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Abstract

Type I interferons (IFN-I) are antiviral cytokines that signal through the ubiquitous IFN-I recep-

tor (IFNAR). Following footpad infection with ectromelia virus (ECTV), a mouse-specific path-

ogen, C57BL/6 (B6) mice survive without disease, while B6 mice broadly deficient in IFNAR

succumb rapidly. We now show that for survival to ECTV, only hematopoietic cells require

IFNAR expression. Survival to ECTV specifically requires IFNAR in both natural killer (NK)

cells and monocytes. However, intrinsic IFNAR signaling is not essential for adaptive immune

cell responses or to directly protect non-hematopoietic cells such as hepatocytes, which are

principal ECTV targets. Mechanistically, IFNAR-deficient NK cells have reduced cytolytic

function, while lack of IFNAR in monocytes dampens IFN-I production and hastens virus dis-

semination. Thus, during a pathogenic viral infection, IFN-I coordinates innate immunity by

stimulating monocytes in a positive feedback loop and by inducing NK cell cytolytic function.

Author summary

Type I interferon (IFN-I) is required for resistance to many viral infections and the IFN-I

receptor IFNAR is ubiquitously expressed in most cells. Melo-Silva et al. show that resis-

tance to mousepox, a highly lethal viral disease of mice, requires IFNAR in Natural Killer

cells to promote optimal maturation and cytotoxicity, and in inflammatory monocytes for

a positive feedback loop necessary to induce optimal IFN-I expression. However, intrinsic

IFNAR is dispensable in adaptive lymphocytes or parenchymal cells indicating that for at

least some viral infections, the critical anti-viral effects of IFN-I are restricted to cells of

the innate immune system and are superfluous in other cell types.
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Introduction

Type I interferons (IFN-I) are a family of highly conserved antiviral cytokines. IFN-I bind to

the IFN-I receptor IFNAR, a heterodimer composed of IFNAR1 and IFNAR2. Binding of

IFN-I to IFNAR induces a signaling cascade that culminates in the upregulation of interferon-

stimulated genes (ISG) [1]. ISGs induce an antiviral state in cells that curtail viral replication

[2]. IFN-I is also thought to activate innate and adaptive immune responses through direct

and indirect IFNAR signaling. Consequently, resistance to many viral pathogens requires

IFNAR as determined by infection of mice deficient in IFNAR (Ifnar1-/-) [3–5] and increased

adverse reactions to attenuated viral vaccines observed in humans with inherited IFNAR defi-

ciency [6].

The discovery of many mechanisms for IFN-I induction was made in fibroblasts [7]. Also,

it is well established that virtually any cell type can produce IFN-I in vitro. However, it is now

apparent that in vivo, the cells that mostly produce IFN-I are myeloid lineage, such as conven-

tional dendritic cells (cDC), plasmacytoid dendritic cells (pDC), or Ly6Chigh inflammatory

monocytes (iMOs) [8]. Similarly, most cell types express IFNAR, and when exposed to IFN-I

in vitro, upregulate ISGs and become more resistant to viral infection [2]. Therefore, the gen-

eral thought is that the stimulation of IFNAR by IFN-I is protective as it can induce ISGs and

the antiviral state in virtually any cell, and because it activates multiple innate and adaptive

immune cell types [9]. However, whether this is true in vivo has not been thoroughly studied.

Ectromelia virus (ECTV) is the etiologic agent of mousepox, which causes fulminant hepa-

titis in mice and resembles human smallpox. C57BL/6 (B6) mice are naturally resistant to

lethal mousepox, and this resistance requires IFN-I, which in the draining lymph node (dLN)

is mostly produced by infected iMOs recruited by dendritic cells (DCs) [10,11]. Defects in the

IFN-I response in vivo such as the absence of IFNAR [12,13], the DNA sensor Cyclic

GMP-AMP synthase (cGAS) [14,15], the signaling adapter Stimulator of Interferon Genes

(STING) or the transcription factor Interferon regulatory factor 7 (IRF7) [11], results in

unchecked ECTV replication, impairment of the adaptive immune response, and death.

Given that IFN-I signaling is crucial for mousepox resistance, it is an excellent model to

uncover which cells need to receive IFN-I signaling through IFNAR to resist a lethal viral

infection, and to determine whether hematopoietic and non-hematopoietic cells require

intrinsic IFNAR. This question is especially intriguing in the context of hepatocytes, which are

non-hematopoietic and a key target of ECTV pathogenesis. Furthermore, considering that

resistance to mousepox needs a robust cytotoxic response by both innate Natural Killer (NK)

and adaptive T cells, it is important to investigate whether resistance to viral disease requires

intrinsic IFNAR in these cell types. Also, given the critical role of iMOs in IFN-I production, it

is of interest to define the role of IFNAR in these cells.

Results

IFNAR in hematopoietic cells is necessary and sufficient for resistance to

lethal mousepox

To test whether hematopoietic or non-hematopoietic cells require IFNAR signaling for resis-

tance to mousepox, we lethally irradiated B6 and Ifnar1-/- mice and reconstituted them with

either B6 or Ifnar1-/- bone marrow cells to generate B6! B6, Ifnar1-/-! B6, B6! Ifnar1-/- and

Ifnar1-/-! Ifnar1-/- bone marrow chimeras (BMC). Following ECTV infection in the footpad,

all Ifnar1-/-! B6 and Ifnar1-/-! Ifnar1-/- mice succumbed rapidly to the infection, whereas

most B6! Ifnar1-/- and B6! B6 mice survived (Fig 1A). IFNAR deficiency restricted to radio-

resistant cells resulted in only mild susceptibility to mousepox, given that ~70% of B6!
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Ifnar1-/- mice survived. The finding that most B6! Ifnar1-/- mice were resistant to mousepox

was surprising because the radioresistant cell compartment includes hepatocytes, which are an

important target of ECTV [16], and epidermal Langerhans cells (LCs), which are required for

optimal innate immune responses to ECTV in the draining lymph node (dLN) and resistance

to mousepox [17]. Thus, we also tested whether the surviving B6! Ifnar1-/- mice had a viral

Fig 1. IFNAR in hematopoietic cells is necessary and sufficient for resistance to lethal mousepox. (A) Survival of the indicated BMCs infected

with 3000 pfu of ECTV-GFP in the footpad. Data were pooled from two independent experiments (Log-rank Mantel-Cox compared to B6! B6

control group). (B) ECTV titers in livers of survivors at endpoint (30 dpi) quantified by plaque assay. The dashed line indicates the detection limit.

