,pred(80) =
26.03

8
+

41.3

2
= 23.9.

Computational experiments have confirmed these theoretical predictions:

T2(80) = 27.35, T4(80) = 24.51, T8(80) = 24.32.

Scalability analysis

The scalability analysis of any parallel algorithm enables us to find the rate at which
the size of problem W needs to grow with respect to the number of processors p in
order to maintain a fixed efficiency of the algorithm. Then the isoefficiency function
W = g(p, E) is defined by the implicit equation [12]

W =
E

1 − E
H(p, W ) . (4.1)

For simplicity of notation we take E = 0.5.

Let us consider p × 1 topology of processors. The total overhead of the paral-
lel algorithm for discrete scheme (3.1) is given by data communication costs, thus
H(p, W ) = (2α + 2βN)M. Due to the stability requirement of the explicit scheme
M = cN2, thus we get the following equation

γcN4 = 2αcN2p + 2cβN3p,

or

W =
2α

√
c√

γ
pW 1/2 +

2βc1/4

γ3/4
pW 3/4 .

In this case it is possible to get the isoefficiency function in a closed form as a func-
tion of p, but it is more convenient to analyze the influence of each individual term.
The component that requires the problem size to grow at the fastest rate determines
the overall asymptotic isoefficiency function. For 1D topology of processors the over-
all asymptotic isoefficiency function is determined by the second term of the total
overhead function

W =
16cβ4

γ3
p4 = O(p4) .

It requires a linear growth of N with respect to p to maintain a certain efficiency E.

Let us consider
√

p×√
p topology of processors. Then the isoefficiency function

is defined by the following equation

W =
4α

√
c√

γ
pW 1/2 +

2βc1/4

γ3/4

√
p W 3/4 .
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In this case both components require the problem size to grow at the same rate and
the overall asymptotic isoefficiency function is given by

W = O(p2) .

It requires only a linear growth of the image size N×N with respect to p to maintain
a certain efficiency E.

Semi–implicit nonlinear algorithm (3.2)

Next we consider a parallel implementation of the semi–implicit nonlinear algorithm
(3.2). The main computational steps are the following:

• Pre-smoothing of the image. A few steps of the explicit linear scheme are done.
• Solution of a system of linear equations by the CG iterative method.

Implementation of one CG iteration requires to compute

• Matrix–vector multiplication, which is equivalent to application of the explicit
difference scheme;

• Global reduction operation, when inner–product of two vectors is computed.
Such operation is implemented as a built-in method of parallel array objects of
ParSol tool.

Scalability analysis of parallel preconditioned CG algorithms is done in [4, 10].
Table 4 presents CPU times Tp(N) (in s) required to solve the given image process-
ing problem on SP4 computer for different sizes of images.

Table 4. CPU times Tp(N) for implicit nonlinear algorithm (3.2.)

p Tp(160) Tp(320) Tp(480)

1 64.97 241.4 281.9
2 26.82 86.71 118.5
4 12.89 40.37 63.94
6 9.24 26.91 42.84
8 7.59 21.37 32.44

16 4.83 10.30 16.44

5. Processing of CT Images

One of the topical problems in computed tomography (CT) is reliable allocation
of ischemic stroke area. A precise solution of this problem allows us to evaluate
the volume of stroke and helps the medics to select the tactic of treatment properly.
Possibility to solve this problem quickly enables automatic processing of CT images.
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The aim our research is to develop a specialized software and to implement it as a
tool. High rates of calculations can be achieved by using parallel computing, which
allows to use personal computers of small hospital.

Stroke region in CT images can be of various size and form, but in all cases sorp-
tion susceptibility of touched area is 1.5-2 times larger. The example of CT image is
given in figure 3a, the size of the image is 512X512 pixels.

     

a) b)

     

c) d)

Figure 3. An image of human brain ischemic stroke in computed tomography (ischemic
stroke region is denoted by darker color): a) the initial image, b) after 20 iterations, c) af-
ter 40 iterations, d) after 100 iterations.

In CT processing it is important not to disturb contours of the stroke area, since
they are used for calculation of the volume of stroke area. This information is im-
portant for medics. One of advantages of non-linear filters is to preserve edges of the
images. On figures 3b,c,d results of CT filtering by non-linear diffusion filters are
presented after 20, 40 and 100 iterations.

As it is visible from results of filtering, contours of the image are not disturbed,
thus a localization of CT stroke area is possible by using standard procedures (for
example, differential filters). For such localization there is no need to perform 100
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iterations, since we can see good enough results after 40 or less iterations. We note
that apriori estimation of required number of iterations is not a simple task. It is
even more important if we try to develop a specialized tool for automatic detection
of stroke region. As it follows from results of numerical experiments (see 3c,d ),
nonlinear filters are not damaging the image even after large number of unnecessary
iterations. This simplifies their usage for automatic recognition of stroke area.

The goal of our work is to select non-linear diffusion filters, specially adjusted
for CT processing. It is required to select parameters of filters to process the stroke
region efficiently and quickly. The effectiveness is estimated statistically, performing
large amount of numerical experiments.
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Apie lygiagrečiuosius algoritmus, skirtus netiesinių difuzijos lygčių sprendimui ir jų nau-
dojimą vaizdų filtravimui

R. Čiegis, A. Jakušev, A. Krylovas, O. Suboč

Šiame darbe nagrinėjami lygiagretieji algoritmai, kurie skirti netiesinių nestacionarių difuzi-
jos lygčių sprendimui. Pirmiausia yra suformuluoti netiesinių filtrų matematiniai modeliai. Šie
uždaviniai aproksimuoti baigtinių t ūrių schemomis.
Lygiagretieji algoritmai konstruojami duomenų lygiagretumo metodu. Jie realizuoti autorių
sukurtu ParSol programavimo įrankiu. Pateiktas trumpas šio įrankio aprašymas. Ištirtas lygia-
grečiųjų algoritmų efektyvumas ir pateikti algoritmų išplečiamumo analizės rezultatai. Teori-
nės išvados palygintos su skaičiavimo rezultatais. Netiesiniai difuziniai filtrai pritaikyti galvos
kompiuterinių tomogramų filtravimui.


