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F. W. Chambers, R. J. Hawryluk, A. Bers

Introduction

Nonlinear wave-wave coupling, which has received considerable attention in recent

years, is of particular interest at present in the development of laser fusion. As dis-

cussed by Rosenbluth and Sagdeev,l instabilities such as stimulated Brillouin and Raman

scattering can determine the feasibility of several methods proposed to attain laser

fusion. It is important not only to determine the threshold for the instability and its

saturation mechanism but also to find out whether the instability is absolute or convec-

tive. Another proposal for nonlinear wave-wave coupling, which has been discussed

by Bekefi, is its use as a plasma diagnostic tool.

In order to design an experiment to verify the calculations for coupling coefficients

and study the space-time development of the instability, the experimentalist must be

familiar with the magnitude of the proposed effect and threshold conditions for the effect

to be observed. XWe have evaluated a number of different coupling coefficients for two

electromagnetic modes coupling to an electrostatic mode of a plasma. We have assumed

throughout a coherent wave-wave interaction at resonance in an infinite homogeneous

medium without density gradients, as discussed by Bers,3 whose formalism is employed

in this report. A second-order current resulting from the presence of the two electro-

magnetic modes is calculated. The time rate of change of the electrostatic mode ampli-

tude is determined from this second-order current, which acts to drive the mode. The

coupling coefficient thus derived can be used to relate the changes of amplitude of any

QPR No. 110



(IV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

one mode to the amplitudes of the other two modes. In this report we do not derive the

coupling of modes theory but only describe the pertinent equations.

Theory

We shall discuss only 3 wave interactions. The mode-coupling equations are

/ + 1 + ) al = PKa2a3

at+ V Z = -p2K ala 3

at Vg3
V + 3)a3 -p 3K

a I a 2 -

These equations couple three modes at (l), k1) ( 2 , k 2 ) and (w3' k 3 ), where we assume

that modes 1 and 2 are electromagnetic, with wl as the higher frequency. Furthermore,

we assume that the resonance conditions are satisfied exactly:

k 3 = k - k 2

W3 = I - 2

We allow for a weak phenomenological damping by including yn in the coupling equa-

tions. We define an by

E 8D

a (-r, t) E (
n =0 n

E =eE ;n n n
- 2
e = 1;
-n

E real,n

where e n is the complex polarization vector. Dn

persion tensor D.

is defined in terms of the general dis-

D (k, ) =e * D(k, w) - e .n n n

The parity or the sign of the mode energy, pn is defined as

aDn aD
n n

Pn =aw aw

The coupling coefficient is given by
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-3

-1 e3 2(10)

43 (C3/2 aD aD ZD 1/2

1 aw aw aw

-3J2 is the second-order nonlinear current at w3,k 3 which drives the interaction. Note

that we are considering only nonlinear interactions where momentum and energy are
--3

conserved; thus, the same K appears in all three equations. J 2 for modes 1 and 2
3

transverse (k E = 0) is given by

-3
J k k

2 1 *2 1i 2 -

E1E2 2noq e2 0- el 3 2noq 2 e 3 e 2

2 3 (-k2  . -1  1e ) (3 ( c 7) + (1 - 2 ), (11)
2n q

where = is the first-order conductivity at w n , k n , as derived from the fluid model.

For electromagnetic waves with w >> w we can assume a scalar conductivity that sim-

plifies Eq. 11, since the second and third terms cancel. The resultant second-order

electron current, properly symmetrized is

-3
J -iqe (12)

E E - 2me 3 k3 e1 2 '.

