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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

The research of this group is focused on the theory of detection and estimation
and its application to development of effective signal-processing methods. Specific
areas of current interest include nonlinear estimation theory, array processing, detec-
tion theory for random processes, and signal processing for oceanographic research.

1. Nonlinear Estimation Theory and Array Processing

Array receiver structures for tracking the motion of targets using only passive
signals have been developed. The "bearings only" problem has been investigated in
a state-variable context. The effects of target motion on the temporal structure of
signals, e. g., Doppler effects, have been incorporated, and lead to a receiver struc-
ture that is similar to a phase-locked loop coupled to a split-beam tracker. Spatial
effects of angle of arrival and wavefront curvature have been investigated. A sum-
mary of a Master's thesis by J. M. F. Moura, to be submitted to the Department of
Electrical Engineering in February 1973, appears in Section XVIII-A. L. S. Metzger and
S. Orphanoudakis are also involved in this research.

H. L. Van Trees, A. B. Baggeroer

2. Theory of Random-Process Detection and Modeling

In many applications of random-process detection, a stochastic model constructed
from an observation of a segment of noisy sample function is wanted. Many methods
have been developed to meet this problem. One issue of particular importance is
the sensitivity of these methods and the degree to which different stochastic models can
be separated or detected. Work directed at quantifying this sensitivity is being
developed by J. P. Albuquerque.

The theory of estimating temporal random processes has been studied extensively.
In contrast, study of the structure of spatial random process estimators is just starting.
S. A. Parl is formulating the problem of estimating random processes generated by a
propagating dynamical structure. This work involves aspects of distributed random pro-
cesses, and he is applying it to the example of estimating oceanic internal waves.

A. B. Baggeroer

This work is supported by the Joint Services Electronics Programs (U. S. Army,
U. S. Navy, U. S. Air Force) under Contract DAAB07-71-C-0300, and the National
Science Foundation (Grant GX-36331).
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3. Application of Detection and Estimation Methods to the East Atlantic
Continental Margin Program

This work is being done in cooperation with scientists from the Geology and Geo-

physics Department at Woods Hole Oceanographic Institution. It is directed toward

developing models and algorithms for shipboard processing for the signals that are

employed in continuous seismic profiling of the sea floor. During a cruise to the

West Coast of Africa last year, a parameter -estimation model for in situ removal of

water column multiples was developed and reported in Quarterly Progress Report

No. 107 (pp. 95-101). We are now developing these methods further using the models

of spread channel from communication theory. We are also studying state-variable

models for horizon tracking, parameter estimation for matched filtering of seismic

source signals, and velocity estimation. Experiments resulting from these studies will

be conducted at sea during the forthcoming National Science Foundation International

Decade of Ocean Exploration cruise to the East Atlantic Continental Margin off

Northern Africa.

A. B. Baggeroer

A. AN INTEGRATED APPROACH TO THE ESTIMATION OF THE

DYNAMICS OF A MOVING SOURCE BY A PASSIVE OBSERVER

Joint Services Electronics Programs (Contract DAAB07 -71 -C -0300)

J. M. F. Moura

1. Introduction

We shall consider an integrated model 1 for the estimation of the dynamics of a

moving source (MS) from observed acoustical data by a passive linear array.

The changes induced by the source dynamics in the spatial and temporal structure

of the emitted narrow-band signal are processed by a spatially and temporally coupled

receiver that simultaneously estimates the range and bearing and their time deriva-

tives modeled as finite-state dimensional stochastic processes.

The MS dynamics is studied in two frameworks, rectangular and polar, both of

which lead to a nonlinear estimation problem. After linearizing the problem, the

extended Kalman filter and the maximum a posteriori filter (discrete version) are

applied. Monte Carlo simulation studies have shown that regions of convergence for

the geometry, the signal-to-noise ratio, and the driving noise power level can be found

for all processors. In order to prevent numerical divergence from the polar frame

that would result from an ill-conditioned error -covariance matrix, a square-root filter

was implemented. The necessary a priori information to start the filters was obtained

by means of a maximum-likelihood algorithm followed by a triangularization procedure.

