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1. FEEDBACK EFFECTS ON A TEARING MODE

Introduction

In a previous report,l we considered the effect of feedback magnetic fields on the

kink modes of a current-carrying plasma column. Here we consider the effect of feed-

back magnetic fields on the similar tearing modes that occur when there is plasma

(rather than vacuum) in the region outside the current channel. That is, we consider

the following plasma configuration:

(i) hot plasma and uniform axial current density j out to r = r.

(ii) less-hot plasma carrying no current from r = r to r = c.
o

(iii) vacuum outside r = c.

(iv) feedback coils or wall at r = d.

We define the resonant radius rs as the radius where (m-nq) goes to zero, which

is where the helical field lines coincide with the helical perturbation. Tearing modes

occur when r 5 lies within the boundary of the plasma, and the plasma has finite resis-

tivity, q. For the tearing modes of this plasma, we are interested in plasma currents

such that r falls between r = r and r = c.
s o

Resistive Plasma Profile and the Two-Region Substitute Plasma

We examine feedback effects on the tearing-mode stability of a plasma profile treated

by Shafranov.2 The profile is a uniform current channel of radius ro surrounded by

current-free plasma extending from r = r to r = c. Shafranov considered that a wall

was located at r = c; but we shall consider the free-boundary case, where there is a

vacuum from r = c to r = d with feedback coils (or a wall) at r = d (d>c). Thus for

the actual plasma we take

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(11 -1)-3070).
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0<r<r
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where qo = (rBz/RB6 )r=r = r B /RB ro, B B I
ro e r=r Consequently, (m-nq) =

2 2 2 1/2
m-nq (r/r ) 2 is zero when r /r = m/nq . Thus r = r (m/nq )/2

00 s O0

Fig. V-l. Substitute two-region plasma whose kink-mode
stability bounds correspond to the tearing-mode
stability bounds- for the actual plasma.

To determine the stability of this plasma against tearing modes, we compute the

kink-mode stability of a similar plasma with a vacuum region about r = r s . We con-

sider the two-region plasma shown in Fig. V-1, where the plasma extends from r = 0
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to r = a and from r = b to r = c. The plasma is considered to be perfectly conducting,

with kink-mode stability determined by computing the minimum value of 6W, the change

in potential energy arising from the presence of a kink mode. To determine tearing-

mode stability, a and b are taken so that a < rs < b. Then 6W is found in the limit

as (b-a) goes to zero (still with a < rs < b), with 6W > 0 implying stability. For this

model plasma, jzo and q are

constant 0 < r < r
0

zero r < r < d
o

zero 0 < r < a

infinite (vacuum) a < r < b

zero b < r < c

infinite (vacuum) c < r < d.

Value of 6W for the Two-Region Plasma

We can compute 6W for this two-region plasma with 3 free boundaries, where

6W = 6 Wf + 6Wv .

Here 6Wf is the change in potential energy within the plasma, and 6Wv is the wave's

potential energy within the vacuum. Now 6W has four components, with 6Wf = 6Wfl +

6WfZ and 6W = 6W + W v , where

6Wfl is for the plasma region r = 0 to r = a

5Wf 2 is for the plasma region r = b to r = c

5Wvl is for the vacuum region r = a to r = b

6W is for the vacuum region outside r = c.

Using the minimizing techniques described previously, we find the minimized potential

energy changes

5W ( Z - a/m

W = (aa ) 2 n + (1)

Sn/mq La a

Wf2 2 +2 b/m 2 - 2  c/m
6 Wf2  b m-nq + (C c) m- (2)

-R/ml bc c
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2 1 + (a/b)2 m

L[~a~ai~ b~ 1 - (a/b) 2m j + (a a)(b-
b )

-4(a/b)m

I - (a/b)2m

= (c 2 [1+2(Bfo c)].

Here . is B /i or (B /r)(m-nq)r and x = [ r=x [(B /r)(m-nq)e ] =.
ro r=x

example, -a = (Ba/a)(m-nqa)ao* The scale lengths La , Lb, and Le are (r r)'/(rgr)

evaluated at r = a, b, and c, respectively. Bf is the feedback field at the surface of

the plasma (at r = c). (Bf is the vacuum value at r = c of the field produced by all exter-

nal feedback currents.) For example, for a perfectly conducting wall at r = d, the image

currents on the wall produce the feedback field Bf = Bfo exp(im 6 +ikzz +yt) and Bfo c

is (c/d) 2 m/[l-(c/d) 2m, where £c = (B /c)(m-nq ) co"

a. Determination of the Scale Lengths L a , L b and La b (

We now need to find the scale distances L , L b , and L from the Euler equation for
a'b c

k2r2/m2 << 1 and B' r/B << 1, where the prime denotes a/ar.z z

2
r 

3
+ 2

+ M zr
+ 2 Ti

) r' - (m -1) = 0,
r )r=

where jz is the average of jz from r = 0 out to r = r, and jz = (2/ o)(B /r).

In the region r = r to r = a, j, = 0 and q = q(r 2 /a2). Since = jr/2, we have-
Since j- = + jzr/2, we have

Sic z Jz z- I
jzr/jz = -2,

2
r " +

r

which, for q

and

m + nq) 2S- 2 - rgt ' -(m 1) = 0
m - nq r r

= qo r 2/ r 2 , can be written

r2 (m-nq) + r (m-nq) + m2 (m-nq ) =0.

This is a recognizable equation whose solution is

I (m-nq) = Ar + Br m
-!

In the region r = 0 to r = r, j z is constant and jz = 0 so that the Euler equation goes to

r[rr]" + r[rr]' + m 2 [rr] = 0,
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whose solution is

[rer]= Cr m + Dr - m

We take D = 0 in order that er be finite at r = 0 and take rlr=r

r<r asO

= to obtain e forr r
0 0

rn-l

r = ro()

This solution connects with the solution in the region r = r to r = a.

are that r and ' be continuous at r = ro, which gives

The conditions

A = (m-nq -l)rm
r 0

B =( /r )r+mro 0 0

Thus, for ro < r < a, the radial dependence of r that minimizes 6Wfl is

=( m+1r ro[ (m-nq )- 1-(ro/r)2m .m - nq

or, in terms of aa Er I r=a'

r m+l

=r a\ a

(m-nqa ) (m-nqo) - (l-(ro/r)2m

(m-nq) (m-nqo) - (-(ro/a)2m

2(ro/a) 2 m

(m-nqo) - (l-(ro/a)2m

Similarly, we find (for the outer plasma region) the scale distances that minimize 6 WfZ,

(r~r)'

(rg r
r=b

(r r )

r=c

m 2

b - nqb

m 2
c m - nqc

1 + (b/c) 2m

1 - (b/c)2 m

1 + (b/c)2 m

+ - (b/c)2 m

(o/c)(m-nqc) 2(b/c)m

Sbo/b )(m-nqb)(-(b/c) 2 m

(bo/b)(m-nq b ) 2(b/c)
m

(co/c)(m-nqc)(1 - (b/c)2m
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We use the ratio aco/bo rather than c/ b , since ac is seen to be either in phase or

1800 out of phase with b,' so as to minimize 6W, where

ac = co exp(im6+ikzz+yt)

ab = abo exp(im 6 + ikzz +yt)

and

c = r Ir=c

r=b

We now have 6Wfl, 6W f2,,6W

equivalently, in terms of 4a' .
b' and

and 6Wv2 in terms

*. Equations 1-4

of ao' bo'
become

and o or,Co

= (aqa)2 -2m-l

(a)2 i -

2(ro/a)2m

(m-nqo) - (1-(ro/a)2m)

= (b 2 1 + (b/c)2 m _
= (b-b) 2m1 - (b/c) 2 m

(aco/c)(m-nqc)

(:bo/b)(m-nqb)( 1

2(b/c)m

- (b/c)2 m )

S21+ (b/c)2m+ (c.4 )c L - (b/c)2m

F, ±bil ?] 1 + (a/b)2m
(da \b j 1 - (a/b) Zm ]

(abo/b)(m-nqb) 2(b/c) m

(k /c)(m-nqc) (1 - (b/c)2m

(a4 a )(b4 )a b

-4(a/b)m

1 - (a/b)2m1

= (c-c) 2 [1+2(Bfo/c).