Positive control: liver sample harvested from infected Ifnar1-/- mice at 5 dpi. (C-D) ECTV titers in the livers and spleens of each BMC group were

quantified by plaque assay at 5 (C) and 7 dpi (D). The dashed line indicates the detection limit. (E) Number of live splenocytes in BMCs naïve or at

5 and 7 dpi with ECTV. Data are represented as mean ± SEM from three pooled independent experiments (N = 11 per group, multiple comparison

ANOVA with Tukey correction). (F) Isg15 transcripts in the spleen at 5 dpi quantified by qPCR, normalized to Gapdh, and adjusted to fold-change

to naïve. Data are represented as mean ± SEM from two independent experiments (N = 6 per group, multiple comparison ANOVA with Tukey

correction). (G-H) Cre-driven excision of Ifnar1 gene exon10 in the livers (G) and the spleens (H) of the indicated naïve mice measured by qPCR,

normalized by Gapdh transcription, and adjusted to fold-change to B6. (I) Survival of the indicated mice infected as in (A). Data pooled from two

independent experiments (Log-rank Mantel-Cox compared to Ifnar1fl/fl mice). (J-K) ECTV titers in the livers and spleens of indicated mice at 5 (J)

and 7 dpi (K) quantified as in (C-D). Data are represented as mean ± SEM from two or three pooled independent experiments (N = 8–9 for each

Cre+ mice and N = 12–18 for Ifnar1fl/fl mice, ANOVA with Tukey correction compared to Ifnar1fl/fl mice).

https://doi.org/10.1371/journal.ppat.1009593.g001
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clearance defect. However, similar to B6! B6 mice, B6! Ifnar1-/- survivors had no detectable

ECTV in the liver at 30 days post-infection (dpi) (Fig 1B).

We also found that compared to B6! B6 and B6! Ifnar1-/- mice, the viral loads in

Ifnar1-/-! B6 and Ifnar1-/-! Ifnar1-/- mice were increased 10-fold at 5 days post-infection

(dpi) in the spleen (Fig 1C) and 100-fold in the liver and the spleen at 7 dpi (Fig 1D). The

uncontrolled viral replication observed in Ifnar1-/-! B6 and Ifnar1-/-! Ifnar1-/- mice corre-

lated with high pathogenicity in the spleen with a 50 to 100-fold reduction in the number of

splenocytes at 7 dpi when compared to B6! B6 and B6! Ifnar1-/- mice (Fig 1E). The pres-

ence of IFNAR in the hematopoietic compartment was critical for the induction of ISGs

because at 5 dpi Isg15 mRNA, as a readout for IFN-I activity, increased to similar levels in the

spleens of B6! B6 and B6! Ifnar1-/- mice, whereas there was marginal or no Isg15 upregula-

tion in the spleens of Ifnar1-/-! B6 and Ifnar1-/-! Ifnar1-/- mice (Fig 1F) at a timepoint when

numbers of splenocytes were similar among all analyzed groups (Fig 1E). The low upregula-

tion of Isg15 in Ifnar1-/-! B6 mice also indicates that irradiation successfully eliminated most

IFN-responding cells in the spleens of Ifnar1-/-! B6 mice.

To confirm our findings in another system, we crossed Ifnar1fl/fl mice [18] with mice

expressing Cre recombinase from the Vav1 promoter [19] to delete IFNAR in all hematopoi-

etic cells (Ifnar1ΔVav1 mice) or from the Alb promoter [20] to delete IFNAR exclusively in

hepatocytes (Ifnar1ΔAlb1 mice). The specificity of the deletion was confirmed by quantitative

PCR (qPCR) for Ifnar1 transcripts in the liver (Fig 1G) and the spleen (Fig 1H). In agreement

with the experiments with BMC, all infected Ifnar1ΔVav1 mice succumbed rapidly to infection

while most Ifnar1ΔAlb1 and Ifnar1fl/fl littermates survived (Fig 1I). Moreover, when compared

to Ifnar1fl/fl littermates, Ifnar1ΔVav1 but not Ifnar1ΔAlb1 mice had a significant increase in viral

loads in the livers and spleens at 5 (Fig 1J) and 7 dpi (Fig 1K). Based on these results, we con-

clude that IFNAR in hematopoietic cells is essential and generally sufficient for ECTV control

and resistance to lethal mousepox, but is mostly dispensable in hepatocytes, which are critical

targets of ECTV.

IFNAR in hematopoietic cells is necessary for efficient T cell responses to

ECTV

Resistance to mousepox requires functional T and B cells [21–25]. Thus, we analyzed the T cell

responses in B6/Ifnar1-/- BMC. Notably, Ifnar1-/-! B6 and Ifnar1-/-! Ifnar1-/- had a signifi-

cant reduction in the frequency (>10 fold) and absolute numbers (100- to 1000-fold) of CD8

and CD4 T cells expressing granzyme B (GzmB), a marker of activation and cytotoxic potential

(Fig 2A and 2B), and CD44, a marker of antigen-experienced T cells (Fig 2A and 2C) when

compared to B6! B6 mice. In contrast, in B6! Ifnar1-/- mice, the CD8 T cell responses were

not significantly affected, and those of CD4 T cells were significantly but only slightly reduced.

This indicates that IFNAR in hematopoietic cells is necessary for efficient T cell responses to

ECTV.

Intrinsic IFNAR on adaptive lymphocytes is dispensable for efficient T cell

responses and resistance to mousepox

The data above indicated that IFNAR is required in hematopoietic cells for T cell responses to

ECTV but did not indicate whether this requirement is intrinsic or extrinsic for T cells. To test

for these possibilities, we adoptively transferred CFSE-labeled WT F1 (B6.CD45.1 x B6.

CD45.2) and Ifnar1-/- (CD45.2) cells into IFNAR-sufficient mice (B6.CD45.1). Subsequently,

we infected them with ECTV in the footpad and harvested their spleens at 8 dpi (Fig 3A). In

this context, where the host efficiently controls virus replication and spread, Ifnar1-/- and WT

PLOS PATHOGENS Type I interferon receptor in resistance to lethal ectromelia virus infection
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CD8 and CD4 T cells responded similarly to the infection as determined by CFSE dilution

(Fig 3B and 3C). The frequencies of cells expressing CD44 or GzmB (Fig 3D and 3E), and the

expansion of CD8 T cells specific for the poxvirus immunodominant Kb-restricted epitope

TSYKFESV [26] were also similar (Fig 3D and 3F).

