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A. ON THE NUMBER OF DISCRETE MONOTONE FUNCTIONS

OF k INTEGER VARIABLES

This report summarizes research undertaken between February and August, 1972

submitted to the Department of Electrical Engineering, M. I. T., August 1972, in partial

fulfillment of the requirements for the degree of Master of Science.1

Consider the set (0, n-) k = (x l , x 2 , ... x k ) , i integers and 0 - xi < n-1, together

with the partial order < given by

x _ y x 4== y 0 _ i < n-l.

This constitutes a lattice which we shall refer to as the (0, n-l) k lattice. We say an

integer-valued function f is monotone on (0, n-1) k if

x -< y f(x) f (y).

The problem we are concerned with is to count the number of monotone functions f:

(0, n-1) - (0, 1, 2, ... ,N), to which we refer as N-restricted n k-partitions (of any inte-

ger). For instance when k = 1, the problem is to find the number of "staircase" func-

tions reaching N or less in n steps, which is (N+n)
2 n

A simple inductive proof of Carlitz shows that the number of functions f:

(0, n-1) 2 - (0,N) is

LZ(N, n) =
(N+2n-i)! ! (N-)! ! [(n-1)! ! ]2

[(N+n-1)! ! ]2 (2n-I) ! !
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where k!! = k!(k-l)!,.., 2! 1!. In higher dimensions, however, an exact count does
not exist and therefore we looked for upper and lower bounds on the desired count.

Let Lk(N, n) be the number of monotone functions f: (0, n-l) k - (0, .... ,N), then it

can be shown 3 that

k-2
Lk(N, n) [L2(N , n)] n  (1)

and, since we know L 2 exactly, we take (1) as the upper bound on Lk(N, n).
In particular, we have shown the following.

Case 1: For N < n

1g Lk(N, n) < (1+En)n kg g 4,

where g = N/n, and E - 0 as n - oo
n

Case 2: For N > n

Ig Lk(N, n) < (l+cn)nk 1g (1. 12(g+2)),

where g = N/n, and again n - 0 as n - o.nk
To obtain a lower bound on Lk, we consider the (0, n-l) lattice as an ordered col-

lection of sets

k
{S. = x I x.i = j}.

1

We then consider only those functions that increase from one S. to the next. We have

shown that all of these functions are indeed monotone, and so their count is a lower
bound on Lk.

This turns out to be quite a powerful method to obtain lower bounds on Lk, largely
because there are no monotonicity constraints on each S.. Therefore we get

J

lg Lk(N, n) > h(g) n k Ig (l+g/\r-k-),

where 1/2 < h(g) < lim h(g) = 1 for all n large enough. We can then showl that these
g-oC

bounds are of the same order; that is, they differ at most by a constant factor which can
be shown to be -2-k for all n large enough. Moreover, for Nnln+E (E>O), these bounds
are "tight" in the sense that they differ by a factor close to 1 and approach 1 as n tends
to infinity.

A. Bolour
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B. DERIVATION OF A TESTING METHOD FOR REPEAT

REQUEST (RQ) LOGIC

This report summarizes research submitted to the Department of Electrical Engi-

neering, M. I. T. , on August 1, 1972, in partial fulfillment of the requirements for the

degree of Master of Science.

In digital data communication it is standard practice to recover errors by use of error

detection plus retransmission upon request. A finite-automata approach to the error-

recovery procedures is developed by defining the events as regular expressions on a two-

symbol alphabet. The communication system (source, destination, and channel) is viewed

as a single, global, finite-state acceptor. The channel is modeled as a block-erasure

channel; that is, the channel transforms the input blocks denoted by I) into the output set

{I, X . This model is quite appropriate for digital data channels. The regular expression

characterizing the global automaton is indicative of the reliability of the error-recovery

procedures in question. The thesis also presents a delay-handling procedure.

The regular expression representation of the systems is used to derive the mean

throughput rate in terms of the probabilities of the events I and X, when the events are

assumed statistically independent. When the independence assumption is ruled out, a

weaker assumption, the weak law of large numbers, permits us to derive bounds on the

mean throughput rate. Thus finite automata and regular expressions provide a formal

and simple way of testing and analyzing the error-recovery procedures.