Next we find

just ao or aao a

the ratios of abo and a to a in order to obtain 6W ibo co ao r
Equivalently, we can determine values of the ratios C /bc b

n terms of

and b/ '.
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Value of 6W for the Mode of Amplitude aoao

Perturbations of the current channel provide the energy source for unstable wave

growth. Thus we are interested in modes associated with the wave amplitude in the

current-carrying region, and we want to hold gao fixed and minimize 6W with respect

to bo and co"

First we find the ratio of /cbo that minimizes 6W by holding bo fixed and

minimizing 6W with respect to co Then we hold a fixed and minimize 6W with
co ao

respect to bo" (Since xo and -x are related, we actually minimize with respect to

the amplitude of the radial field at each plasma boundary, and obtain the ratios

-c Ab and-b/ a that minimize 6W for fixed -a)

a. Choice of Feedback

The minimization of 6W with respect to co depends on whether Bfo is proportional

to co or to bo" For external sensing such as magnetic field sensing, Bfo is pro-

portional (for constant m-nqc) to co. But, in principle, internal sensing(with probes

such as ion beams) could be used and Bfo could be made proportional to bo" In the

former case Bfo/ co is constant and

(c@c) 2 [2Bfo/ c ] = [cBc(m-nqc) 2B fo co co

which goes as 2 For the latter case, the feedback term goes as aco bo'

(c-4c [2Bfo/ c] = [cBc(m-nqc) 2Bfo/bo] coAbo

We shall examine the former case in which external sensing is used and Bfo co or,

equivalently, B fo/ c is held constant in the partial differentiation.

b. Determination of (C c)/(b4 b )

Minimization with respect to o involves the terms 6Wf2 and 6W Taking

Bfo/aco to be constant and letting Rcb = (c-c)/(bb), we have

c -(b/c) m

Rcb c 2m (9)

b b  1 + (1 - (b/c) )(Bfo/c)

where c4c = co[B0 (m-nq)] r=c and bb = bo[B(m-nq)] Ir=b
c. Determination of (bb )/(aq a )

Next we find the minimizing bo/ao ratio by holding (ao fixed and minimizing 6W

with respect to .bo. The terms that contain bo are 6W f, 6W2, and 6Wvl'o bof' ' vI"
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We let Rba = (bqb)/(a4a), and obtain

S2(a/b) 2 m 

a 1 + (a/b) 2 m S- (a/b)2m] [

1 + (a/b)2m

1

1 + (b/c)2 m  2(b/c)m Rcb

1 -(b/c)2m 1- (b/c)2m
1

(10)

Clearly as b - a, Rba - 1. Thus the b a ratio that minimizes the wave energy

as b - a is such that B remains continuous, as assumed in tearing-mode analysis.
r

d. Result of Minimization

We now have the minimized wave potential energy in three parts:

r = a (Eqs. 1 and 5)

6Wfl )2
2 = (a ) -d av2R/mpo a L

the energy inside

2(ro/a)2m

(m-nq ) - (1 -(r /a)2m)J
(11)

the vacuum gap energy (Eqs. 3 and 7)

6W 1  ) 2  1 + (a/b) 2m + (-4(a/b)m Rba)
vl = (ad ) 1+Rba/ 2m

SR/mi 1 - (a/b) 1 - (a/b)

and the energy outside r = b (Eqs. 2, 4, 6, and 8)

6 Wf2 + 6Wv2 (a 1 + (b/c)2 m  Z(b/c)m

R/m (a b/cm (b/cm cb ba
v2R/mp a 1 - (b/c) 2 m 1 - (b/c)2 m c b ba

(12)

(13)

Note that 5W goes to zero as b -- a and, correspondingly, as Rba (Eq. 10) goes to one.

Thus the total energy 6W for the mode of amplitude 4a (or of amplitude ao) isa ao

(a a)2 K -
2(r /a) 2 m

(m-nq ) - [1- (ro/a)2m]

1 + (b/c) 2 m 2(b/c)mRcb

1 - (b/c) 2 m 1 - (b/c)2 m

+ (1_1Ra2 )2 1 + (b/c)2m  2(b/c) m Rcb

ba )  a 1 - (b/c)2m  1 - (bc)

T2R/mO"
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Application of 6W to Tearing Modes

To determine tearing-mode stability, we want the small (b-a) limit of 6W (Eq. 14),

which we denote 6 WT. As b goes to a, (Rba-1) goes to zero and 6Wyl also goes to

zero. Thus 6 WT is just the first term in Eq. 14 (with b going to a) or

6W (a )2 2 -(r/a)2m( - (a/c)2 m

T2R/mL 1 - (a/c)2m [m-nqo]- [ -(ro/a)2m
+ 1 - (a/c)m R cb.

a. Fixed Boundary, co = 0

We can check part of these results by comparing them with Shafranov's result 2 for

the special case of a wall at the outer plasma boundary, at r = c. For a wall at r = c,

co is zero (the boundary condition imposed by Shafranov was co = 0) and therefore

Rcb is zero. Taking Rcb (Eq. 9) to be zero, we have

6 WT [a a ]
2 2

Tr 2R/mo 1 - (a/c)2 m

[m-nqo] - [1 -(ro/c)2mI

[m-nqo0 - [1 -(r/a)2mJ

Thus the condition for instability (for 6W < 0) is

2m )2m

1 (r/a) < (m-nqo) < 1 - (r/c) 2 m

The radius a is related to qo, in that our model plasma was chosen so that m-nq

went to zero in the vacuum gap between r = a and r = b, at r = r s . Since q = qo(r/ro) 2

the appropriate value of a is a ; rs = r [m/nq 1/2. Thus r =a corresponds to a dif-

ferent location for each value of qo considered. The condition for instability becomes

1 - (nqo/m)m < (m-nqo) < - (ro/c)2 m

This criterion is the same as the tearing-mode criterion obtained by Shafranov for this

current and plasma distribution, and with the same gco = 0 assumption.

b. Feedback Effects on This Tearing Mode

We now include the externally imposed feedback field Bfo so that 6W T is

QPR No. 107
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6WT 2(a )2  -(r /a)2m[1-(a/c) 2m 1 (a/c)m R/m -(a c) [m-nq [1 /a) + 1 - (a/c)m R2 m ]