The experiments above indicated that IFNAR deficient T cells could expand and become

effectors in response to ECTV but did not address whether they can protect from mousepox.

To address this issue, we irradiated Rag1-/- mice, which lack T and B cells, and reconstituted

them with: 1) Bone marrow cells from Ifnar1-/- mice (Ifnar1-/-! Rag1-/-) where all hematopoi-

etic cells lacked IFNAR. 2) A mixture of 80% Rag1-/- and 20% Ifnar1-/- bone marrow cells

(Rag1-/- + Ifnar1-/-! Rag1-/- mice) [27], where T cells and B cells lacked IFNAR while most

other hematopoietic cells were IFNAR sufficient. 3) 80% Rag1-/- and 20% B6 bone marrow

cells (Rag1-/- + B6! Rag1-/-) where all hematopoietic cells were IFNAR sufficient. After chal-

lenge with ECTV, all Ifnar1-/-! Rag1-/- mice quickly succumbed to infection whereas similar

to Rag1-/- + B6! Rag1-/-, most Rag1-/- + Ifnar1-/-! Rag1-/- mice survived the infection (Fig

3G) with mild or no signs of disease. Also, at 30 dpi, they had cleared the virus (Fig 3H). Nota-

bly, at 22 dpi, surviving Rag1-/- + Ifnar1-/-! Rag1-/- and Rag1-/- + B6! Rag1-/- mice had simi-

lar frequencies of antigen-experienced CD44+ CD8 and CD4 cells and ECTV-specific Kb-

TSYKFESV+ CD8 T cells in their blood (Fig 3I–3K). Together, these data demonstrate that

intrinsic type I IFN stimulation is not necessary for protective T cell responses to mousepox

and that the lack of T cell responses observed in Ifnar1-/-! B6 and Ifnar1-/-! Ifnar1-/- mice is

T cell extrinsic.

IFNAR on NK cells is essential for resistance to mousepox

Resistance to mousepox requires NK cell cytolytic activity [28–31]. To test whether NK cell

antiviral function requires intrinsic IFNAR, we crossed mice expressing Cre as a knock-in in

the Ncr1 locus (NKp46Cre) with Ifnar1fl/fl mice to generate Ifnar1ΔNKp46 mice, which directs

Fig 2. IFNAR in hematopoietic cells is necessary for efficient T cell responses to ECTV. BMC mice were infected as in Fig 1A, and spleens were

harvested at 7 dpi. (A) Representative flow cytometry plots showing the frequency of CD44+ and GzmB+ cells on gated CD8 T cells

(NK1.1-TCRβ+CD8+) and on CD4 T cells (NK1.1-TCRβ+CD4+). (B) Percentages and numbers of cytotoxic GzmB+ CD8 and CD4 T cells. (C)

Percentages and numbers of antigen experienced CD44+ CD8 and CD4 T cells. Data are represented as mean ± SEM from three pooled independent

experiments (N = 11 per group, N = 3 for Ifnar1-/-! Ifnar1-/-, multiple comparison ANOVA with Tukey correction).

https://doi.org/10.1371/journal.ppat.1009593.g002
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Cre to NK cells and other group 1 innate lymphoid cells (ILCs). By flow cytometry, anti-

IFNAR1 monoclonal antibody (mAb) stained T cells and NK cells in Ifnar1fl/fl mice, T cells but

not NK cells in Ifnar1ΔNKp46 mice, and neither T cells nor NK cells in Ifnar1ΔVav1 mice (Fig

4A), demonstrating the NK cell-specific and widespread deficiency of IFNAR1 in Ifnar1ΔNKp46

and Ifnar1ΔVav1 mice, respectively. After ECTV infection, most Ifnar1ΔNKp46 mice succumbed

to mousepox (Fig 4B), with a median survival time of 9.5 days, while most Ifnar1fl/fl littermates

Fig 3. Intrinsic IFNAR on adaptive lymphocytes is dispensable for efficient T cell responses and resistance to mousepox. (A) CFSE-labeled WT (F1

[B6.CD45.1 x B6.CD45.2) and Ifnar1-/- (CD45.2) splenocytes mixed in 1:1 ratio were adoptively transferred i.v. into naïve or infected mousepox resistant

WT hosts (B6.CD45.1), and spleens were harvested at 7.5 days following ECTV infection and transfer. Created with BioRender.com. (B) Representative

flow cytometry histograms of CFSE dilution in gated CD8 T cells (NK1.1-TCRβ+CD8+) in infected and naïve hosts. (C) Percentages of CFSElow CD8 and

CD4 T cells (NK1.1-TCRβ+CD4+). (D) Representative flow cytometry plots showing staining with anti-CD44 and -GzmB (top) or anti-CD44 and Kb-

TSYKFESV dimers (bottom) of donor WT or Ifnar1-/- CD8 T cells. (E) Percentages of CD44+ GzmB+ CD8 and CD4 T cells. (F) Percentages of CD44+ Kb-

TSYKFESV+ CD8 T cells. Data are represented as mean ± SEM from two pooled independent experiments (N = 9 for infected hosts and N = 6 for naïve

hosts). (G) Survival of indicated BMC infected with 3000 pfu of ECTV-GFP in the footpad (Log-rank Mantel-Cox compared to Rag1-/- + Ifnar1-/-! Rag1-/-

and to Rag1-/- + B6! Rag1-/-). (H) ECTV viral titers in the livers of survivors at endpoint (30 dpi) quantified by plaque assay. The dashed line indicates the

detection limit. Positive control: liver sample harvested from infected Ifnar1-/- mice at 5 dpi. (I) Concatenated flow cytometry plots showing levels of Kb-

TSYKFESV+ CD8 T cells and levels of CD44 expression in CD8 and CD4 T cells in the blood of survivor mice at 22 dpi. The graphs of the left are gated on

CD8 T cells. (J) Percentages of CD44+ Kb-TSYKFESV+ CD8 T cells. (K) Percentages of antigen experienced CD44+ CD8 and CD4 T cells. Data are

represented as mean ± SEM from three pooled independent experiments (N = 8 for Rag1-/- + B6! Rag1-/- and N = 11 for Rag1-/- + Ifnar1-/-! Rag1-/-

survivors).

