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In turbulent pipe flow there is a static pressure drop along the length of the pipe,

xwhich is caused by turbulent friction. This turbulent friction can also attenuate the fun-

damental acoustic mode propagating in the duct. A theoretical analysis of this effect

is presented here. The variation of static density along the duct axis and the change

of friction factor with Reynolds number are included in the theoretical model. Also,

some experimental data are compared with results of this analysis.

It has been found experimentally that the static pressure gradient dpo,/dx is almost

a constant along the pipe when the entrance and the exit sections are ignored. In the

present analysis dp /dx is taken from experiment. Let

dp
d -a = experimental constant. (1)dx

Here a > 0 if x increases in the direction of flow. We assume a one-dimensional model

and also that the fluid is "barotropic"; that is, p - p , where 1 < f < y, with y the

ratio of specific heats. The continuity and momentum equations for the steady basic

unperturbed flow in the duct are

pu = constant m- (2)

du dpo
m + pu = (3)o dx o o dx

2
dp pu

where a is related to the friction factor f and is defined as -- a . The term
dx 2

1 2
-( CPoU 0 represents the turbulent shear stress. The equation of state is assumed to be

Po Prefp r(4)

Po Pref
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where f = 1 for isothermal basic flow, and e = y for adiabatic basic flow. Equations 1-4

can be combined to give the basic flow.

Po Pref- ax (5)

b
PO ref x (6)

m m
u (1 1 x , (7)

r x Pref \ PP /ref
Pref I

where

b Pref apo
b -P

Pref Po

and subscript ref denotes the conditions at x = 0.

We retain only first-order terms in the pressure gradient a oi
2 2 9and ignore all second-order terms, such as ab, b , a . Thus, d 2

are neglected. Also, a is assumed to be a function of u alone.
o

The continuity and momentum equations for the sound field are

aP 1  8

at + (Pou+PlUo) = 0

au aul
u 1  1

Po - + me + (Poul+uo)

(8)

"density" gradient b,

u odx 2 and d2 2dx

au
o 1 2

+ amoU1 +- ap uoxO

1 a aP1
+- m -- u + 2 p c u :-

o 5u o 1 0 ooI ax
O

(10)

Here pV is the attenuation of sound caused by viscosity and heat conduction.

To separate the effects of variations in static density, we redefine the acoustic vari-

ables.

p1(x, t)

po(x)

u (x, t)
and V= -

u (x)0

The first-order acoustic flow is taken as adiabatic so that

2
P1 = coPl.

(11)

(12)
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Equations 9 and 10 when transformed to new variables become

( + uat _)x_ U a
8xo 8x

(13)

2 apo
m ax

2
a o0

+u +
2 o m

1 8 2
2P c + u Vvo -- U o

o

a y ap
ax m R = 0.ax m axO

Differentiating Eq. 14 with respect to x, eliminating av/ax, using Eq.

basic flow solution leads to the wave equation

(14)

13 and the

2 a 2 aR+ u ax + -
o 2 at

8x

1 8a 2
2 au o

o

2a 1- + 2p c +
m0 vo 2

au 2 a(y+ 1)7
2 m

o0

This is a linear second-order partial differential equation with variable coefficients
2a aa 2a

for the density perturbation R. The coefficients p v, -, a, and
O O O

stants, but c and u are functions of x.
o o

For a wave solution of the form exp[-it + if

relation for the wave number k.

1-2 k - i(1-2) ak

+ kM ll
o0

2

c
O

2a(y+1)
+ i o---- -

OO

o+i
W

2a
m c

o 0

(y+1) are con-

k(x) dx] Eq. 15 gives a dispersion

1 aa 2 ao
+ av 2 a-f o 2

(16)+ aa 2 1 =0,
v 2 m o

o

where M = u /c is the Mach number of the basic flow.
0

The real part of the wave number k is likely to be + for
o

the right traveling

-C/c
wave, and for the left traveling wave. We shall use this to find ak/ax to be

1 - NI

used in Eq. 16. After obtaining the solution we can check to see whether this is a
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T-+ u a
o 8x