2. Model

We describe the stochastic dynamical system modeling the MS and the model for the

received signal. For simplicity, we assume a stationary observer (discrete linear
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array), planar geometry, and a far-field hypothesis.

We shall consider two coordinate systems, the polar

Fig. XVIII-1,

shown in Fig.

and rectangular

Planar geometry.

XVIII-1, with the usual relations

R(t) = x2(t) + y(t)

0(t) = tan (x(t)/y(t)).

The linear observer has N sensors at locations pl, ...

a. Received Signal

The MS generates a narrow-band signal modeled as

h(t) = N2p sin w t,

where P is the transmitted power.

At the reference sensor a delayed version of h(t) is received,

noise

PN' along the x axis.

corrupted by additive

ro(t) = ho (t) + w(t)

= h(t-T (t)) + w (t), (3)

where T (t) is the travel time of the wavefront from the MS to the reference element,0
which is given by

R(t-T (t))
T(t) = (4)O C

and c is the medium propagation velocity.
th

At the i sensor

r.(t) = hi(t) + wi.(t)

= h (t+Ti(t)) + w.i(t), (5)0 1 1
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where the relative delay T.i(t) to the reference element is

sin 6(t- To(t+Ti(t))+Ti(t))

Ti(t) = Pi. (6)

Expressions 4 and 6 are memory functions of the dynamics, which can be approxi-

mated by exploiting the narrow-band assumption on the signal by means of truncated

Taylor series expansions,2 by no-memory functions leading to

( R(t) p .
r.(t) = 2P i sin w(t) + w.(t) (7)

for i = 1, ... , N.

The additive noises w.(t) are assumed to be sample functions of uncorrelated zero-
1

mean white Gaussian noises with spectral heights N o/2.

b. Dynamical System

Newton's law gives the dynamical system equation. Modeling the MS acceleration

components by sample functions of a (mathematical) white-noise process yields in

rectangular coordinates

x(t) =F x(t) + G u(t)

= 0 1 0 0 x(t) + 0 0 ux(t)

0 0 0 x(t) 1 0 u y M(t)
(8)

0 o 0 1 y(t) o 0

0000 y(t) 0 1

with x(0) = x .
-0

By a simple transformation of coordinates, from (8), we obtain in polar coordinates

x(t) = f(x(t)) + g(x(t)) u(t)

R(t) = R(t) + 0 0 ux(t)

R(t) R(t) 0(t) 2  sin 0(t) cos (t) u (t)

0(t) e(t) 0 0

0(t) -2R(t) 6(t)/R(t) cos 0(t)/R(t) -sin 0(t)/R(t) (9)

with x(0) = x .-o
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The stochastic interpretation of Eq. 8 does not offer any ambiguity. With the polar

system it can be shown2 that either the Ito or the Stratonovitch integral leads to the

same model, since the Wong-Zakai correction terms 3 are zero for the particular g( )
matrix in Eq. 9.

We observe that in rectangular coordinates the system is linear. The MS parameter

range, bearing, and respective rates are given by a nonlinear transformation of the

state variables. With the polar frame we choose as state variables the MS parameters,

but the dynamical system becomes nonlinear.

The driving processes ux(t) and u y(t) are assumed to be zero-mean white Gaussian

noise with spectral heights Q, independent of the wi.(t) noise and of the initial con-
Adition x which is modeled as a random variable of mean x and covariance matrix-o -o

P.
-o

3. Nonlinear Estimation Problem

For simplicity, we worked with the sampled version of this continuous time estima-

tion problem. Only filters with a first-order approximation are considered.2 In par-

ticular, we implemented the extended Kalman filter and the maximum a posteriori filter

(MAP). 4

With the discrete extended Kalman filter we used the following format.