https://doi.org/10.1371/journal.ppat.1009593.g003
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Fig 4. IFNAR on NK cells is essential for resistance to mousepox (A) Concatenated histograms showing IFNAR1 expression in gated NK

(NK1.1+TCRβ-) or T (NK1.1-TCRβ+) cells from spleens of the indicated infected (6 dpi) mice or of Ifnar1fl/fl naïve mice. Concatenated histograms are

derived from one independent experiment (N = 3 or four mice for each group). (B) Survival of the indicated mice infected with 3000 pfu of ECTV-GFP

in the footpad. Data pooled from two independent experiments (Log-rank Mantel-Cox compared to Ifnar1fl/fl mice). (C-D) ECTV titers the livers and

spleens of the indicated mice were quantified by plaque assay at six (C) and eight dpi (D). The dashed line indicates the detection limit. (E-G) Number

of live splenocytes (E), frequency of NK cells (F) and numbers of NK cells (G) in the spleens of naïve and indicated infected mice at 6 and 8 dpi. (H)

Concatenated flow cytometry plots showing NK and T cells gating and CD44 expression, Kb-TSYKFESV-specific and GzmB expression in CD8 T cells

from spleens of Ifnar1fl/fl naïve mice and indicated infected mice at 8 dpi. (I-K) Number of antigen experience CD44+ (I), of CD44+ Kb-TSYKFESV+ (J)

and of CD44+ GzmB+ (K) CD8 T cells in the indicated mice at 8 dpi. Data are represented as mean ± SEM from two pooled independent experiments

(N = 9 or 10 for each group, ANOVA with Tukey correction compared to Ifnar1fl/fl infected mice).

https://doi.org/10.1371/journal.ppat.1009593.g004
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survived, indicating that intrinsic IFNAR signaling in NK cells is vital for optimal resistance to

mousepox.

To understand how the lack of intrinsic IFNAR signaling in NK cells predisposes mice to

ECTV lethality, Ifnar1ΔNKp46, Ifnar1ΔVav1, and Ifnar1fl/fl mice were infected with ECTV and ana-

lyzed at 6 and 8 dpi. Viral loads in the liver and spleen of Ifnar1ΔNKp46 and Ifnar1fl/fl mice were

similar and significantly lower than in Ifnar1ΔVav1 mice, suggesting that during the first 6 dpi,

intrinsic IFNAR signaling in NK cells may not be essential to control ECTV but could be neces-

sary in other hematopoietic cells (Fig 4C). The NK cells’ intrinsic IFNAR defect resulted in

increased viral loads in the spleen and the liver at 8 dpi (Fig 4D). Compared to infected Ifnar1fl/fl

mice, the numbers of splenocytes were significantly reduced in ECTV-infected Ifnar1ΔVav1 but

not in Ifnar1ΔNKp46 at 6 dpi, but at day 8 dpi, Ifnar1ΔNKp46 had reduced numbers of live spleno-

cytes compared to Ifnar1fl/fl mice (Fig 4E). Notably, at 6 dpi, the frequency and absolute numbers

of NK cells were significantly lower in the spleens of Ifnar1ΔVav1 compared to Ifnar1ΔNKp46 and

Ifnar1fl/fl mice, while at 8 but not 6 dpi, there were significant decreases in the frequency and

numbers of NK cells in Ifnar1ΔNKp46 mice compared to Ifnar1fl/fl mice (Fig 4F and 4G).

Considering that the mean time to death in Ifnar1ΔNKp46 mice infected with ECTV was 9.5

days, we analyzed the T cell response at 8 dpi in the spleens of these mice as a sign of pathoge-

nicity. We found that the frequencies of antigen-experienced (CD44+), ECTV-specific CD8

(CD44+Kb- TSYKFESV) and activated cytotoxic CD8 and CD4 (CD44+GzmB+) T cells were

similar for Ifnar1ΔNKp46 and Ifnar1fl/fl mice (Fig 4H), suggesting that, as expected, IFNAR defi-

ciency in NK cells does not directly compromise T cell activation in vivo. However, given the

reduced numbers of live splenocytes in ECTV-infected Ifnar1ΔNKp46 mice at 8 dpi, the total

number of antigen-experienced CD8 T cells (Fig 4I), of TSYKFESV-specific CD8 (Fig 4J), and

GzmB+ CD8 T cells (Fig 4K) was reduced in Ifnar1ΔNKp46 mice compared to Ifnar1fl/fl mice.

NK cells require IFNAR for optimal maturation, activation, and cytolytic

killing

ECTV-infected Ifnar1fl/fl and Ifnar1ΔNKp46 mice had no differences in frequency of NK cells

that expressed the activation marker CD69, the receptors NKG2D and CD94, which are

required to resist to mousepox [28,29], or the maturation marker KLRG1 [32] (S1A Fig).

There were also no differences in the mean fluorescence intensity (MFI) of NK cells that

expressed the non-classical Major Histocompatibility Class I (MHC-I) molecule Qa-1b, which

has been suggested to increase NK cell survival [33] (S1A Fig). However, we observed higher

frequencies of immature CD27+CD11b- NK cells [34] in Ifnar1ΔNKp46 compared to Ifnar1fl/fl

mice (S1B Fig), suggesting a defect in the ability of NK cells to mature in response to ECTV

infection in the absence of intrinsic IFNAR signaling.

We have previously shown that NK cells upregulate GzmB after infection with ECTV [28].

We now find that different to T cells, the upregulation of GzmB in NK cells in response to

ECTV is partly dependent on intrinsic IFNAR because at 6 dpi a smaller fraction of NK cells

upregulated GzmB in Ifnar1ΔNKp46 compared to Ifnar1fl/fl infected mice (Fig 5A, left). Also,

using a mAb to perforin (Prf), we found that most NK cells produce intermediate levels of Prf

at steady state. At 6 dpi with ECTV, Prf expression was upregulated in NK cells, many of them

to high levels. Notably, most NK cells also upregulated Prf in Ifnar1ΔNKp46 mice, but several

remained at an intermediate stage, similar to naïve Ifnar1fl/fl (Fig 5A, right). Consequently, at

6 dpi, a significantly lower fraction of NK cells was GzmBhigh Prfhigh in Ifnar1ΔNKp46 compared

to Ifnar1fl/fl mice (Fig 5B and 5C).