R/mo 1 - (a/c) m  m-nqo][ - -(r0o/a)2m cb
b (a/c)m

2(a a2 m-nqo] - [i -(ro/c)2m (17)e i

1 - (a/c) 2m af [m-nqo] (-l[ ro/a) 2m

where

Bfo c

1 + (Bf o/c)

Conclusions

We speculate that external feedback cannot fully stabilize modes that are unstable

even when the outer plasma boundary is held fixed. The example above is consistent

with this view. By comparing the results with feedback (Eq. 17) with the fixed boundary

results (Eq. 16), we see that as B fo/ c goes to infinity, 6W T only goes to the fixed

boundary value. While partial stabilization (reducing the growth rate and narrowing the

range of unstable qo values) can be achieved, (m-nq) values from 0 to [1-(ro/c)2m ]

remain unstable, even for very large feedback fields. The problem can best be under-

stood by noting that regardless of what Bf is made proportional to, the externally

imposed feedback contribution (Eq. 4) to 6W goes as (B foco). Thus if Bfo is made very

large, the value of co that minimizes 6W will be very small, thereby nullifying the

feedback contribution.

Consequently, we speculate that for externally imposed feedback fields, magnetic

feedback stabilization may be limited (as far as doing more than reducing the growth

rates) to modes (such as kink modes) that are unstable for a free boundary but are stable

when wr is kept equal to zero at the outer plasma boundary.

R. S. Lowder, K. I. Thomassen
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1. APPARATUS FOR ION TEMPERATURE MEASUREMENT

BY LYMAN ALPHA DOPPLER SHIFT

This report describes the development of an ion temperature diagnostic device for

the Alcator experiment now under construction at the Francis Bitter National Magnet

Laboratory. This machine is designed to produce a hydrogen plasma with a density of

1014 cm-3 and a particle kinetic temperature of 1-2 keV. Since the particle temper-

ature is so high, the only probe that may be used for sensing the particle temperature

is radiation. It is desirable to determine not only the ion temperature but its spatial

variation.

The method under development for spatially resolving the ion temperature involves

the measurement of the Doppler shift of Lyman alpha radiation emitted by neutral atoms

formed by charge exchange within the plasma. The hydrogen Balmer lines, in the vis-

ible spectrum, have previously been used for this kind of measurement. The difficulty

in using lines other than Lyman alpha is the very long lifetime of these other lines. A

neutral formed in a level that would emit visible light can move completely across or

out of the plasma before emitting a photon, thereby making spatial resolution impos-

sible. The lifetime of the Lyman alpha transition is of the order of 10 - 8 s. A 1 -keV

hydrogen neutral excited to the n = 2 level will move only approximately 1 cm after a

charge-exchange event before it radiates at 1215 A. The lifetime of this level is much

shorter than the characteristic time for any process that might destroy it. Neutrals

excited into the n = 3 level or higher may suffer ionization or may move a great distance

before radiating. The atoms produced in the n = 2 level will radiate at 1215 A. The

This work was supported by the U. S. Atomic Energy Commission (Contract

AT(11 -1)-3070).

tDr. D. Bruce Montgomery is at the Francis Bitter National Magnet Laboratory.
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neutrals will be formed by charge exchange with a neutral hydrogen beam 1-cm wide at

10 keV. The beam will be directed along the center of the plasma column. By focusing

a spectrometer on the beam at a right angle, atoms formed in the n = 2 level will be

observed, while most of the atoms formed in other levels will move out of the viewing

volume before radiating. By scanning the plasma radially along the beam, a spatially

resolved temperature profile may be obtained.

Doppler broadening is not the only source of line broadening. Other sources are the

Stark and the Zeeman effects. It has been shown that only the Zeeman effect need be

considered.1 The Zeeman effect, caused by the Alcator main toroidal field, will produce

~0. 2 A broadening. This value is small and may be compensated for in the data anal-

ysis.

Spectrometer Design

The spectrometer design criteria are dispersion, detectors, physical size, avail-

able gratings, optics configurations, free spectral range, and instrumental broadening.

These topics are interrelated and must be considered together. For optimum operation

the spectrometer must be designed as a complete system.

For a Maxwellian plasma with Doppler broadening as the only line-broadening mecha-

nism, the intensity distribution is

I(A) = It exp (A/AD)2]

D

where

It = total line intensity

Vth
D c o

v

s c 0

vth = average particle thermal velocity

v = component of particle velocity along the line of observation.

The full width at half maximum (FWHM) of the line is

Ak 1/ 2 = 2(ln 2)1/2 A D.

A plot of A&1/2 against Ti is shown in Fig. V-2. For a particle energy of 2 keV, the

FWHM is 3 A. In order to observe the structure of the line, a spectrometer with a
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minimum resolution of approximately 0. 3 A must be used. This resolution will allow

reasonably accurate measurement of temperatures as low as a few hundred electron

volts.

o

3 -

0.2 0.5 1 0 2.0 10.0

Ti (keV)

Fig. V-2. Linewidth vs ion temperature.

In order to determine the spectrometer dispersion to provide a resolution of 0. 3 A,

the method of detection of light leaving the spectrometer must be examined. To obtain

this resolution, the width of the detectors must be

Required Resolution
L < mm,

(d/da)

where dk/da is the linear dispersion (A/mm), or

L 0. 3 mm.
(dX/da)

For most types of photomultiplier tube detectors, with L of the order of 1 cm, a dis-

persion of 0. 03 A/mm would be required. This value is impractically high for a system

of reasonable size and expense. Because of this consideration Channeltron electron

multipliers were chosen. 2 These devices have a 1-mm aperture and a gain of -107-108

This detector must have a dispersion of 0. 3 A/mm for the required resolution. Several

channeltrons will be placed side by side so that each detector may observe a 0. 3 A seg-

ment of the line. The ratio of the signals from any two detectors will give a value of

ion temperature. Values from several pairs of detectors will be compared in order
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to determinewhether the distribution function is a Maxwellian. Because of size restric-

tions 1 m was set as a goal for the approximate size of the spectrometer.

The requirements of small instrument size and high dispersion led to the selection

of an echelle grating as the light-dispersing element. The echelle is a coarse-ruled

flat grating that is operated in a high order. Very high dispersion can be obtained with

all gratings if they are operated in a high order, but with ordinary gratings very little

light is dispersed into high orders. The echelle grating, however, has the property of

throwing -60% of the dispersed radiation into the particular high order for which the

system is designed, with 10-20% going into the next lower order and 10-15% into the

next higher order. 3 Therefore light intensity does not have to be sacrificed for high-

order operation. Also, the echelle grating is blazed for all wavelengths at an angle of

63 26', which makes it very versatile.

M2 EXIT
SLIT

2

81= 2  GRATING Fig. V-3. Czerney-Turner mount.

