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1. Introduction

The interaction of oxygen with tungsten has been studied by many investigators 1

using a variety of techniques. It is encountered in numerous technological devices, for

example, incandescent and arc lamps, ionization gauges, electron tubes, thermionic

energy converters, ion propulsion engines, and high-temperature vacuum furnaces, and

it is considered as a classical example of high-temperature oxidation. The chemical

reaction of oxygen with tungsten at high temperatures and low O2 pressures results in

the formation of volatile tungsten oxides (such as WO, WO 2 , WO 3, W 0 6 ) in addition to

O and 02. This reaction, which was studied previously in our laboratory, is described

reasonably well by the quasi-equilibrium analysis proposed by Batty and Stickney, 2, 3

but that analysis relies upon a semiquantitative estimate of the equilibration probabil-

ity, O2' defined as the probability that an impinging 02 molecule will adsorb and be

equilibrated at the tungsten surface rather than being scattered without equilibration.

Batty and Stickney suggest that t 0 2 depends primarily on the fraction of the tungsten

surface that is not covered by oxygen, but existing experimental data are not sufficient

to verify this suggestion. Although the results of flash desorption studies 4 ' 5 provide

valuable information on the coverage (i. e., number of oxygen atoms adsorbed per unit

surface area) of oxygen on tungsten as a function of temperature, the pressure range

is not sufficient to enable us to determine the dependence of coverage on pressure.

In an attempt to obtain a more complete understanding of the dependence of 0() on

coverage, we have used Auger electron spectroscopy (AES) to perform approximate

measurements of the coverage of oxygen on a polycrystalline tungsten sample as a fune-
-9 -6

tion of sample temperature (1200-2500°K) and 02 pressure (5 X 10 to 5 X 10 Torr).
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We believe that this is the first demonstration that chemical analysis of solid surfaces

by AES is possible even at temperatures as high as 2500'K.

2. Experimental Apparatus and Procedures

The apparatus is a conventional ultrahigh vacuum system equipped with an Auger

electron spectrometer (Physical Electronics Industries, Inc. cylindrical analyzer,

\Model 10-243). In the present study, an electron beam current of 400 pA at 3000 eV is

supplied to the sample fromnt a gun mounted for grazing incidence. The electronic cir-

cuitry (30-kHlz analyzer frequency) is essentially identical to that described by Palmberg

et al.

The tungsten sample is a U-shaped polycrystalline ribbon mounted on a manipulator

in such a manner that only the midpoint of the U is at the focal point of the AES unit.

The sample is heated resistively by direct current, and the temperature at the midpoint

is measured with an optical pyrometer. The sample surface is cleaned by a combina-

tion of heating in O, and flashing to 2500 K; this procedure successfully reduces the

concentrations of surface impurities (predominantly carbon) to a level that is below the

limit of detection of AES.

Both a nude ionization gauge and a partial pressure analyzer are used to measure

the 0 2 pressure in an attempt to minimize the various possible errors associated with

0, pressure measurement. 7 The desired steadv-state 0,) prere , po is attained

by adjusting both the inlet valve that controls the flow of research grade 0( into the

chamber and the exhaust valve that controls the effective speed of the ion pump.

There are 7 steps in the experimental procedure: (i) Clean the surface as described

above; (ii) Set po at the desired value; (iii) Ilash the sample to 25000 K; (iv) ileduce

the sample temperature, T, to the desired value, and record the Auger spectrum after

steady-state conditions are attained (for t(nemperatures above 12000K, oxygen coverage

attained a steady-state value in less than 4 min: at lower temperatures, however, the

(,-W reaction rate is so slow that wex did not attempt to obtain completely steady-state

conditions); (v) Iteduce (or increase) T to anothe r value and again record the Auger

spectrum after attaining steady-stat(, coinditions; (vi) liepeat the fifth step for various

temperatures; (vii) iepeat the entire procedure for various values of pO in the range
-9 -6

5 X 10 -5 X 10 Torr.

It is assumed here that \, the coveLrage of oxygen on the tungsten surface, is

directly proportional to S(, the peak-to-peak amplitude of the first derivative of the

509-eV oxygen Auger peak. This assumption has proved accurate for a variety of sys-

tems, and we expect that it is a valid approximation for the O-\W system if the coverage

is sufficiently low (e. g. , less than a monolayer) and if the adsorbed 0 atoms do not

penetrate into the lattice as a result of surface reconstruction (oxidation). The
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experimental results of Musket and Ferrante 9 show that the shape and the width of the

oxygen Auger peak at 509 eV do not vary significantly with coverage on the (110) face of

tungsten.