The previous data suggested a possible defect in NK cell cytolytic function in the absence of

intrinsic IFNAR signaling. TAP1-deficient splenocytes (Tap1-/-) adoptively transferred into
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naïve mice are killed by NK cells due to their low expression of MHC-I at the cell surface

[35,36]. We have previously shown that the preferential killing of Tap1-/- over WT splenocytes

is significantly higher in mice infected with ECTV for 6 days as compared to naïve mice [37].

Notably, we found that NK cells were significantly less effective at killing Tap1-/- cells in vivo in

Ifnar1ΔNKp46 mice than in Ifnar1fl/fl mice following ECTV infection (Fig 5E and 5F). These

results indicate that NK cell intrinsic IFNAR signaling is necessary for optimal NK cell killing

during an acute viral infection and required for host protection and survival.

Intrinsic IFNAR in Lysozyme-expressing myeloid cells is necessary for

resistance to mousepox

The data above demonstrates that intrinsic IFNAR is required in NK cells but not in T cells for

efficient ECTV control and survival to mousepox. Nevertheless, it did not escape our attention
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spleens of the indicated naïve or infected mice at six dpi. (B-C) Concatenated flow cytometry plots (B) and frequency
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Two hours before organ harvest at 6 dpi. Created with BioRender.com. (E-F) Concatenated flow cytometry plots (E)

and proportions (F) of the preferential killing of Tap1-/- cells (CFSEhigh CD45.2) over WT cells (CFSEhigh B6.CD45.1)
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https://doi.org/10.1371/journal.ppat.1009593.g005
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that Ifnar1ΔVav1 succumbed faster to ECTV (����P<0.0001) and suffered much higher virus

loads than Ifnar1ΔNKp46 mice. This observation suggested that in addition to NK cells, other

innate immune cells require intrinsic IFNAR signaling to resist to mousepox.

We have previously shown that iMOs [11] and LCs, but not conventional dendritic cells 1

(cDC1) [17], play vital roles in the development of the innate immune response in the dLN,

which is required to restrain early virus spread and to resist lethal mousepox. However, it was

unlikely that intrinsic IFNAR signaling was required in LCs since they are radioresistant and

B6! Ifnar1-/- mice were resistant to mousepox (Fig 1A). MO, macrophages (Mf), and neutro-

phils express Lysozyme C-2, encoded by the Lyz2 gene (ImmGen ULI RNASeq and ImmGen

MNP OpenSource). Thus, we crossed Ifnar1fl/fl mice with mice expressing Cre from the Lyz2
promoter [38] to generate Ifnar1ΔLyz2 mice. Consistent with previous reports [39,40], flow

cytometric analysis of splenocytes from naïve Ifnar1ΔLyz2 mice showed that IFNAR was par-

tially deleted in cells of the MO/Mf lineage and also in neutrophils but unaffected in T cells, B

cells, NK cells, cDCs, pDCs and eosinophils (Fig 6A). When we subdivided MOs according to

Ly6C expression, we found that most Ly6Chi but not Ly6Cint or Ly6Clow MO lost expression of

IFNAR in Ifnar1ΔLyz2 mice (Fig 6B). We also attempted to determine IFNAR in subpopula-

tions of cells in the dLN of infected mice, but, unfortunately, anti-IFNAR1 mAb failed to stain

any cells in WT or Ifnar1ΔLyz2 mice, probably due to the high concentration of type I IFNs in

the dLN [11] which compete with anti-IFNAR1 (MAR1-5A3) for binding to the extracellular

domain of IFNAR [41].

Strikingly, most Ifnar1ΔLyz2 mice succumbed to ECTV infection with a mean time of death

of 8.5 dpi (Fig 6C), indicating that IFNAR expression in Lyz2+ cells is necessary for optimal

resistance to lethal mousepox. When we compared virus replication between Ifnar1ΔLyz2 and

control Ifnar1fl/fl mice, we found they did not differ in viral loads in the dLN at 1–2 dpi (Fig

6D). At 3 dpi, the virus loads in Ifnar1ΔLyz2 were slightly higher in the dLN (Fig 6D), but

100-fold higher in the spleen (Fig 6E), indicating faster virus spread. At 5 dpi, Ifnar1ΔLyz2 had

increased virus loads in the liver (Fig 6F) and, at 7 dpi, in both liver and spleen (Fig 6G). Con-

sistent with the pathological changes usually observed in mice susceptible to mousepox,

Ifnar1ΔLyz2 mice had significant reductions in the number of splenocytes, and numbers of

CD44+GzmB+ and CD44+ Kb-TSYKFESV+ CD8 T cells in their spleens (Fig 6H–6J). There-

fore, absence of IFNAR in Lyz2+ cells leads to early viral spread from the dLN to target organs,

exacerbates viral replication at later stages of infection, and indirectly affects the strength of

the T cell response. Of note, the phenotype in Ifnar1ΔLyz2 was less intense than in Ifnar1ΔVav1

mice, suggesting that the roles of IFNAR in Lyz2+, NK cells, and possible other innate immune

cells in resistance to mousepox are complementary and additive.

iMOs require intrinsic IFNAR for optimal transcription of IFN-I genes and

for efficient Ly6C and MHC-II expression but not to migrate to dLNs,

produce CXCL9, or resist infection

The data above shows that in Ifnar1ΔLyz2 mice, neutrophils and Ly6C+ MO partially lose

IFNAR expression. We and others have previously shown that depletion of phagocytes, includ-

ing iMOs, render mice susceptible to mousepox [11,21] and that Ly6C+ iMOs play a critical

role in the early innate immune response to ECTV in the dLN, which is essential to control

early virus spread and resistance to mousepox. On the other hand, neutrophil depletion does

not increase susceptibility to ECTV [42]. Furthermore, while Lyz2-cre is known to delete

floxed genes in LCs [43] and we have shown that LCs are also critical for the innate immune

response to ECTV in the dLN [17], LCs are radioresistant and of host origin in B6Ifnar1-/-

mice, which were resistant to mousepox (Fig 1A). Thus, it was unlikely that the reason for the
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Fig 6. Intrinsic IFNAR in Lysozyme-expressing myeloid cells is necessary for resistance to mousepox. (A) Concatenated flow

cytometry plots showing the gating strategy for cDCs (CD19-TCRβ-NK1.1-CD11chighSiglecH-), pDCs

(CD19-TCRβ-NK1.1-CD11c+SiglecH+), eosinophils (CD19-TCRβ-NK1.1-SiglecH-F4-80+SSC-Ahigh), MO

(CD19-TCRβ-NK1.1-SiglecH-CD11b+Gr-1+Ly6Clow/high), and neutrophils (CD19-TCRβ-NK1.1-SiglecH-CD11b+Gr-1high) and

concatenated histograms showing IFNAR expression in indicated cell populations from spleens of naïve Ifnar1fl/fl and Ifnar1ΔLyz2 mice.