-- ENTRANCE
M SLIT

After consideration of many optical systems, the Czerney-Turner spectrometer

arrangement (Fig. V-3) was chosen for this device. A Littrow mount would have been

more compact but a lens would have been required instead of all reflecting optics. No

lenses of high transmission efficiency are available for use in vacuum ultraviolet. By

using Mg F 2 vacuum ultraviolet enhancement coatings, reflectivities of 0. 8 can be

obtained with mirror optics. When using mirrors an off-axis reflection of a curved

mirror is required somewhere in the optical train in order to get light on and off the

grating. 5 The Czerney-Turner system has the property of producing zero net coma and

minimizes aberration. The mirrors M 1 and M 2 were chosen to make maximum use of

the grating rulings and obtain the highest possible resolving power. The diameter of

each mirror is 5 cm, and the radius of curvature is 50 cm, which makes an f/5 optical

system. These values were determined as optimum by mechanical considerations and

by a ray-tracing computer program run at the Draper Laboratory. 6 The light-collection

mirror characteristics were selected for optimum spot size at the detectors. In

mounting these mirrors, the angle 0 (the angle between incident light on and reflected

light from the grating) was chosen to be 60. The operating length of the spectrometer
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is 1 m, therefore the total distance between the grating and the detectors is 1 m; hence,

the spacing between the grating and mirrors M 1 and M2 is 75 cm. The detectors are

located at the focal point of M2, 25 cm from the mirror. Since the light is parallel

between the mirrors and the grating, the distance is adjustable to suit the dispersion

requirements of the system.

The echelle is operated in a reverse mode from standard gratings, using the short

side as the reflecting surface (see Fig. V-4). The grating equations are

mk = d(sin a+ sin P)

mk = 2t - sO.

The quantities d, a, P, s, t, and 0 are defined in Fig. V-4. A 316 i/mm echelle grating

was chosen for use in the spectrometer. Solving the grating equations for m and dX/dO,

N

d /

Fig. V-4. Operation of the echelle.

mX d (sina +sin 3)

8 = 60

a = 630 26'

= 57' 26'

X = 1215A

we obtain an order (m) of 45. 2 and an angular dispersion (dX/d0) of 312. 9 A/rad. The

required dispersion is ~300 A/rad. The next quantity to be considered is the free spec-

tral range, F. This must be much wider than the linewidth under observation (~3 A).

The equation for free spectral range is F = %/m. For X = 1215 A and m = 45, the free

spectral range is 26. 9 A. The 316 1/mm grating meets the system requirements. The

instrumental broadening determines the narrowest line that can be resolved by the spec-

trometer. This broadening is related to the resolving power R = mN (where m is
P

order and N is number of exposed lines) by Ak = \/R , with k = 1215 A. For the 316 i/mm
th

grating, we chose the 45 order. The number of exposed lines is determined by the ruled

width in the optical system. The echalle grating will be operated at the blaze

angle (63 26'). The groove length in the system is 5 cm, and the ruled width is

5 tan 630 26' or 10 cm. The number of exposed lines is therefore 3. 16 X 104. The instru-

mental broadening, Ak = 0. 855 X 10 - 3 A, is negligible compared with all other broad-

ening mechanisms.
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Light-Collection System

Access to the Alcator device is limited to ports 2-cm wide. The neutral beam on

which the spectrometer will be focused must be observed through this slot. The 2-cm

slot forms the limiting aperture of the optical system and determines the light cone

emerging from the machine. The spacing between the 1 -cm viewing volume and the

2-cm aperture yields an f/10 light cone. The spectrometer is designed to match an f/5

cone. If the light cone emerging from Alcator is not the same as that which the spec-

trometer is designed to accept, large loss of light will occur. In addition to collecting

light from Alcator, the main collection mirror must change the emerging f/10 light cone

to an f/5 cone. Matching these light cones allows for the most efficient operation of the

optical system. The collection optics is a Cassegrainian system with a flat secondary.

The entire optical system is shown in Fig. V-5. A flat secondary on the collection sys-

tem is necessary, otherwise uncorrectable coma would result from off-axis reflection

M1 M2

MAIN
COLLECTION

DETECTORS MIRROR

) Fig. V-5.

SECONDARY Optical system.
VIEWING
VOLUME 2-cm

PORT

GRATING

from a curved mirror. After the position of the main mirror was selected according

to mechanical considerations, and the diameter determined by the light cone emerging

from the Alcator device, the entire optical system was analyzed by a ray-tracing com-

puter code at the Draper Laboratory. The result of this computer run was the selection

of the radius of curvature of the main mirror and the distance between the main collec-

tion mirror and the first mirror of the spectrometer for optimum spot size at the detec-

tors. This size (~0. 1 mm) is completely adequate, as it could be as large as the detector

(1. 0 mm) and still yield the required results. The position and size of the flat secondary

is not critical. It may be placed anywhere between the main mirror and the first mirror

of the spectrometer.

Vacuum System

The pressure in the spectrometer must be maintained at approximately 10-5 Torr.

If the pressure goes below 10-6 Torr, oxygen will be lost by the SnO secondary emission
If the pressure goes below 10 Torr, oxygen will be lost by the SnO secondary emission
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material in the channeltron detectors. The detectors must then be brought up to atmo-

spheric pressure for rejuvenation. If any pump oil is present and the pressure exceeds
-4

104 Torr when the device is operating, the ultraviolet photons can cause photochemical

reactions between the oil and the Mg F2 mirror coating. This will result in a large loss

in reflectivity of the mirrors. In an attempt to avoid high-pressure problems, since

they are more severe than low-pressure difficulties, the pumping system will be a cryo-

sorption pump for initial pump-down with a 100 1/s triode pump for the maintenance of

operating pressure.

Neutral Beam Source

The neutral beam source is a commercial Duo-plasmatron ion source followed by a

helium charge-exchange cell. The energy of the neutral beam will be 10 keV in order

to maximize charge exchange in the plasma into the n = 2 level. 7 The beam source is

expected to deliver a neutral equivalent current of approximately 1 mA. The beam will

be chopped at a rate of 1 kHz. Chopping the beam will allow the use of tuned amplifiers

following the detectors to improve the signal-to-noise ratio.

D. P. Hutchinson
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2. CURRENT-DRIVEN MODES IN TWO-DIMENSIONAL

PLASMA CONFIGURATIONS

Introduction

The presence of trapped particles in a two-dimensional configuration (such as a

toroidal diffuse pinch or a multipole) has a strong effect on the characteristics of

kinetic modes that are driven by an electron current along the magnetic field. The

reasons for this are as follows.

i. The current is carried by only a part of the electron population (the circulating

part).

ii. The particles resonating with the wave have bounce frequency if they are trapped,

or transit frequency if they are circulating, equal to the frequency of the wave. This

process involves a different portion of velocity space than do the ordinary wave-particle

resonance processes that occur in one-dimensional geometry.

iii. The periodic inhomogeneity of the magnetic field introduces a distinction between

modes that are even or odd around the point where the magnetic field is minimum.

The electron current, having preferential direction along the magnetic field, is shown

to affect these two types of mode differently.

We notice that an assessment of the current-driven microinstabilities that can arise

in toroidal high-temperature plasmas is important in order to predict their effects on

the electrical resistivity and therefore on plasma heating. 2

In the present report we confine our attention to electron distributions of the type

derived by the neoclassical transport theory3 in regimes where the electron collision

frequency in smaller than the transit frequency. Consequently our conclusions are

strongly limited by this assumption.