Calculation of Coupling Coefficients

a. EM/EM/EP Coupling

In this coupling, two electromagnetic waves propagating at an angle c, whose polar-

ization vectors are at an angle a (a #O), interact to produce an electron-plasma oscil-

lation. The angles are delineated in Fig. IV-1; note that a magnetic field has been

included, although for this coupling we assume B = 0, k D << 1, and ignore the ion con-

tribution to the plasma oscillation. With these approximations,

2 2 22 2
= w + 3k v 2 (13)

3 pe Te pe

q k 3 cos a (1W2Wpe
K M W. (14)

E /2o) \me l Z/ 8

Two cases are of special interest.
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Fig. IV-1. Diagram of wave vectors and angles for three-wave couplings.
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Dispersion-relation diagrams for several collinear
three-wave couplings (not to scale).
(a) Raman forward scattering.
(b) Raman backward scattering.
(c) Brillouin backward scattering.
(d) Whistler backward scattering.
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Forward Scattering (¢= 00) (Fig. IV-Za).

If 1l, 2 >>pe then pe = ck3 = c(kl-k 2 ).

q I pec 1 W zpe /
K= - 2 (15)

1/2 mecl/ 8

Backward Scattering (4= 1800) (Fig. IV-2b).

1 + 2 2_ l
If > , then k =-

1, 2 pe 3 c c

I___I_) c2 W 1pe1/2
K I pe C a (16)

1/ 2  meC Z  8
(E O)

b. EM/EM/IA Coupling

This coupling is similar to EM/EM/EP, except that the electrostatic mode is an

ion-acoustic wave. We shall consider a magnetic field in the +z direction and include

the effects of vTe # 0. We assume wl, 2 >> pe'Lce so that the electromagnetic waves

are unaffected by the plasma or the magnetic field. The ion-acoustic wave will propa-

gate at an angle 0 with respect to the magnetic field (see Fig. IV-1). Under the con-

ditions when an acoustic wave will propagate we obtain

KT2 Be
= c k c = (17)

3 = Csk3 s m.
1

Scos ak 3/2
q pe 3 W1 2W 3K . 2 (18)
1/2 m2W 2 8w

(E0 ) m 1 2 3 pi

Backward Scattering (4= 180") is an especially interesting case for some plasmas. If

the two electromagnetic waves are moving in opposite directions, as illustrated in

Fig. IV-2c, then

2Wl
k = 2k

3 1 c

2I cos a 3 1/2
Ipe (1W2 3

K=2 -- 2
1/2 mi c 8 pi

(E0) pl
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c. EM/EM/LH Coupling

This calculation is very similar to that for ion-acoustic waves. The lower hybrid

mode exists in a magnetized plasma for a very small spectrum of angles nearly per-

pendicular to the magnetic field, namely cos2 0 < me/m i . Since the lower hybrid mode

is a cold-plasma mode, we assume for simplicity that vTe = VTi = 0. The dispersion

relation for L3 >> cL c " is

2 2 2
W. + W Cos 0

2 pl pe
W3 2 2 (20)

pe ce

21/2 2 22 2 2
K=p e

(E /2 me 1 2ce 8 cos2 0+
0 pe pi

(21)

d. EM/EMV/UH Coupling

We may also couple to the upper hybrid mode, a cold-plasma mode propagating per-

pendicular to the static magnetic field (9 = 90 ). The dispersion relation and coupling

coefficient are

2 2 2
2 = + (22)
3 ce pe

2 \1/2

q k3 cos a W I2 'pe
K = 1/ ) (23)

1/2 me0l2 8 3

e. WH/WH/IA Coupling

This coupling is different from the others, in that the free-space electromag-

netic waves are replaced by the whistler modes of a magnetized plasma. This allows

us to propagate a wave into the plasma at well below the plasma frequency and

thereby couple relatively more power into the ion-acoustic wave. The whistler mode

is transverse (k E= 0); it is circularly polarized and the electric field rotates in

the same sense that electrons gyrate around the magnetic field. In calculating the

second-order nonlinear current we can no longer assume a scalar conductivity for

1,2; we must use Eq. 11. We shall consider only the case in which the whistler

modes propagate in opposite directions along the magnetic field, as illustrated in
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Fig. IV-Zd. The dispersion relation is

20 ckce (24)pe

Under the assumption that l 2 , the coupling coefficient is

2/1\/
2k 2 223 1/2

q pe 3  Wce 102)3
K = - - (25

1/2 m.w c 2W W4w
(E 0 ) 1 2 ce 3 pe pi

Thresholds and Coupling Amplitudes

We shall now examine two experimental situations. The first is the two-pump case

in which we can calculate the amplitude of the third wave produced by the nonlinear

interaction. We shall consider as pumps only the two undamped electromagnetic waves.