(B) IFNAR1 expression in Ly6Clow, Ly6Cint, and Ly6Chigh gated MO. Histogram legend as in (A). Representative data from one out of

two independent experiments (N = 6 to 7 for each group). (C) Survival of the indicated mice infected s.c. with 3000 pfu of ECTV-GFP.

Data pooled from two independent experiments (N = 10 for Ifnar1ΔLyz2 mice and N = 18 for Ifnar1fl/fl mice, Log-rank Mantel-Cox
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susceptibility of Ifnar1ΔLyz2 mice to mousepox was the deletion of Ifnar1 in neutrophils or LCs.

Thus, we next focused our attention on iMOs.

We have previously shown that iMOs are recruited to the dLN at 2–4 dpi and have two crit-

ical roles for the control of early systemic virus spread: 1) uninfected iMOs secrete CXCL9,

which promotes NK cell recruitment to the dLN [10] and 2) infected iMOs produce type I

IFNs [11,17]. Thus, we compared the iMOs response in dLN of Ifnar1ΔLyz2 and Ifnar1fl/fl mice

at 2 dpi with ECTV-expressing green fluorescent protein (ECTV-GFP) [28] to distinguish

uninfected (GFP-) and infected (GFP+) cells by flow cytometry. We found that Ifnar1ΔLyz2 and

Ifnar1fl/fl mice did not differ either in the number of iMOs recruited to the dLN (S2A and S2B

Fig), the frequency of infected iMOs (S2A and S2C Fig), the number of uninfected iMOs that

produced CXCL9 (S2A and S2D Fig) or the frequency and number of NK cells recruited to

the dLN by the CXCL9 produced by infected iMOs (S2A and S2E Fig). These findings indicate

that iMOs do not require intrinsic IFNAR to be recruited to the dLN, resist infection, or

recruit NK cells.

Because Ly6C+ MOs did not fully delete IFNAR in Ifnar1ΔLyz2 mice, we analyzed the accu-

mulation of iMOs at 3 dpi in the dLN of B6.CD45.1 + Ifnar1-/-! F1 [B6.CD45.1 x B6.CD45.2]

mixed BMC (S2F Fig). We observed similar frequencies (S2F Fig) and infection rates (S2G

Fig) of WT and Ifnar1-/- iMOs, indicating that IFNAR deficiency does not affect iMOs recruit-

ment from the blood to the dLN. However, Ifnar1-/- iMOs had reduced expression of Ly6C

(S2H Fig), and, after infection, did not upregulate surface expression of Major Histocompati-

bility Class II molecules (MHC-II) (S2I Fig, top). WT but not Ifnar1-/- infected iMOs also

trended to upregulate MHC-I after infection, but the differences were not significant (S2I Fig,

bottom).

Our previous work has shown that ECTV infection induces high levels of IFN-I in the dLN

of Ifnar1-/- mice. However, Ifnar1-/- mice also endure high virus loads, which may affect the

IFN-I response [14]. To test whether intrinsic IFNAR deficiency affects the ability of iMOs to

express IFN-I and replicate virus without possible effects of total virus loads in the dLN, we

infected B6.CD45.1 + Ifnar1-/-! F1 [B6.CD45.1 x B6.CD45.2] mixed BMC with ECTV-GFP

and at 3 dpi, we sorted infected (GFP+) and uninfected (GFP-) WT CD45.1 and Ifnar1-/-

CD45.2 iMOs from dLNs of infected mice (Fig 7A). In this context, WT and Ifnar1-/- iMOs

were exposed to the same viral loads within the dLN, and IFN-I production and viral replica-

tion was only dependent on IFNAR expression. As baseline controls, we used MOs from the

spleens of naïve animals. Using qPCR, we found that compared to naïve MOs, both WT and

Ifnar1-/- infected iMOs upregulated IFN-I genes determined as fold-change over naïve using

primers specific for Ifnb1, Ifna4, and Ifna5 or for conserved sequences among all Ifna genes

except Ifna4 (Ifna non-a4) [7]. However, Ifnar1-/- infected iMOs upregulated the transcription

of IFN-I genes to much lower levels than infected WT iMOs (Fig 7B). This major reduction in

IFN-I gene expression by infected Ifnar1-/- iMOs suggests the existence of a positive feedback

compared to Ifnar1fl/fl mice). (D-E) ECTV titers in the dLN (D) and the spleen (E) were quantified by plaque assay at the indicated dpi.

The dashed line indicates the detection limit. Data are represented as mean ± SEM from two or three pooled independent experiments

(N = 5 to 7 for each Cre+ mice and N = 11 to 24 for Ifnar1fl/fl mice; ANOVA with Tukey correction compared to Ifnar1fl/fl mice). (F-G)

ECTV titers in the liver and spleen were quantified by plaque assay at 5 (F) and 7 dpi (G). The dashed line indicates the detection limit.

Data are represented as mean ± SEM from two pooled independent experiments (N = 8 to 9 for each Cre+ mice and N = 18 for Ifnar1fl/fl

mice, ANOVA with Tukey correction compared to Ifnar1fl/fl mice). (H) Representative flow cytometry plots showing levels of CD44 and

GzmB expression and levels of Kb-TSYKFESV-specific CD8 T cells in the spleens of infected mice. (I) Total cell numbers, and

percentages and total numbers of CD44+ GzmB+ CD8 T cells (NK1.1- TCRβ+CD8+) in spleens of the indicated mice at 7 dpi. (J)

Numbers of CD44+ Kb-TSYKFESV-specific CD8 T cells in the spleens of the indicated mice at 7 dpi. Data are represented as

mean ± SEM from two pooled independent experiments (N = 8 to 9 for each Cre+ mice and N = 18 for Ifnar1fl/fl mice, ANOVA with

Tukey correction compared to Ifnar1fl/fl mice).

https://doi.org/10.1371/journal.ppat.1009593.g006
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loop for in vivo expression of IFN-I which, when impaired, culminates in uncontrolled viral

spread from the dLN to target organs and ultimately in death. Notably, sorted infected WT

and Ifnar1-/- iMOs had similar levels of infection when measured as viral transcripts by qPCR

(Fig 7C) or as infectious particles/cell by plaque assay (Fig 7D). This finding indicates that

intrinsic IFNAR signaling does not inhibit viral replication within infected iMOs. Thus, iMOs

require IFNAR to for optimal IFN-I gene transcription but not to be directly protected from

viral infection.