3. Experimental Results

Figure II-1 shows the first-derivative Auger spectra that we obtained for 4 values
-6

of the sample temperature, T, at one level of 02 pressure, po = 1 X 10 Torr. The
2

spectra have been displaced by an arbitrary amount in the vertical direction to prevent

the curves from overlapping. A most interesting feature of these results is that the

Po =I xlO Torr

Fig. II-1.

2400K Examples of Auger spectra recorded at various
2050 temperatures of the tungsten sample and at a

1400 constant 02 pressure, po 2 = 1 X 10-6 Torr.

300 Electron beam: 400 1LA and 3000 eV. Modula-
ztion: 30 kHz and 15 V peak-to-peak. For clarity,

the curves have been displaced vertically to
prevent overlapping. Arrows indicate the ex-
pected positions of tungsten and oxygen peaks

based on Chang' s tabulations. 1 0

W W W 0

0 200 400 600 800
E, ELECTRON ENERGY (eV)

signal-to-noise ratio does not appearto be degraded when the sample is heated to high

temperature. Notice that the peak-to-peak amplitude of the oxygen peak follows the

expected trend of decreasing with increasing T.

From Auger spectra recorded for various choices of T and po 2 , we evaluated the

relative change of SO, the peak-to-peak amplitude of the 509-eV oxygen peak. The

results presented in Fig. II-2 are restricted to the range T > 12000K because it was dif-

ficult to obtain reproducible data at lower temperatures where a surface oxide layer

forms at a very slow rate. 4 ' 5 The data obtained at T > 1200°K were quite reproducible

and, in the few checks that we performed, did not exhibit hysteresis (i. e., the value of

S O measured for a particular choice of T and po 2 was essentially the same, regardless

of whether the preceding values of T and pO 2 were above or below the chosen values).

In some cases we flashed the sample to 2500*K between each measurement at different

T and p 0 2, but the resulting values of S O were essentially identical to those obtained
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when the sample was not flashed between measurements.

In Fig. 11-2, at 12001K there is an anomalously large gap between the data for

1 X 10- 8 Torr and 1 X 10.7 Torr. Although we do not have a definite explanation for this

gap, we can suggest several possibilities. At the lowest pressures, the rate at which

0 Z molecules impinge upon the surface may be so low that (a) the steady-state coverage

20

p02(Torr

)

o 5xiO15 • I × 1
-8

15 - 1 x T 8
__ ix10o-7 Fig. 11-2.

S5x10-6 Dependence of SO, the peak-to-peak

z 10 - amplitude of the 509-eV oxygen Auger
peak, on temperature of the tungsten

o sample and on )2 pressure. Electron

co 5 beam and modulation conditions as in

Fig. II-1.

O
1200 1400 1600 1800 2000 2200 2400

T(OK)

may be lowered significantly because the electron beam used for Auger spectroscopy

produces electron-stimulated desorption (ESD) of oxygen from tungsten;11 and/or (b) the

allowed "equilibration period" (-5 min) may not be sufficient to ensure that steady-

state conditions are fully attained. Existing data show that the ESD rate increases

markedly with increasing coverage, thereby providing a possible explanation of the
-8

observation (see Fig. II-2) that the gap betxween the data for 1 X 10 Torr and 1 X
-7

10 Torr increases with increasing coverage. Since ESD data are not available for the

high electron energies and high temperatures employed in this study, we can do no more

than provide a rough estimate of the magnitude of the ESD rate Rt relative to the oxygen

impingement rate Z expressed in terms of O atoms rather than 0, molecules.

Assuming an electron beam current of I 400 IiA, a beam cross-sectional area of
-2 2 15 2

A 1 X 10 cm , a coverage of N 1 X 10 atoms/ cm , and an ESD cross section of
-20 2 1

Q 1. 5 X 10 cm (see \Iusket ), we obtain

9-R e / Z  6 X 10-9 /PO2, (1)
where po 2 is the 0 2 pressure in Torr. As shown bVy ladey and Yates,ll R e=( NI/e A,

where E is the electronic charge. The very approximate relation (1) predicts that
-8

l e/Z 0. 6 at p = 1 X 10 Torr, and we would therefore expect that ESD would pro-

duce a significant reduction in the coverage (especially because the sticking probability
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is significantly less than unity at high coverages, and hence the adsorption rate is con-

siderably smaller than the impingement rate Z). Because of these uncertainties in the

data obtained at the lowest pressures and temperatures, our discussion favors the data

for higher pressures and temperatures.