We examine the general form of toroidal modes that can be excited and give

the main parameters of the particle orbits in the assumed configuration. Then

we consider modes with electric potential that is odd in 6 (the poloidal angle)

around the point of minimum magnetic field. We decompose these modes in har-

monics of the orbit periodicity and arrive at a dispersion equation. On the basis

of this we conclude that, for all equilibrium distribution functions in which the

term containing the electron current is odd in vll (the particle velocity parallel

to the magnetic field), the stability of odd modes remains unaffected by this

current. We also see that the odd modes are not appreciably influenced by mag-

netic shear.

We then consider even modes that are almost flutes in the sense that they are almost

constant in the direction of the magnetic field. These modes are strongly influenced by

magnetic shear and are convective in nature. That is, wave packets tend to be amplified
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when propagating in a radial direction that is correlated with that of the electron current.

The amplification is caused by resonance (with the wave) of the circulating particles that

carry the current. The range of realistic frequencies for which the relevant waves can

exist, however, is such that only the electrons with energy smaller than thermal con-

tribute appreciably to their amplification. Since there are few electrons of this kind,

the amplification that is found for a measurable amount of shear is not too significant.

By the same argument we also show that the ordinary current-driven drift instabilites,

with wavelengths along the magnetic field that are considerably shorter than the mag-

netic field periodicity length, do not have an appreciable growth rate.

Finally, we consider regimes wherein the electron collisional mean-free paths are

shorter than the wavelengths along the magnetic field of the even modes. In these

regimes the effects of electron thermal conductivity become important and the resulting

instability no longer involves wave-particle resonance processes. We then evaluate the

stability criterion against convective modes in terms of the shear parameter.

Equilibrium Distribution Function

Consider an axi-symmetric toroidal configuration in which the magnetic field is

represented by B : Bo/[l+(r/Ro)coso], where r indicates the magnetic surface,

and 0 the poloidal angle. The regimes of interest are those in which

VeT < Wbe' (1)

where VeT is the average effective collision frequency, and wbe the average bounce fre-

quency for trapped electrons. Thus ve the/qo)(r/Ro 1 / 2 , where the rationalized

rotational transform is 1/q z RoB 0 /(rB ), where B and B are the poloidal and toroidal

magnetic fields, respectively.

We assume that the only electric field existing in equilibrium is that applied along the

toroidal direction and producing a current of circulating electrons. The electron

distribution is taken as nearly Maxwellian, so that

A
fe = fMe(l+f e) (2)

where fMe = n(r)/(2TTe/me 3/2 exp(-/Te), and E = 1/2 m(v+v 2) is the particle

energy. For trapped electrons fe is the solution of Vlasov's equation so that

A li 1 dn 3 E I dTe
eT n dr 2 T T dr (3)

where 02 0e = eB /(me c). The distribution function for circulating particles is strongly
dependent on the choice of the collision operator. 4

dependent on the choice of the collision operator. Here we take a solution of
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Vlasov's equation in the form

A A V)ll e Efe = f - o ) (Ac-A), (4)
eC eT 2T

where v is an effective electron-ion collision frequency such that

v(E) = T e

1(Ac-A) is the step function with Ac = 1 - r/R , (vl) = (2c/m)/2, (E-pBo0 ) 1/2

(2/m)/2 ( 1 -A)1/2, j = mv /(2B), and A - [Bo/e and g = sign vl. Therefore circu-

lating particles correspond to 0 < A < A and trapped particles to Ac < A < A + 2r/R .

We shall make use also of the quantities defined as

eEu e (5)o my
e o

A A A
af =f -f (6)e ec eT

Odd Modes

Consider the frequency range

3bi < w < be' (7)

where 7 j is the average bounce frequency for the species j. Since we refer to a

low-p situation (p 8rrn(Te+Ti)/B2), the modes of interest are electrostatic, so that

E = -V . In particular,
-11

S= ,m( 6, r) exp(-iwt - imo + in°o), (8)

and we consider modes localized around a rational surface such that q(ro) = m /no,

where q(r o ) = 2 w/L, with L the rotational transform. An important physical and
5

topological distinction among various possible modes is given by the parity of

Pm(6) around 6 = 0. Therefore we look first for odd modes; in particular, we

consider the limit

8 m dq _>> T (r-ro) (9)ae dr (9)

so that the effects of magnetic shear, corresponding to dq/dro 0, can be neglected.
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Here r - r is of the order of the width of localization of the modes in question about r.
O o

In this limit the perturbed ion density can be written

n.
1 mo c 1 dn 1 -

n r B codrnm (10)

if we neglect the contributions of finite Larmor radius and magnetic curvature effects.

In order to find the electron distribution we decompose m in harmonics of the orbit5 m
periodicity. That is,

A

( ) = 4(P(A) e . (11)

p

Here cb indicates the bounce frequency for trapped particles and the transit frequency

for circulating particles. That is, wb = 2 r/Tb where

1 deT b = Ro qo (12)

for trapped particles, and c b = 2Tr/Tt, where

t = R q T  do (13)
t o o  I vl l

for circulating particles. In addition,

^ de'
S Roq O I vl I

We take the guiding-center approximation, integrate the linearized perturbed Vlasov

equation along unperturbed orbits, and obtain

~ Me + e n" c e tf e -e e e e dt' m[O(t')] exp[-iw(t'-t)] . (14)em m 86 8 R eB ar 0

We have not included terms in (14) corresponding to the magnetic curvature drift.

Such terms, as can be verified a posteriori, are unimportant for the modes of

interest. Then we derive the perturbed electron density in the form

QPR No. 107



(V. PLASMAS AND CONTROLLED NUCLEAR FUSION)

(k2
2 2m e /

T - co
e

dedv B
v,, I

e

fMe

p#0

) (A)
S- Pob

i b (15)

cT
m ° Te 1 dn

"e r eB n dr'
o

d In T dIn n

oT *e dr dre
(16)

and a- = ±1.

We write the quasi-neutrality condition i = ne and construct the quadratic form

(17)dO 4 ()(ni-n e ) = 0.

Then we obtain

R oq
M 2

dldp TI fi$) e
dO m - 2

j - W*e +Te (3
8(E/Te)

The significant contribution of the last term comes from the resonance w = pcb, where

for trapped particles

= 1/2

b m o (X 2 ) 2X 2 1 + (1-A) Ro/r,

so that 0 < X < 1, and .(X 2 ) = -L do [1+(r/Ro) cos 0]l/2/(2X2-1 +cos 0)1
/2 is a weak

function of X. Therefore nearly all resonating particles have energy E < T , and we
A A

have retained the lowest order contribution of Afe through the term aAfe /a(/Te). Since
2 2

S(p) (-p) 2

m m

p*O

I (P) 12m

-p )
p> 0

(p) 12 2 o
m 2 2 2'

c -P b
A

The summation over a- of this term multiplied by 8 Ae I /8(E/T ) gives zero contribu-

tion.

Thus we reach the important conclusion that the stability of odd modes is not affected
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by the presence of a relatively small electron current such that the corresponding elec-

tron distribution is represented by an odd term in vll, as exemplified by the expression

(4). The evident reason for this is that standing modes can be regarded as resulting

from the interaction of waves traveling in opposite directions along the magnetic field

and having equal amplitudes. While one type of wave would tend to be damped by the

current flow in a given direction, the other would tend to grow and the result of their

interaction is a marginally stable mode (with respect to the effects of current).