Sau°
+ 0

a x

a2R
at2

at 2
82R

+ 2u
o axat

aR+ u -
o ax

aa 2
au Uo

0

2 82R
o ax2ax

(15)
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consistent approximation. The solution of Eq. 16 yields

+ 1 +M
0

1
+ ++~ M

a ? °o

b
4 -9o

a
m c

00

(1+2M )(1-1 o ) + 4
0 0 4

1- o 4
v 4

+ (1-2

+  2a 1+±I 2 ) 1,
V me C 2

o0 0

1
Mo )(1+MI ) + 4

0 0 4

aa M2

a -I o

ya 2 b(1+2A 0)( 1-l )

2PoC2 o  21 p00p 0

(1+ 2 ) + 1 c M 2 
-

2 aMI o
O

2 b( 1-2_I o)(1+Io 
)

S2 0o

o

« <1 for k

We note that ak ,ax is a second-order quantity in a, b , , ' so we were right in

approximating ak/ax. xWe note that

a \1
a o (19)

m c 2
o o

4{9 : 8 f o (20)
4fp0  8 o

Therefore
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4 "yM4 o 4

-/C

0

a C

0

1

O0

0 (17)

a (

o o

3 'o
4 o 4

provided

a I
0

2

0
(18)

2

c
o

L

C 
3

a 0
o

9

and

< 1 for k,
-

Cco0

a
c Ov m

O

y a
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1
k. =

1+ (1+M )
0

1
ki 1 - 0

1 8a 2 a loP + 1 aM XI + 0 (2+M)
v 4 a x0 o 4 o

~ M (1+31) + IM (1+,) - 2M

S0a 0

8 o aa+ 4 DA -2-Al0
n +  o. a-0

(1(-M

Obviously the attenuations are a function of the Mach number. At zero -Mach number

the attenuation is due to viscosity and heat conduction. It is interesting to note that the

attenuation at very low Mach numbers can be made smaller than that resulting from

viscosity and heat conduction if the following relations between a, ,, and nI0 are

satisfied. Only the first three terms in Eqs. 21 and 22 are kept for this purpose.

ak.
1

< 0 if
a i

2-A 2-M 3 )

-3 + CZ
v 4(1-M )

o

MI(4-3AI 2-1) o

+
4(1-AT )o

2

o iI+AIo ) a2a
4 2I

a nd

ak.
1

< 0
aI

o

(2- I 2 AM 3 )

+ 2 +
v 4(1+M )

o

A( 4-3 2 + M 311
aa

a +D
4(l+M ) o

A 2 (1-M o ) D2 a
+ 4 <0.

4 2
o
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At high Mach numbers (at high Reynolds numbers) aa/MIo = 0 and a/'2 > P. Hence
0 V

attenuation increases with Mach number in that region.

For the sake of simplicity, we shall use the power law for the friction factor for

-1/4 aa 2 2 a
smooth pipes. Then a = (const)M1 . In this approximation M M and M L are

oM o M2
o0

of the order of a. Then, to lowest order, aki /aM < 0 if P + 21a/64 < 0, which is
1 0V

impossible. Therefore, upstream attenuation always increases with Mach number.
21a

Similarly, for the downstream attenuation, if p > 64 -, then 8ak /Mo < 0. This means

that if a < (const) NT, then the downstream attenuation will decrease initially with

Mach number. If the pipe roughness is so controlled that a < (const) fT, then by turning

on a very low speed flow the sound attenuation can be reduced to a level less than

that caused by viscosity and heat conduction. This result is very interesting and may

have useful application in the transmission of sound signals through long pipes. Note

that v is proportional to the square root of the acoustic frequency f. The value of

the constant depends on the viscosity and thermal conductivity of the gas and the

hydraulic diameter of the pipe.