F. Nourani
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C. SEQUENTIAL DETECTION OF SIGNALS TRANSMITTED BY A

QUANTUM SYSTEM (EQUIPROBABLE BINARY PURE STATE)

Suppose we want to transmit a binary signal with a quantum system S that is not cor-

rupted by noise. The system is in state s ) when digit zero is sent, and in state Isl
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when digit one is sent. Let the a priori probabilities that the digits zero and one are sent

each be equal to one-half. The performance of detection is given by the probability of

error. We try to consider the performance of a sequential detection scheme by bringing

an apparatus A to interact with the system S and then performing a measurement on S

and then on A, or vice versa. The structure of the second measurement is optimized as

a consequence of the outcome of the first measurement. Previously we considered the

case in which the joint state of S and A can be factored into the tensor product of a

state in S and a state in A. In general, the joint state of S and A does not factor, and

we now wish to treat this general case.

Let the initial state of A before interaction be Ia ). If digit zero is sent, the joint

state of S+A before interaction is s ) ao). If digit one is sent, the state is Isl)ao).

The interaction between S and A can be characterized by a unitary transformation

U on the joint state of S+A.

I + a fo = U s) a)

s+ai)) = U1 s) Iao

By symmetry of the equiprobability of digits one and zero, we select a measurement

on A characterized by the self-adjoint operator OA such that the probability that it will

decide a zero, given that zero is sent, is equal to the probability that it will decide on

one, given one is sent. Let o) and II) be its eigenstates. Then i)}i=l, 2 spans

the Hilbert space, 3CA . Let 1j ) } j = 1, 2 be an arbitrary orthonormal basis in the Hilbert

space, 3CS. Then the orthonormal set { i) i=1, 2 is a complete orthonormal basis

j=1, 2

for the tensor product Hilbert space 3 A X S
Then

Isfo+ a )) = aili) h.)
i=1,2

j=1, 2

s f+afl )) = b.L ) ),
i=l, 2
j=1, 2

where a.. and b.. are complex numbers. Since unitary transformations preserve inner
j products,

products,
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f f f
((s +a a +sf )) b . a.

o o ij 1]
i=1, 2
j=1, 2

= (s 1 So)'

If we perform the measurement characterized by OA, the probabilities that we shall find

A in states Io) and l ), given that digit one or digit zero is sent, are

Pr[ ) o 0 =
j=1, 2

Pr[ 1) 01 =

j=l,2

Pr[r ) 1]1

j= 1,2

Pr[V 1) 1] =
j=1, 2

!2a . 2o]

lj 2

blj 2

But by symmetry we choose Pr[( 0o) 0 ] = Pr[ V 1 )l 11

Pr[ V 1 ) 0] = Pr[ o) 1].

Given as a result of the measurement that we find system A to be in state I o), we

wish to update the a priori probabilities of digits one and zero. Using Bayes' rule, we

obtain

Pr[I o)I 0] Pr[0]
er[oI iIo] = Pr[Po)]

Pr[o] = 1
2

Pr[ )] = Pr[ o)10] Pr[ 0] + Pr[ o) 11] Pr[11

= {Pr[I , 0o] + Pr[ 1 )o0]} =
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P[Oj o) ] = Pr[i o0 ) 0]= la 2

j=1, 2

Pr[1 )o] = boj 2
j=l, 2

= alj 2.

j=l, 2

Given that the outcome is o, the system S is now in well-defined states. If zero
is sent,

I aoj j
f j=1, 2

= j=1, 2 0 3

If one is sent,

r b .j )j

s)f j=l, 2

fj=1 , 2 boj 'F e c t

After the measurement on A we have a new set of a priori probabilities and a new

set of states for system S. We choose a measurement on S characterized by the self-

adjoint operator OS such that the performance is optimum. From previous calculations,

the probability of error, given o), is the result of the first measurement

Pr@[ I o>] 1 1 - 1 -4Pr[0 1o)1 Pr[I IJo)] (s1 sf ) 2 1/2

* I2Sb .a.

s s ) j=1, 2 o0 oj

1j=1, oJ j=1, z2 o

.'. Pr[E Io) ]  { 1 - 1-4 b aoj 2
j=l, 2

By symmetry

Pr[E K 1 ] = { - 1 -4 b alj 2

f j=1, 2
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Pr[E] = 1
-4j=

j=1, 2

b .a
oJ oj

1/2 1 1 j=*, 2 1/2
2 1 j j

j=1,2

Minimizing Pr[E], subject to the inner product constraint,

i=1, 2

j=yields,2

yields

baij. = (s s ) ,1j ij 1

Pr[EI] = I[
opt 2

-- I sls 0 .

This is the same result that was derived for the case when the joint state of S+A can

be factored into the tensor product of states in S and A.

V. Chan
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