We can rewrite Eq. 18, considering that w = c*e + 6 O, as

o D 2 T -3 rj 3
*e e emt 4

S (P(X2 12

dx2  4 2 
p 3 (= 0.
p>0 P

Therefore the significant instability that can be found in this case corresponds to an

inverted gradient of the temperature profile for the trapped electron population. In fact,

this can be invoked as a factor contributing to the destruction of a skin layer of elec-

tron temperature under conditions veT < jbe , which is relevant to the present treat-

ment. Here we have defined ~te = Vthe/(qR).

Even Modes (in 8)

Consider the opposite limit of that treated so far; that is, flutelike modes such that

cm(0, r) is nearly independent of 0, in the sense that

m dq mO dq<< no (r-r (r-r (r-r )  S. (19)
8o dr o q dr 0o

Now we have

D = m(r) exp(iwt + iS 0) (20)

and in the case of trapped particles the quantity exp[iS6(t')] entering the integration

of Vlasov's equation along particle orbits can be decomposed in harmonics of the orbit

periodicity so that

A
iS(t) () ipbt

e =e) D(T(A, S) e (21)

p
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For circulating particles we can write, for cot = 27T/rtt

A A

e iS (t)= ei tt D(P)(A, S) eiptt. (22)

p

If we assume that

VthiS < o,qR
6

the perturbed ion density can be obtained from moment equations, so that,

Ti/(m.2 2) and 2. = eB/(m.c),1 1

(23)

2
for Pi

e J 0 i 1 2
T. w 2 Pi

S T.

2 22
S 2 2 2 1
miR oqoco100

'i T. a 2

(ar

o2)

r
O

j I~ } m(r) (24)

Notice that the quantity S2

1
L

s

/(R2qo) can be written mo/r)2 (r-r) 2 /L 2 , since we define
(r-r~2/ Ss

B 0 1 dq

-B q dr
(25)

and B6/B = r /(Ro q ).0Or 00
Also, = -o T./Te and T = co (d In Ti/dr)/(d In n/dr).e 1 T.

1

We ignore the contributions of the terms DT and DC for p # 0,

turbed electron density as

ne
n

e nT
C. n

e
- m(r)
P

1 - (1

and write the per-

d3 v fMe

0-

0 - 0,e + WoTe ( ffcoL 8 a(E/T e )

o - S1

(26)

If we consider the limit

< S VtheO < sqR <ote'be,
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we can retain only the resonant contribution of the last term. We recall that Wt cc

(c) 1 / 2 F(A), where F(A) is a weak function of A, and we appropriately ignore the con-

tribution of the barely circulating particles. Therefore the resonant electrons will cor-

respond to

Te te S

Thus we can rewrite the relevant integral after summing over 0-, as

o E 1h + 3 T (i -A ) I(A c-A)

the Te ( f d3 v (28)2 2 2 Me d v  (28)
C -S ct

Now the term in square brackets is of order c Teoe' , while the term containing the
4 - 2

current is of order (Uo/vthe ) *e /(Sc"te) . Therefore, instability could occur only

if

2-2
u S teoT

o > 3 e (29)
the c*e

which is impossible with T ~ W*e'
e

A significant growth rate can be obtained for current-driven instabilities if the

current-carrying distribution can be represented by the model

A A U

f eC = fet - (v) o l(Ac-A) (30)
Vthe

and the electron temperature gradient can be ignored so that w, >> T . These are
e

rather unrealistic assumptions. So, as we shall see, current-driven modes of

the type under consideration acquire practical significance only in the limit where

the effects of electron collisions become important and replace those of wave-

particle resonances. Then, for the sake of completeness, we point out that the equation
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for )(r) corresponding to the expression (30) for feC is

6 i n)( Ti T  , e S 2  Te a2 m°2

u 2
) m(r-r ) + i (sign S) 2S2 m(r-r o ) = 0. (31)

m o the te

It is possible to see that the relevant modes are of the convective type, with respect

to the r-r variable. We follow a procedure described elsewhere and considero

a wave packet propagating in the direction where the sign of S is such as to give insta-

bility. Thus assuming a WIKB solution of the form

m(r-ro) m e , (32)

where k is complex and w is real, we evaluate the amplification

i f Im kr(r-r o) d(r-r o)e (33)

Unlike the type of convective modes treated by Coppi et al. 7 current-driven modes tend

to be amplified when propagating in one direction along r and to be damped when propa-

gating in the opposite direction. If we consider the limit k >> m /r , we obtain
-

3o

S 1 (r-r) 2 L 2  2 u 
2

S2 _ , (3a the 0i k7 d M
(e) (e)2 mi (e) 2

Si I pi n Pi r ner

7 2 2 2((r-rr) L) L
0 0 s A (34)

(e)2 2

p i (e)21/2 A -n /(Te+T,

where rn -n/(dn/dr), pie)E v / v = (Te /m1/2 (6/ e )(I-nT/n) T/(T+T.),

i = Ue[Te/(Te+Ti)], -te = v the/(R q), and Ls is defined by Eq. 25. If we choose for

simplicity < (r-r) Ls e)r)]2, we obtain the rough criterion

r /\1/2 3m /4
nL o> e (35)
L v m.
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by demanding that the rate of energy extraction from resonating electrons be smaller

than that of convection.

Finally, we consider the case of nonconvective drift modes, with relatively short

wavelengths along the magnetic field, which are not affected by magnetic shear.8,2 Since

the frequency of these modes for realistic parameters of toroidal plasma experiments

is less than wbe' the relevant frequency range is

Vth i  Vthe<k v < < <k v

qR 0  thi qR 0  the'

where, in particular, k qR > R/r. Therefore, the electrons resonating with these

waves have velocity v 1 = W/k << vthe. In particular the total energy of these elec-

trons is less than the thermal energy and they do not carry a significant fraction

of the current. Therefore these electrons do not contribute a significant growth

rate to the instability.

Collisional Instabilities Arising from Finite Thermal Conductivity

The even modes that we have considered have wavelengths considerably longer than

the magnetic field periodicity length. It is therefore realistic to consider regimes in

which the mean-free path is shorter than the mode longitudinal wavelengths. That is,

if k (mo/ro) (r-ro)/L s , we treat the limit

k < klXk < i1, (36)
k llvthe e

where X is the electron-electron collision mean-free path.
e

In this limit, a current-driven instability associated with finite electron thermal

conductivity has been found theoretically. This has been confirmed experimentally by

Ellis and Motley. 9 In the simplified treatment here we omit the damping effects of

ion viscosity and thermal conductivity 2 because the instability criterion that we derive

from the influence of magnetic shear is sufficiently stringent to make the former effects

unimportant. The momentum-conservation equation for circulating electrons is

-ik II (C T+nCTC) + ik en (37)

and the corresponding energy-conservation equation is

dT T
3 eC 2 eT
-C dt + ik1 Te ell = -kllXe my nCTeC' (38)

e
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where in the limit of (36) the first term on the left-hand side is negligible, ve is the

average electron-electron collision frequency, and Xe is a numerical coefficient spec-
10

ified, for instance, by Braginskii. The mass -conservation equation is

mC C dn
-iwnnC - i - d + ik nu = 0. (39)eC r B dr C ell

Then we find the perturbed density of circulating electrons as

ec v e ( Vw-,,-k lUe)
n eC 1 - i 2 (40)

eC T y kI Te/m ee LI e

For simplicity, we have omitted in (40) the term corresponding to a transverse gradient

of the electron equilibrium temperature. We see that if w z ~e , the sign of the imag-

inary term changes with the sign of (r-ro)/ro. Therefore amplification of wave packets

occurs only when they propagate in the k lue positive direction. The perturbed density

for trapped electrons, with the effects of collisions ignored, is simply given (recall

Eq. 26) by the mass conservation equation in the form 5

m o 'c dn
-in + i d T = 0. (41)

eT r B dr

The perturbed ion density, under the assumptions previously specified, is given by

Eq. 24. For simplicity, we neglect the terms in c Ti containing the ion temperature

gradient.