Then we shall consider the one-pump case, in which we shall calculate the threshold

for instability in time, assuming spatial uniformity.

a. Two-Pump Case

Let us assume that a 1 and a 2 are externally driven so that their amplitude varia-

tions arising from nonlinear effects can be ignored. Then the nonlinear coupling equa-

tion can be written

+ 3 a 3 = -P 3 K a 1 0 a 2 0  
(26)

whose solution is

-p 3
K al a -a 3 t

a 3  -e = (27)

We evaluate the fluctuating potential of the electrostatic wave, 3' in the limit y3 t >> 1

which occurs when the amplitude has saturated. In the electrostatic case, the fluctu-

ating potential can simply be related to the electric field of the wave, which in turn can

be related to the normalized amplitude of the wave,

E 1 1K a10 a
S E 3 _ 1 K al0a20 (28)

4=
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Table IV-1 is a listing of the fluctuating potentials that could be measured experimen-

tally for the various interactions. Note that all of these calculations are subject to the

approximations that we have used in deriving the coupling coefficients, as well as the

assumption, inherent in our approach, of an infinite homogeneous medium without den-

sity gradients.

b. One-Pump Case

Let us consider that only one electromagnetic wave, whose amplitude is constant and

unaffected by the nonlinear interaction, is being driven externally. Furthermore, let us

Table IV-1. Two-pump fluctuating potential.
n qEn

V
n mu

e n

EM + EM- EP

pe m
1 3 4 V 1 V 2 q -- cosa

EM + EM - IA

1 3 m
= V2 cos a

73 = v %-

EM + EM - LH

3/ =v 2
1 3 3

S4 1 V23 ?
(ce )

2
pe

cL

2
pe 2 2

- Cos
2 ce

C3

2 2 2
cos 0 +

pe pl

0

-() cosa

EM + EM - UH

1 pe m e  os
3 7 V1V 2 3y 3 cos a

WH + WH - IA

= 1
3 :7 V1V2 W1 3 me

C ce 1 3 q
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Table IV -2. Temporal thresholds.

EM - EM + EP

2
V

1S>

c

16 pe
@2 pe

2

2 1
k2 2
k cos a

EM - EM + IA

2

2
VTe

> 16

2

2
2
pe

1
2

Cos a

EM - EM + LH

2
V 2 " 22> 16 -
c2 2

3 m

m i

4 2
ce 2 1

2 2 2 os2
pe 3 3 cos a

mi 2 2

2e 2
2 cos 6
2

ci3

ElM - EM + UH

2
V 2

> 16

c2 w2

2
'3 3 k 1

3 w2 k cos a
pe 3

WH - WH + IA

2\1

2
Te

> 2 w3
i2 tce

2
w1
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consider the coupling only in time and ignore all finite boundaries, as we have done

throughout this report. The coupling equations are

(t+ 2 ) a2  
K al a3'  (29)

at 3 a3  - 3 K a 1 0 a . (30)

Assuming solutions of the form

a2 = AZ exp(-ist) (31)

a 3 = A 3 exp(is t), (32)

we arrive at the threshold condition for growth in time,

2 _2 3
a0 Z P3 2 (33)

Note that p 2 = p 3 = +1, corresponding to positive energy modes, is a necessary condi-

tion for the growth of an instability. In many physical situations of interest even more

stringent conditions must be met, depending on the boundary conditions and the initial

conditions of the system. We shall not elaborate on this extremely important point.

The temporal thresholds for the interactions studied are tabulated in Table IV-2.

Conclusion

On the basis of this analysis we conclude that two-pump experiments either with

high-power lasers or strong microwave sources are feasible. Indeed, recently several

two-microwave pump couplings have been observed; these are dominated, however, by

finite geometry effects. One-pump experiments, on the other hand, are far more dif-

ficult, although instabilities can be excited by the very large glass lasers now available.