To obtain a rough evaluation of the constant of proportionality between S O and N, we

shall use the results of Ptushinskii and Chuikov4 to estimate the coverage at one partic-

ular choice of T and po . At 1600'K and 1 X 10 7 Torr their data 1 3 indicate that
2

IN 1. 1 X 1015 oxygen atoms/cmrn (with all O atoms on the surface counted, regardless

of their molecular state of adsorption). Since S O  9 for the same state in Fig. 1I-2,

the resulting estimated relation is

N - 1.2 X 1014 S . (2)

We emphasize that this relation is very approximate because of various uncertainties;

furthermore, a slightly different proportionality constant is obtained if we select a dif-

ferent temperature for fitting our data to those of Ptushinskii and Chuikov.

20 I P02 (Torr)
• X1-8

15 A x10
- 6

_J

Z lig. II-3.

10 Extension of Fig. 11-2 to lower tem-
z peratures. Data below 1200"K do not

correspond to steady-state conditions
and may be influenced by electron-

05 - stimulated desorption.
U)

0
300 700 1100 1500 1900 2300 2700

T(oK)

Although the data taken below 1200'K are inaccurate because steady-state conditions
-6

were not fully obtained, Fig. II-3 is included, since the results for pO = 1 X 10 Torr
2

exhibit an interesting maximum at -1100 ° K. This maximum is consistent with results

based on flash desorption measurements, 4 , 5 and it is suspected to be a consequence of

the fact that the surface oxidation rate is highest in the vicinity of 1100K. The absence
-8

of a maximum in the curve for p 2 = 1 X 10 Torr is most likely to be associated with

the problems just discussed.
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4. Discussion

A principal objective of' the present study was to determine whether 0, the equil-
2

ibration probability defined by Batty and Stickney, depends primarily on coverage N,

as was previously suggested. Since they did not have data on N, they adopted an expres-

sion given in terms of T (0K) and p,() (Torr):14

-0. 3
S 8O(p) exp(- 1 8400/J). (3)

(Note: Since values of 2 greater than unity are absurd, we shall assume 2 1

when Eq. 3 yields 50 > 1.) \We have used this (equation to construct FiL. II-4 in the

following manner. Each data point in F1ig. II-2 represents the value of S) corresponding

to particular choices of T and po2 . By using Eq. 3 to calculate O9 for the same T

and P() we obtain the values of LCO corresponding to various values of S . The results

are shown in Fig. II-4. If O d(epe(nds primarily on the coverage N and N is directly

proportional to SO , then the points plotted in Fig. II-4 should form a single curve cor-

responding to the functional relationship (O2(N). Therefore we have attempted to draw

a smooth curve through the points, but ignored the unreliable points for 5 X 10 - 9 and

1 X 10 - 8 Torr in the range S > 5. The scatter is sufficiently large that these results

provide only marginal support of the suggestion that %() depends primarily on cov-

erage.

0 p0o (Torr)

j 0o o 5x10 9

M * 1x 10-
< -0.8 -7

5o F ig. 11-4.
z 0.6 A c 5x1O

5

le Ilelationship between the equilibration
2 probability and the oxygen coverafe

(assumed to be directly proportional to
0.2 -

o o *

0 0
0 2 4 6 8 10 12 14

So , OXYGEN SIGNAL

Since the results are not conclusive, we shall not include a detailed description of

our attempts to find a model that would yield a -N relationship in agreement with the
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results shown in Fig. 11-4. The simplest forms of the popular models suggested by

Robertsl 5 and by IKisliukl 6 do not agree closely over the entire range with the present

results.

In view of experimental results obtained previously in our laboratory 17, 18e would

expect that the present data (Fig. II-2) could be correlated in terms of the parameter

T/T , where T is the sample temperature and T is the saturation temperature cor-

responding to the oxygen pressure pO in our experiments (that is, Tit is the temper-

ature at which the equilibrium vapor pressure of liquid oxygen is equal to po)

Engelmaier and Sticknev 1 7 adopted the following relationship between T and pO based

on available vapor-pressure data for 09:

(4)486. 45
log 0 P = 9. 25 486.