(i) Measurement Update Equations (Correction)

The estimator equation is

A - T -1
xk = x -k + PH Rk (r k-h(x k)) (10)

A
x = Ex
-0 -o

The covariance propagation equation is

S =  +H Rk H (11)Pk -k k k -kl

with P = covariant (x , x ).-0 O -0

(ii) Time Update Equations (Prediction)

The estimator equation is

Xk+1 = f(xk) ( k) k' (12)

The covariance propagation equation is
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- f T A TA

k+l P k A k) Q g (xk). (13)

The MAP filter is similar to the extended Kalman filter. The principal difference

is in the measurement update equation which, instead of (11), becomes

a -T -1
P= k R (r -h(x , k)) . (14)

axk

With

_ HR (r k-h(k, k)) > 0, (15)

-k

A
a matrix H k can be found such that

^ -1A I T -1
HR k k H- k ax R k k (r k- h(x k)) , (16)

8xk

and so we can formally reduce Eq. 14 to Eq. 11.

Given the observations at time k,the error -covariance matrix Pk as computed by

using the IVLAP has a random component that becomes more important as the signal-to-

noise ratio decreases and may cause P k to become indefinite and the filter to diverge.

In the polar framework, because of the presence in the state vector of the range and

the bearing rate, the filtering problem is computationally ill-conditioned; that is, the

condition number

maximum eigenvalue of P

minimum eigenvalue of P

of the error covariance matrix is very large. This leads to numerical divergence

problems. These difficulties were overcome2 by implementing a square-root algorithm

(e.g., Kaminski et al. 5). We modified Potter's method 6 by using an argument of

Andrews 7 to get a computable solution for the case wherein the number of observations

is much larger than the dimension of the state vector.

4. Mathematical Analysis of the Receivers

We shall now discuss the filter for the polar frame. Other configurations, and

additional details have been given elsewhere. 2

QPR No. 108 236



(XVIII. DETECTION AND ESTIMATION THEORY)

a. Estimator Equations

Figure XVIII-2 is a block diagram for the estimator equations. Essentially, the

filter combines the innovation processes

r(t) - h(x(t))

to form a conventional delay and sum array beam Zi and a "difference" beam Z3. The

farthest right side of Fig. XVIII-2 shows the combining matrix operation P followed

by the conventional receiver's copy of the dynamical system.

Fig. XVIII-2. Estimator processor: polar system.

GAIN MODULATED BY
THE DIFFERENCE (sin x3-sin x3)

RANGE CHANNEL

cosAb
3

MODULATION BY
THE DIFFERENCE (xl- i )

x3 PN pNco
s

X3

BEARING CHANNEL

Fig. XVIII-3. Range and bearing channel in polar coordinates.

QPR No. 108

I  cc

/ sin c
t

-v/P cos aN sin 5 N

237



(XVIII. DETECTION AND ESTIMATION THEORY)

Figure XVIII-2 can be rearranged in the form of Fig. XVIII-3 which shows the

decoupled range and bearing channels.

Figure XVIII-4 illustrates the estimator channel for the four-state variable. The

coupling effect between the channels is introduced mainly by the crosscovariances.

If

P11 >> P13
(17)

P33 >> P13'

the range channel and the bearing channel perform as phase-locked loops to track the

waveforms

w cS (t) c R(t) (18)

and

_2 (t) = sin 0(t). (19)

The filter can estimate the range and bearing rates through the modulation of the

received waveforms induced by the MS. At each rate channel both beams Z1 and Z3

1,2 3,.4 Fig. XVIII-4. Estimator channel.
DELAY

Z3 Pzl.

are present; the weights are the respective error crosscovariances Pli and P3j' j = 2, 4.

Because the filter behaves like a phase-locked loop, it exhibits a primary lock-in

region of an interval of one wavelength centered on the true range.

We observe that the dependence of the MAP covariance equation on the actual errors

of the estimates shows that the propagated covariances, and consequently the Kalman

gain, will tend to follow the actual errors. Physically, the filter bandwidth is directly

modeled by the errors in the estimates.

b. Covariance Equation

Since the term B = HTR-1H is the Fisher information matrix, the error covari-

ances propagated by the Kalman filter are bounded above by the Cramer-Rao bounds
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for the nonrandom unknown parameter case. This reflects the incorporation of the

a priori information when modeling the processes 6(t) and R(t) generated by a finite-

dimensional dynamical system. For this problem we have

1
P < B - (20)RR <  11 2 (20)

2PT c

o0

1
P0 < B33 2 (21)

2PT wc 2 2NPT } cos 0 T p

5. Monte Carlo Simulation

The receiver structures were simulated for several geometric configurations and

different sets of parameters and initial conditions on a digital computer.