Imposing the quasi-neutrality condition, we finally arrive at the dispersion equation

S n + 1+e eT i Te 1 2  m2 + k 2 -i
ne r2 2

V (W-W,-e-k llUe
e k 1 ue 0 (42)

ek 1T /me

Then considering the limit a/ar > m°/r o , for 0 = :-e + 60 we have

2 2
2 r rL vu m.

- + i o - ' = 0, (43)
ar 2  6 4 Xe mo(r-r )T /m (Te+T.)(1-nT/n)

where 62 = LsTe/(rnm i 2 )] . Now we can argue that stability will occur when the rate
Se nm 1
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at which energy is extracted from the electrons is equal to the rate of convection,, 11

which (refer to Eq. 43) corresponds to

r L vu m.
1 1 o seeii 1(4
S> (44)

6 2  e mo(T /me ) Te+Ti)(1-nT/n)

and leads to the condition

2/3 2/3

Ls vs mi *e Xe(T e+Ti)( l-nT/n)

which is considerably more severe than that obtainable for the collisionless regime. A

more precise criterion can be derived by considering and evaluating the full amplification

integral f ki(r) dr. From Eq. 42 we have

- 2 2 1/2

(r-ro) rL vu

22

( (46)
2 4 A2 (

where -n/Q(2)iwhere (Te+Ti)(-n/n)/ m.i ' and the value of 65w/,. is so chosen that the

wave-packet amplification is maximized.

We are indebted to J. Callen, F. Santini and D. J. Sigmar for their collaboration.

B. Coppi, J. Rem

[J. Rem is associated with the FOM Instituuit Voor Plasma-Fysica, Jutphaas,
Nederland.]

References

1. J. Callen, B. Coppi, R. Dagazian, R. Gajewski, and D. Sigmar, in Plasma Physics
and Controlled Nuclear Fusion Research 1971, Vol. II (International Atomic Energy
Agency, Vienna, 1972), pp. 451-477.

2. B. Coppi and E. Mazzucato, Phys. Fluids 14, 134 (1971).

3. M. Rosenbluth, R. Hazeltine, and F. Hinton, Phys. Fluids 15, 116 (1972).

4. D. J. Sigmar, "Neoclassical Resistivity of Toroidal Plasma Due to Momentum
Transfer from Circulating to Trapped Electrons" (submitted to Phys. Fluids).

5. B. Coppi, Riv. Nuovo Cimento 1, 357 (1969).

6. Ibid., Appendix A.

QPR No. 107



(V. PLASMAS AND CONTROLLED NUCLEAR FUSION)

7. B. Coppi, G. Laval, R. Pellat, and M. Rosenbluth, Nucl. Fusion 6, 261 (1966).

8. B. B. Kadomtsev, J. Nucl. Energy C5, 31 (1963).

9. R. F. Ellis and R. W. Motley, Phys. Rev. Letters 27, 1496 (1971).

10. S. Braginskii, in M. A. Leontovich (Ed.), Reviews of Plasma Physics, Vol. I
(Consultants Bureau, New York, 1965), p. 24.

11. B. Coppi, Phys. Rev. Letters 25, 851 (1970).

3. ELECTRON NEGATIVE-ENERGY MODES IN TWO-

DIMENSIONAL PLASMAS

To understand the macroscopic transport properties of two-dimensional confined

plasmas, we need knowledge of the modes that can be excited in them.1 In particular,

an important question is whether the orbit of deeply trapped electrons in a toroidal con-

finement configuration can be significantly altered by the collective modes 2 to which the

plasma is subject. Analysis of such modes leads to identification of the following
A A

requirements: (i) they exist at frequencies '- be' where 'be is the average bounce

frequency of trapped electrons; (ii) the profile of the resulting electric-field fluctuations

is correlated with the periodic variation of the magnetic field and is nonzero and even

around the point of minimum magnetic field; (iii) they cannot be damped by the process

of resonant interaction with trapped electrons. This last requirement can be met, for
3

instance, if the relevant modes are of negative energy, in the sense that they tend to

grow when positive energy is transferred to the resonant particles from the wave.

In a symmetric torus in which the magnetic field can be represented as B

B /[1+ (r/R ) cos ], with r and R the minor and major radii of a magnetic surface,

be is of order (r/Ro)/ Vthe/(qRo), where vthe is the electron thermal velocity, and

q - rBT(RoB ), BT and B being the toroidal and poloidal magnetic field components,

respectively. An analysis of the possible modes that can be excited with frequency W ~

Ae on the basis of the microinstabilities known to occur in one-dimensional equi-

librium configurations leads to unrealistic results. For instance, if we consider drift

modes with electric potential J = 4(x) exp (-iwt - im + ik , where is the direction

of the magnetic field, we obtain

F(b.) 1 T vthi
S i e< i r

Te 1 + (Te/T i)[+F(bi) 2 eT i rn

Here oe = (mo/r)[cTe/(eBn)] dn/dr = mo(Pe/r) vthe/(2r n ) with Pe the electron Larmor

radius, rn indicates the density gradient scale distance, bi = (mopi/r) 2 with pi the

ion Larmor radius, vth i is the ion thermal velocity, F(b i) - Io(b i) exp(-b i ) with Io the

known modified Bessel function. Therefore the condition w > w be would require
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r 1/2 (m T. /2 T
n (r e 1 e

R 0q R/ m. T T + T.o1 e 1

which is not satisfied in realistic diffuse-pinch configurations.

We could also consider ion-sound waves, but these are not likely to be excited in
experiments in which Te is not much larger than T. and the electron drift velocity is
much less than vthe, as is usually the case.

The modes that we shall find here satisfy all three requirements that we have
indicated and, unlike the known drift modes, they can be made unstable by a gradient
of the electron temperature in the direction of the density gradient. For a two-
dimensional toroidal configuration that is inhomogeneous and periodic in 0 the appro-
priate normal modes are of the form ( = 0 (0, r) exp(-iwt-im E +in t). We

m n
consider in particular those modes that are radially localized around a rational surface

r = ro such that q(r o ) = mo/no. The longitudinal electric field, which is important for
the resonant mode-particle interaction, is El = E 1 * B/B = -(l/ro)(a/ao ) m(6)(Bp/B T)'
where E 1 = -VD and cm() o o(ro, 6). Since we are interested in the interac-

m ,n

tions with deeply trapped electrons, we shall consider modes with m(0) odd (in 0)
around 0 = 0, so that E is even and nonzero around the same point.