When deciding which experiments are actually feasible, the experimenter must consider

carefully not only the magnitudes of the coupling coefficients calculated in this report

but also the exact effects of finite geometries and spatial and temporal nonuniformities

in the plasma and pumps.
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2. EFFECT OF PLASMA TURBULENCE UPON AN OPTICAL

TRANSITION HAVING A NEARBY FORBIDDEN COMPONENT
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In plasmas, turbulent electric field fluctuations are known to exist with intensities

ranging from thousands of volts per centimeter to hundreds of kilovolts per centimeter.

When such fields act on radiating atoms (or ions), they cause a variety of interesting

phenomenal associated with the Stark splitting of energy states. Indeed, the resulting

changes in the observed optical spectra are being used as a means of diagnosing the

properties of the turbulence.

In this report we compute the line shape of the 23 P-4 3 D line of He I at 4471. 48 A and

of its companion forbidden line, 23 P-4 3 F at 4470. 04 A. For purposes of this prelim-

inary study we make the following assumptions.

(i) The plasma is very turbulent, but has such low charge density that classical col-

lisions can be neglected. In other words, the Holtsmark field of the ions is taken to be

small compared with the turbulent field. Similarly, electron impact broadening is

omitted.

(ii) The turbulence is of low frequency and is assumed to be quasi-static; it is spa-

tially homogeneous and isotropic. Such fully developed turbulence is expected to have

the "normal" three-dimensional Gaussian distribution,

W(E) dE = 4 E e dE, (1)

with E as the magnitude of the electric field. The normalization is such that

W(E) dE = 1. (2)

The quantity a- is the standard deviation and is connected to the mean-square

electric field through the relation
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( E2) = E2W(E) dE = 3a.

Computations of the line shape now follow standard procedure. 2  Figure IV-3

shows the intensity I(X) for three different values of electric field strength. The

2 3p _4 3F 2 3p_4 3D
2 P4 F 2 D Fig. IV-3.

Line profiles of the He I 23 P-4 3 D
10-'

, . allowed line at 4471.48 A, and of

I the 23 P-4 3 F forbidden component.
S / K Three different values of the

0- - Gaussian-distributed electric field
- \ are considered. The wavelength

V// AkX = 0 on the abscissa corresponds
vIIcm to the wavelength position of the

S18 54 90 unperturbed allowed line.
I I I

-30 -20 -10 0 10 20

WAVELENGTH AX (A)

- Fig. IV-4.

_ - Ratio of forbidden to allowed intensities
z as a function of the mean-square

Gaussian field. Curve (a) refers to inte-
j2 grated intensities and curve (b) refers

S(b) to peak intensitieS.0

I-"

t-

I 0 102 103 0

MEAN-SQUARE ELECTRIC FIELD (E
2
) (kV/cm)

2

total area under the combined allowed plus forbidden lines is normalized in each case

so that

I(X) dX = 1. (3)

A comparison of the line shapes with those derived by Griem 2 for the classical thermal

plasma obeying the Holtsmark distribution shows marked differences. Thus the pres-

ence of strong turbulence in the plasma should be easily discernible. The magnitude
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of the turbulent electric field can then be obtained by fitting the experimental and theo-

retical profiles.

In Fig. IV-4 we plot as a function of ( E 2 ) the ratio R of forbidden (F) to allowed

(A) line intensities. The curve marked (a) refers to the ratio of integrated line inten-

sities, namely

f IF() dk

f IA(X) d\

On the other hand, the curve marked (b) denotes the ratio of the peak intensities of the

respective lines. We note that at low fields the ratio of the integrated line intensities

varies approximately as ( E 2 , in accord with expectations. At high electric fields,

however, R is more nearly linearly proportional to the electric field.

We plan to make line-shape calculations for one-dimensional turbulence [where

W(E) is a one-dimensional Gaussian and is thus peaked at the origin E = 0]. The inclu-

sion of electron impact broadening is being considered.
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