1 s (1) 1

0.5t .-
b(1)

soA (2) P 22
1.0

0.5 b(2)

-0.5

10-3
P44 (4)

100

TIME (s)

2PT/N = 12.5 R(0) 104ft

Q/T = 2 R(0) =30 ft/s

N = 20

Fig. XVIII-5. Typical statistical history for 4 linearized filters.
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Fig. XVIII-6. Bearing-angle history for two different initial bearing rates
(SQRT, Polar, EKF).
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40

TIME (s)

Fig. XVIII-7. Study of an initial error of range and range-rate estimates
on the standard deviations (Polar, EKF, SQRT).
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The performance was measured by the bias

(22)(i) = (i

b(i) 
4 (i)

and the standard deviation

s(i) = . .

4 i)

We fixed the wavelength at X = 50 ft. In Figs. XVIII-5 and XVIII-6 the typical behavior

of the 4 filters is summarized.

s(3)

0
0 50 100 150

(a)

50 100 150

TIME (s)

2PT/N = 12.5 N = 20

Q/T = 2 R(0) = 5000 ft

(b)

Fig. XVIII-8. History of (a) Y-channel and (b) X-channel for EKF
rectangular- coordinate receiver.
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The 4 filters work in a linear region in the sense that

s. - P.. j = 1, ..... 4 (24)

and they give unbiased estimates.

Figure XVIII-7 considers a nonzero initial error on the range and range rate for

the polar configuration. As long as the range is inside the primary lock-in region,

the filters converge to the right range value. The filters are not very sensitive to the

initial error in the range rate.

Figure XVIII-8 gives a comparison of the X- and Y-channels in rectangular coor-

dinates for a broadside geometry. We observe that the Y-channel has a behavior

similar to the range channel of the polar frame.

If for the rectangular system we derive bounds similar to Eqs. 17 and 18 (or equiv-

alently compute the Cramer-Rao bounds for the X and Y coordinates which are now

considered nonrandom unknown parameters), we would find that for a broadside con-

figuration the bound for the X-channel is much larger than that for the Y -channel; this

is shown in the experimental results given in Fig. XVIII-8.

Figure XVIII-9 shows the typical behavior of the EKF and MAP filters when we vary

Q/T and 2PT/N . As we increment the driving noise level, the steady-state error

0.8 x 10-2

0.8 x 10
- 3  3

0.2 x 10-2 0.4 x 10
- 3

3

2

0.7

0.6

5 15 10 30
2PT/No Q/T

(a) ( b)

Fig. XVIII-9. EKF, Polar, SQRT performance. (a) Effect of
signal-to-noise ratio. (b) Effect of Q.
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covariances increase, and so the Kalman gain increases. This means that a greater

bandwidth is necessary for the filter to follow the larger source dynamics.

The filters exhibited a sharp threshold for the signal-to-noise ratio which is in the

neighborhood of 1. In several runs the MAP filter diverged even for values of 2PT/N
above threshold. This divergence was traced to the fact that the error-covariance

matrix lost its positive semidefinite character. The square-root algorithm cannot

obviate this.

Figures XVIII-10 through XVIII-12 show the effects of array length and tracking

geometry on performance.

6. Conclusion

These simulation studies have shown that the modulation induced on the temporal

and spatial structure of the signal by a moving source (MS) permits simultaneous

estimation of MS dynamical parameters.

The (computationally) ill-conditioned polar-frame estimation problem can be

solved by the square-root algorithm. All filters examined showed a sharp thresh-

old on the signal-to-noise ratio and the performance of the filters depended also

on the driving noise power level, array length, and tracking geometry.

Because of the nonlinear character of the estimation problem and the fact that the

filter behaves like a phase -locked loop, some a priori information is needed in order to

start the filters. By remodeling the received signal and considering the bearing as a non-
2

random unknown quantity, provided we use a sufficiently large array, we are able to

solve for the starting information by means of a maximum-likelihood estimation algo-

rithm (composite hypothesis test) followed by a triangularization procedure in which

the curvature of the incoming wavefronts is considered.
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