Discussion

Here we used a lethal acute mouse model of viral infection to show that IFNAR mediates pro-

tection mostly by signaling in hematopoietic cells, as indicated by results obtained with

Ifnar1-/- BMC (Fig 1A) and Cre-LoxP conditional deletions (Fig 1I). The observation that

IFNAR expression in hepatocytes does not play a significant role in resistance was unexpected,

considering that ECTV infects hepatocytes and causes severe hepatitis. In agreement with our

observations, others have shown that compared to WT mice, Ifnar1ΔAlb1 mice have similar lev-

els of inflammation and virus loads, whereas Ifnar1ΔLyz2 mice have increased viral loads in the

liver after intravenous challenge with the closely related poxvirus vaccinia virus [40], suggest-

ing a conserved mechanism for IFNAR protection against poxviruses. We have previously

shown that cGAS, which is required for optimal IFN-I production after ECTV infection, is not

necessary in parenchymal cells (including hepatocytes) for resistance to mousepox. We now

show that resistance to mousepox is also independent of IFNAR in hepatocytes. Whether these

characteristics of hepatocytes is the reason for ECTV tropism to the liver is unknown and

would be of interest to explore.
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performed by RT-qPCR using RNA extracted from each sorted population as a template. Transcript levels of Ifnb1,
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https://doi.org/10.1371/journal.ppat.1009593.g007
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Studies using other viral models have shown that IFNAR expression in both hematopoietic

and non-hematopoietic cells may contribute to virus control [44–46], suggesting that viral tro-

pism and pathogenicity might determine which cells need IFNAR expression for protection.

Notably, it was also previously shown that IFNAR expression in hematopoietic cells is detri-

mental for host recovery from infection with a mouse-adapted strain of SARS-CoV [47]. How-

ever, in this same study, it was also reported that early treatment of susceptible mice with IFN-

β was protective and prevented mice from developing lethal pneumonia, suggesting that the

timing of IFN-I response might be critical and very early for airborne diseases.

Optimal activation of adaptive lymphocytes requires more than one signal. Signal 1 is pro-

vided by the activation of the T or B cell receptor whereas Signal 2 is provided by the activation

of co-stimulatory molecules. It has been demonstrated that intrinsic IFNAR expression is

essential for optimal T cell function in some contexts [18] suggesting that IFN-I provides a

necessary Signal 3 [48]. Accordingly, IFN-I stimulation on T and B cells results in the upregu-

lation of activation markers and cytokine secretion [49,50]. However, we observed that, in
vivo, Ifnar1-/- T and B cells were still capable of protecting the host from a primary ECTV

infection and of promoting viral clearance when innate immune cells were IFNAR sufficient

(Fig 3G and 3H). These findings indicate that T and B cells can exert their full antiviral func-

tion independently of IFNAR stimulation and that during a highly inflammatory viral infec-

tion such as ECTV, Signal 3 may not be required or may be provided by alternative or

redundant mechanisms, such as IL-2, IL-6, IL-12, IL-18 or IFN-γ. In agreement with our

observations, it has been shown that conditional deletion of IFNAR in T cells does not affect

CD8 T cell responses to murine gammaherpesvirus infection [51]. Moreover, using a mixed

BMC approach similar to ours (Fig 3G), it has been shown that the adaptive compartment

does not require IFNAR signaling for tumor rejection, whereas the innate immune compart-

ment does [27]. Here we did not explore whether intrinsic IFNAR on adaptive lymphocytes is

required for the generation of memory CD8 T cells or for protection against secondary infec-

tion. However, others have previously shown that Ifnar1 is not required for resistance to sec-

ondary ECTV infection [12].

NK cell function is essential for mousepox resistance, and we have shown here that optimal

protection by NK cells requires intrinsic IFNAR (Fig 4B). The impaired upregulation of

GzmB that we observed in Ifnar1-/- NK cells (Fig 5A) also occurs during non-lethal infection

with mouse cytomegalovirus [33]. It has been shown that intrinsic IFN-I signaling is necessary

for optimal NK cell responses to influenza virus and vaccinia virus [52,53], but how this affects

virus control was not assessed. Here we observed not only a reduction in GzmB expression but

also a decrease in the NK cell pool that expresses both Prf and GzmB (Fig 5B). The finding

that the preferential killing of Tap1-/- cells in ECTV-infected Ifnar1ΔNKp46 mice was signifi-

cantly reduced (Fig 5E) highlights the importance of the crosstalk among innate immune cells

in the dLN where both iMOs and NK cells migrate to upon infection, and where iMOs express

IFN-I. However, IFNAR in iMOs is not required for iMOs or NK cell accumulation in the

dLN (S2A–S2E Fig).

There were no consistent changes in the expression of various NK cells receptors (S1A Fig),

but there was an increase in the frequency of immature NK cells in the spleen of infected

Ifnar1ΔNKp46 mice (S1B Fig). Whether this arrest in development contributes to the reduction

in NK cell cytotoxicity and decreased resistance to mousepox in Ifnar1ΔNKp46 mice is unclear.

It is interesting to note that different from NK cells, the upregulation of GzmB in CD8 T cells

does not require intrinsic IFNAR (Fig 3E). A possible explanation for this difference is that

adaptive lymphocytes may rely more on antigen-specific signals for GzmB upregulation, while

NK cells, which lack antigen receptors, could be more dependent on direct IFN-I signals.
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The finding that partial IFNAR deletion in the monocytic myeloid lineage and neutrophils

(Fig 6A and 6B) results in a significant increase in susceptibility to lethal mousepox (Fig 6C)

is intriguing given the ubiquitous expression of IFNAR and the relatively low frequency of

myeloid cells in tissues in general. Of note, neutrophil depletion does not increase susceptibil-

ity to mousepox [42], cDCs and pDCs express normal levels of IFNAR in Ifnar1ΔLyz2 mice (Fig

6A), and LCs and Kupffer cells are of host origin in mousepox resistant B6!Ifnar1-/- mice

(Fig 1A) indicating that none of these cell types are the culprits for the increased susceptibility

of Ifnar1ΔLyz2 mice to mousepox.