We consider the frequency range Abi , < e and short transverse wavelengths so
A 1

that we > be. This implies b >> 1 and the perturbed ion distribution function is then

en.
n. = -- (2)1 T. m

1

To determine the perturbed electron density ne we derive the perturbed electron
distribution, in the guiding-center approximation, by integrating the linearized Vlasov

equation along particle orbits.1 In order to perform this integration, we decompose
7, 1(p)() exp(ipwt), where#m(0) in harmonics of the orbit periodicity so that m() = xp(ipt), where
P

A = tBo/E with i = mvy /(2B) the particle magnetic moment and E = mv +v /2 the

energy, ct- 4r () d'/ v ) /0(d0'/vl) with v1 = (2E/m) 1 / 2 [1 -AB(0)/Bo 1, so that

wbt is a function of 0 and A only.
The unperturbed electron distribution is assumed to be of the form fe = fM (1+f ),

A e
where fM is the Maxwellian with temperature Te, and f = (v / pl )[(dne/dr)/n -

e A

(dTe/dr)(3/2 - /Te)/Te]. This form of fe is appropriate for trapped electrons in
regimes in which their average collision frequency ( ve) is smaller than /be, and

we do not consider a different form for the circulating electron,4 since this will notwe do not consider a different form for the circulating electron, since this will not
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influence the result, in the limit h /r >> i.

led , to

e = (en/e

*1

Here pel = eB p/(m c).
pe p e

Then we are

n-1 v d 3 v fM - *e e+ T e(3/2-/Ti)l
e )

where aTe = w1(dln T e /dr)/(dlnn/dr).

We consider Poisson's equation (m/r) 2  = 4 we(n-n )

form

and take the quadratic

(mo/ro2 2 d m 
2 /B - 4we dI m(m i-ne)/B = 0,

where df = Rq 0odo. Then, for (moXD/r2 < 1, we obtain

(l+Te/Ti) n dl Ipml /B - (T/2z)(2/m e ) ?2 dEdl fM (E) IT

I - + [(3/2P)( T2/)]-p ) I
pO0

= 0,

where XD is the Debye length, T = Roo / for trapped particles,
1

T = - Roq °

f 0S dO/vll for circulating particles, and b = 2T/-r. We have also expressed f d v

as (rr/2) f ddE B/IVIII with the convention that contributions from positive and nega-

tive values of vll are to be added, and have made use of the fact that f df/B ff dpidE B/

IvI = ff didE r. A

For simplicity, we consider the limits /w be < 1 and R /ro > 1 (large aspect ratio).

We expand Eq. 5 in these two parameters and carry out the integration over c to

obtain

T - 2T 1
+ T dO 2

+ i fJT (R o

R o1/2

r

3 e "
3A3

ce

2A2

ce

1
0

dX2 y 3(X2 ) I
p> 0

dX2 Y 4(X2 )

p>O
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In order to derive Eq. 6 from Eq. 5 we have observed that "j(P) /(o-P~Pb )

P
I (p) 12 2 2 2)-

S0 m 2/ -P "- (-pb) = P(-pcb) - + ir 6 (c-pwb), where 6 (c-pob) =
p> 0

(E/ ) 6(E-pE(x)), E(X) = (wR oq )2 2 (X)(Roro), and P[2c/( 2P2 2 -2)] /(p b)2 in

A A
the considered limit o/"be < 1. We also have defined Oe = Vthe/(Roq o ) as the average

transit frequency, chosen mo so that w > 0, and taken X2= [1 +(l-A)R /ro] so that

0 < X < 1 is equal to half of the excursion amplitude in 0 of deeply trapped particles.

Also, Y.(X2 ) : I d0/(2X2 -1 +cos ) 1/2

The last term in Eq. 6 results from resonances of the considered wave with trapped

particles that have bounce frequency ob = c/p. The second term, which is larger by
A

a factor of order Zobe/w, has no correspondence in the stability theory of one-

dimensional plasmas involving resonances of the form c = k v l, so that, in the limit

w < k vth, the resonant contribution to the dispersion relation is of order c/k vth

instead of c /~Oe, as it is in the present case.

If we neglect the last (resonant) term in Eq. 6, we can use the remaining quadratic

form as a variational form in order to evaluate w. Thus the imaginary part of w is

obtained as a perturbation, and in this sense we can estimate the stability of the modes

under consideration by

S1/2 W*e- T eR ( T3 *e) 2
(1 + - ( i) i e T = 0. (7)T. r A2 r A3

ce ce

Here T1 and Y2 are positive numbers resulting from the evaluation of the integrals
in Eq. 6 when ' is replaced by a trial function c which is found by applying the varia-

tional principle.

Now we see that instability is found for 2/3 (d In n/dr) < (d In Te/dr) < (d In n/dr), and

this is compatible with the assumption that o < be. The general quadratic form of
A

Eq. 5, however, furnishes no evidence that these modes disappear for w ~ Wbe* When

d In Te/dr - d In n/dr, A - be and a simple analytical treatment is no longer pos-1
sible. We also recall that the known electron drift modes are damped by the contribu-

tion of wT when (dlnTe/dr)/(dInn/dr) > 0 and are such that n and ' are out of phase.
e

Instead, for the modes present here, n~ and ' are in phase, as indicated by Eq. 2, and

we expect, on the basis of quasi-linear theory, that they lead to electron thermal-energy

transport across the magnetic field without a corresponding particle transport.

We refer to the quadratic form (4) and define an effective dielectric constant E in

terms of the integrals F1 and -2 in Eq. 7. Then we may argue that the wave energy

is proportional to W /aw = - ro/(mokD )] (1+Te/Ti) which is evidently negative. We
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can also see that most of the electrons (linearly) resonating with this wave are barely

trapped.

The influence of well-developed modes of the type considered here on the orbit of

deeply trapped ions 5 has been studied analytically and numerically. 6 It has been found 6

1/3
that, depending on the value of the parameter a , where a = e cRo/(Bor) ~

(Ro/r)(e'c/T) and c is the characteristic mode amplitude, the trapped particle excur-

sions can be amplified up to ~2(16a)1/3 but still remain trapped if a is sufficiently

small. If a is larger than a reasonable value, [such as a - 0. 15 which has been

obtained 6 with an appropriate choice of m(0)] the resonating particles can be

untrapped. Correspondingly, the radial particle excursions can be considerably larger

than the known banana width of trapped particles, and the average magnetic curvature

drift be more favorable to the stability of interchange modes than in the case with fluc-

tuations absent.

Therefore, in the presence of modes that are odd in m and have frequency close to

the average bounce frequency of the ions and the electrons, we can have "quasi-banana"

orbits, with relatively large amplitudes for the particles that remain trapped, or circu-

lating orbits for a considerably larger fraction of the particle population than has been

estimated from theories ignoring the effects of fluctuations. We can infer that the sta-

bility of lower frequency modes 7 8 such as the trapped particle interchange modes, and

the particle and energy transport 9 across the magnetic field will have to be reevaluated

by taking these effects into proper account.

B. Coppi
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