Now we correct Eqs. 21 and 22 for the change in static density. We use the nota-

tion

(23a)

(23b)

R ~ exp[ikx-it]

pl exp[ik'x-i"t]

to obtain

: a 2
ki ki + A l

k. = k. - I
1 1 2 1 o

(24a)

(24b)

1
k. =

i+ 1 + M+ o0

: 1
k. i - M1 0O

- 0

2 I
i aM
o 8a o

S + 4 (2+M )
v 4 o

+ M 3(1-C) + M (3-f) + 2 2

o a oPV +  + (2-M )
+ 4 m 4 o

+ - M 3(-1) + M(3- - 2M2
8 f 0 0
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Note that for small Mach numbers k. i/k. is approximately equal to (1+M )/(1-M ). But

for large Mach numbers

k.
+ 1 - M

k. 1 + M
1 o

k.
+ ] o

k. o

For isothermal basic flow these relations give

M2 aM aM 2

__1 o 8a o o
k 

+  a + +

i 1 + M4 o M

M a M a Mk = 1 o aa o o
1 1 - M v 4 5 I 2 4

- O O

whereas for adiabatic basic flow they yield

M aM aM 2

k = 1 o 0 a o o
i 1 + M v 4 M 2 8
+ o o

M 1 2 aM a
ki - a +  o o
k 1 - I v 4 am + 2 + 8

- O O

2)( +y M +ly M]

( -y o+y

(5 - 3 y) + M (3-h') + 21\12
o -

(3-y-5) + M 0(3-y) - 2

We note that the "attenuation" caused by change in static density is the same in both

directions, whereas the attenuation caused by turbulence is different. Also note that

the increase in static density in the upstream direction tends to amplify the sound sig-

nal, hence to decrease its attenuation resulting from turbulence.

For isothermal basic flow we note from Eqs. 21, 22, and 24 that the ratio of atten-

uation resulting from turbulence and static density variation goes as follows. When

aa/ao = 0, we get for the upstream direction

0 0

2+ 2y-)M - m - Yio
2yMo(1-mio

and for the downstream direction,
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2 3
2 - (2y-1)MI - y ,

2y NIo(1I
o )

At low NMach numbers this ratio is fairly large, so that the effect of static density vari-

ation may be ignored. But at large lach numbers the effect of static density variation

cannot be ignored. As the Mach number increases, the contribution of static density

completely overshadows the turbulent attenuation on the downstream side.

UPSTREAM MEASURED

UPSTREAM CALCULATED,

0 /

,0d 7 FE

M

MEASURED

0.1 0.2 0.3 0.4

Fig. III-i. Mleasured and calcul2ated upstream and downstream
attenuation of sound in turbulent pipe flow.

The attenuation of an acoustic pulse xwas measured with and without flow in a duct

of square cross section with a 3,/4 in. side. Two microphones were placed 6 ft apart.

The speaker was pulsed at 1240 Hz. Interference from the pipe termination was avoided

by proper design. Figure III-1 shows the experimental results, as well as the values

calculated from Eqs. 27 and 28 with

4 -0. 32
a -d 0. 0014 + 0. 0125 Rey ),

d
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where d is the side of the square cross section of the duct, and Rev is the Reynolds

number of the mean flow.

The attenuation increases slowly with Mach number at low Mach numbers but for

MIach numbers greater than 0. 25 the effect of turbulence is very large indeed. The

downstream attenuation increases at a slower rate than does the upstream attenuation.

That the downstream attenuation can decrease with increasing Mach number is evident

at Al = 0. 1 on the calculated curve.

The downstream measured curve deviates significantly from the downstream cal-

culated curve in the 1Mach number range 0. 1-0. 32. The reason for this is that in

this region the basic flow is in the transition range from laminar to turbulent flow.

This effect also appears on the upstream measured curve.

Turbulence scatters sound waves and high-frequency scattering cannot be detected

quantitatively with the simple pulse technique that we used. This sc'attering of the

incident harmonic sound pulse train is neglected in the present analysis and mcv account

for some of the observed discrepancies.

The friction-factor law, Eq. 31, used for the calculations is the commonly accepted

expression. Our measurements show higher friction factors. In the transition region

it is very hard to get a good estimate of c. The errors in the constant a are obviously

reflected as errors on the calculated curves in Fig. III-1.