10 T

Using this equation, we have transformed the data in Fig.

Notice that T/T can be used very successfully to correlate
i p - 9  

-8
unreliable points for 5 X 10 and X 10 Tor in the range

15

z

0z 0
8)c

II1-2 to obtain Fig. 11-5.

the data if we ignore the

SO 5.

) 30 40 50 60 70 80 90

T/Tw
R

Fig. 11-5. Correlation of the

parameter T / i.

oxygen cove(rage data by means of the

We have also attempted to describe the data in Fig. II-2 by means of kinetic models.

Since the kinetics of the O-\V interaction appear to be extremely complex, we consider

only the low-coverage region where the predominant desorption product is atomic oxy-
1gen.-5

gen. Under steady-state conditions, the rates of adsorption and desorption may be
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equated to give

-1/22O%) p(21TmO kT )
22 2

= VN exp(-E/ T),

where m O 2 is the molecular mass of 0 2 , k is Boltzmann's constant, T' is the temper-

ature of the 02 gas (-300'K), v is the frequency factor in the assumed first-order form

of the desorption rate, E is the desorption energy for O on W, and T is the temper-

ature of the tungsten sample. Under the assumption that v is a constant and 0 is a

function of coverage alone, partial differentiation of the logarithm of Eq. 5 leads to

[d(ln po 2 )/ 3(1 / T)]N = -E/k. (6)

Therefore, by replotting the data in Fig. 11-2 in the form in po 2 vs 1/T for various

choices of N (choices of SO), we may evaluate E(N) from the slopes of the lines of con-

stant coverage. This has been done in Fig. 11-6, where for convenience we have

expressed the coverage in terms of 0, the fractional coverage, defined by utilizing

Eq. 2 together with the assumption that a monolayer contains 1. 2 X 1015 atoms/cm-2

(as suggested by King et al. 5). That is,

T (K)
2500 2000 1500 1250

3 4 5 6 7 8 9

10
4

/T (OK-')

Fig. II-6.

Pressure-temperature plots of data in
Fig. II-2 for various values of cover-
age. For convenience, the coverage
is described in terms of the fractional
coverage 0, based on the assumption
that 0 = 1 corresponds to N z 1. 2 X

1015 atoms/cn-2
10 atoms/cm .

0 0.2 0.4 0.6 0.8 1.0

9, FRACTIONAL COVERAGE

Fig. 11-7.

Variation of the desorption energy
with coverage, as estimated from
the slopes of the constant-coverage
lines in Fig. 11-6. Bars indicate
the estimated uncertainty in deter-
mining the slopes.
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15
S= N/1. 2 X 10 =0. 1 SO ' (7)

From the slopes of the lines in Fig. 11-6, we have evaluated E vs 0 in Fig. 11-7.

Notice that extrapolation of E to the limit of zero coverage yields -140 kcal/mole

(-6. 1 eV), which is consistent with the values obtained by other investigators using
4, 5, 17-20

different techniques.5, 1720

10 l 1 1 12

p2 (Torr) -Fig. II-8.

0 5xlO
- 9  

10

SC ompari son of a simple, semiempirical
o 5x 106 -8 model (solid curves) with experimental data

< E
o Z o age on T and pO

0 co from Fig. 11-2 on the dependence of cover-
age on T and Bars on the curve for

U0 2
0 po 2  1 X 10- 7 Torr are included to illus-

2nc2 

2

trate the effects of uncertainties associated
o500 700 1900 200 2300 2500 with the desorption energy (Fig. 11-7).

T, TEMPERATURE ('K)

With these data on E vs coverage and with Eq. 3 (Batty and Stickney s approximate

expression for ()), Eq. 5 provides a relationship between N, T, and po in terms of

only one adjustable parameter, v. This relationship is plotted in Fig. II-8 for
13 -1

v = 4 X 10 s , which was selected because it leads to the best overall agreement of

the curves with the experimental data. The magnitude of v appears to be reasonable

for a frequency factor in a first-order desorption model. In view of the many assump-

tions and uncertainties associated with both the model and the experimental data, the

agreement exhibited in Fig. II-8 is about as good as we could hope for. The curves

have not been extended above S > 6 because the model is invalid at higher coverages

where the desorption rates for oxides (WO,, W"XO 3) are no longer negligible.
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