B. ORIFICE FLOW NOISE

U. S. Navy -- Office of Naval Research (Contract NO0014-67-A-0204-0019)

U. Inpard

In one of our recent experiments in which air was sucked through an orifice in a

plate forming one of the walls of a suction chamber, we focused attention mainly on the

noise on the upstream side of the orifice plate. Of particular interest was the depen-

dence of the noise emission on the static pressure ratio in the vicinity of the critical

value of this ratio.

In these experiments we also studied the sound emission into the suction chamber.

Figure III-2 shows the measured sound-pressure level (SIL) inside the chamber as

a function of the static pressure ratio across the orifice plate.

It is interesting to try to interpret the observed dependence of the SPL on the pres-

sure ratio in terms of the expression

W = C oA (1)
2 n c 2 o
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for the acoustic power W 2 emitted from the flow on the downstream side of the orifice

plate. In this expression C is a numerical constant, V is the velocity in the orifice,
n o

P2 is the fluid density in the suction chamber, and A is the orifice area. The

factor C n(Vo/C2) n can be regarded as the efficiency of noise emission by the jet stream

discharging kinetic energy at the rate p2 XVA0 /2 (the difference between the density po
in the jet at the orifice and the density pc in the chamber is ignored). The exponent n

depends on the nature of the flow fluctuations in the stream. For flow pulsations n = 1

(monopole), lateral-flow fluctuations and corresponding pressure fluctuations on the

orifice plate correspond to n = 3 (dipole), and fully developed turbulence in the stream

(quadrupole) corresponds to n = 5. In general, the emitted noise is contributed by all

three effects and we may set

V V 3 5 V
W2= C + Cd q2 A (2)S m c2 Cq 2 o

We shall show in this report that our experimental data can be fitted well to an expres-

sion of this form.

1. Pressure Drop

In our experiments we did not measure directly the Mach number in the orifice but

rather the static pressures P1 and P 2 outside and inside the orifice plate. We shall

relate these pressures by making the assumption that the flow is isentropic from the

outside of the chamber to the orifice and that there is very little "pressure recovery"

in the suction chamber on the downstream side of the orifice plate. The pressure in the

jet, P , as it leaves the orifice is then assumed to be the same as the pressure P.
in the chamber. The local temperature To and the density po in the jet at the orifice

will be somewhat different from the corresponding quantities in the almost quiescent air

in the suction chamber. Under these conditions, we obtain

2 2 I2 (P )7 2 C APS - °1 - c 1 - 1 - - ,3)o y-1 P -1 1 P

where c1 is the sound speed outside the chamber, P1 the static pressure outside the

chamber, and AP the pressure drop P - P1 o"
If we neglect pressure recovery, we have AP P - P 2 , where P 2 is the static pres-

sure inside the chamber. Since the temperatures inside and outside the chamber are

the same, we may set cl = c 2. The expression for the acoustic power in Eq. 2 can then

be written
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P2C1

2

where x = (P 1 -P 2 )/P1 - APiP 1 .
In Fig. III-2 the functions represented by the three terms in Eq. 5 (including the

factor (1-x)) are shown, with the constants Cq, C d , and C adjusted to produce a best
q d' m

fit with the experimental data.

* /

/
0//

0//

* -- 7 -

-10-- /

> -20

* 0 * 0 EXPERIMENTAL DATA

SI I I I II I I I i I I I

0.1 1.

AP/P 1

Fig. 111-2. Orifice flow noise.

We find that the

expression for W 2 becomes

best fit is obtained if C 140 C , C dm q' d
19 C so that our empirical

q
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= C F(x) + C F3(x) + C F5(x) F 3 (x)
Finay, if we set pCd= (x) we obtain

Finally, if we set p2 = Pl ( l - x ), we obtain

W2 = [C

(P 3 /C/) m

I0/

F 4 (x) + C dF 6 (x) +C F 8 (x) (1-x)d4x + x +C

MONOPOLE

DIPOLE

/ QUADRUPOLE

,

/e"
f
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z C [140 F1' +19 6 + 8 ](1-x. (6)

Once our "reverberation" chamber (suction chamber) has been calibrated, the value of

C can be determined from our measurements.
q
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