We have previously shown that infected DCs and iMOs are the primary producers of IFN-I

during ECTV infection [11,17,54]. Here, we have used mixed BMCs where WT and Ifnar1-/-

iMOs were exposed to the same environment during infection to show that IFNAR signaling

in infected iMOs is essential to provide a positive feedback loop for IFN-I expression in vivo
(Fig 7B). A positive feedback loop in IFN-I expression was described before in vitro using

fibroblasts infected with Newcastle disease virus [7]. In that context, virus infection readily

induces the transcription of the Ifnb1 and Ifna4 genes. The resulting IFN-β and IFN-α4 signal

through IFNAR to induce IRF7 expression, which leads to the transcription of non-Ifna4
genes. Moreover, Ifnb1-/- mouse fibroblasts were shown to produce less Ifna genes compared

to WT fibroblasts after Sendai virus infection [55]. It is unclear whether a similar mechanism

also regulates IFN-I production in iMOs in vivo or whether different cell types have different

regulatory mechanisms. Considering that Irf7 and Cgas are both ISG and necessary for resis-

tance to ECTV [11,14], it is possible that the IFNAR-dependent positive feedback loop of

IFN-I might be mediated by the increased expression of these genes. Indeed, mRNA-Seq data

of infected and uninfected WT and Ifnar1-/- iMOs support this hypothesis and also confirm

the IFNAR-dependent positive feedback of IFN-I (manuscript in preparation).

We showed that intrinsic IFNAR signaling does not curb virus transcription (Fig 7C) or

production of infectious virus (Fig 7D) in infected iMOs in vivo as a possible mechanism of

IFN-I protection from mousepox. Based on this finding, we speculate that the major role of

IFN-I signaling in resistance to mousepox is regulating the immune response rather than

directly blocking virus replication inside infected cells.

Our data strongly suggest that NK cells and iMOs exert IFNAR-dependent roles that are

indispensable for resistance to ECTV infection. We propose that iMOs must sense paracrine

or autocrine IFN-I through IFNAR to upregulate IFN-I production, which stimulates NK cells

for optimal killing of infected cells and, possibly, other critical protective functions. Our find-

ings contribute to understanding how innate immunity is orchestrated to control viruses and

is also of interest in guiding the development of IFN-I-based therapeutic interventions for

viral pathogens.

Materials and methods

Ethics statement

All the procedures involving mice were carried out in strict accordance with the recommenda-

tions in the Eighth Edition of the Guide for the Care and Use of Laboratory Animals of the

National Research Council of the National Academies. All experiments were approved by

Thomas Jefferson University’s Institutional Animal Care and Use Committee under protocol

number 01727 "Innate Control of Viral Infections."

Reagents

All reagents used are listed in Box 1.
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Box 1. List of reagents.

REAGENT SOURCE IDENTIFIER

Antibodies

Hybridoma anti-mouse Fc gamma receptor FcRII, clone 2.4G2 ATCC HB-197™
Mouse monoclonal antibody BV785 anti-mouse CD45.1, clone A20 BioLegend Cat# 110743, RRID:

AB_2563379

Rat monoclonal antibody PE anti-mouse IgG1, clone RMG1-1 BioLegend Cat# 406607, RRID:

AB_10551439

Mouse monoclonal antibody PerCP-Cy5.5 anti-mouse CD45.2,

clone 104

BioLegend Cat# 109828, RRID:AB_893350

Mouse monoclonal antibody APC anti-mouse CD45.2, clone 104 BioLegend Cat# 109814, RRID:AB_389211

Mouse monoclonal antibody APC anti-mouse NK 1.1, clone PK136 BioLegend Cat# 108710, RRID:AB_313397

Mouse monoclonal antibody BV605 anti-mouse NK 1.1, clone

PK136

BioLegend Cat# 108753, RRID:

AB_2686977

Armenian hamster monoclonal antibody BV605 anti-mouse TCRβ,

clone H57-597

BioLegend Cat# 109241, RRID:

AB_2629563

Armenian hamster monoclonal antibody BV785 anti-mouse TCRβ,

clone H57-597

BioLegend Cat# 109249, RRID:

AB_2810347

Rat monoclonal antibody BV711 anti-mouse CD8a, clone 53–6.7 BioLegend Cat# 100759, RRID:

AB_2563510

Rat monoclonal antibody PE anti-mouse CD8a, clone 53–6.7 BioLegend Cat# 100708, RRID:AB_312747

Rat monoclonal antibody APC-Cy7 anti-mouse CD4, clone RM4-5 BioLegend Cat# 100526, RRID:AB_312727

Rat monoclonal antibody PE-Cy7 anti-mouse CD4, clone RM4-5 BioLegend Cat# 100528

Rat monoclonal antibody BV785 anti-mouse CD4, clone RM4-5 BioLegend Cat# 100552, RRID:

AB_2563053

Rat monoclonal antibody APC Fire750 anti-mouse CD11b, clone

M1/70

BioLegend Cat# 101261, RRID:

AB_2572121

Rat monoclonal antibody BUV395 anti-mouse CD11b, clone M1/70 BD Biosciences Cat# 565976, RRID:

AB_2721166

Armenian hamster monoclonal antibody PerCP-Cy5.5 anti-mouse

CD27, clone LG.3A10

BioLegend Cat# 124214, RRID:

AB_2275577

Rat monoclonal antibody BUV395 anti-mouse CD44, clone IM7 BD Biosciences Cat# 740215, RRID:

AB_2739963

Mouse monoclonal antibody Pacific Blue anti-granzyme B, clone

GB11

BioLegend Cat# 515408, RRID:

AB_2562196

Mouse monoclonal antibody PE anti-mouse perforin, clone

S16009A

BioLegend Cat# 154306, RRID:

AB_2721639

Rat monoclonal antibody APC anti-mouse NKG2D, clone CX5 eBiosciences Cat# 17-5882-82, RRID:

AB_469464

Armenian Hamster monoclonal antibody PE/Cy7 anti-mouse

CD69, clone H1.2F3

BioLegend Cat# 104511

Mouse monoclonal antibody PE anti-mouse IFNAR1, clone MAR1-

5A3

BioLegend Cat# 127312, RRID:

AB_2248800

Armenian hamster monoclonal antibody PE-Cy7 anti-mouse

CD11c, clone N418

BioLegend Cat# 117318

Syrian hamster IgG PE-Cy7 anti-mouse KLRG1, clone MAFA,

2F1-Ag

BioLegend Cat# 138416

Rat monoclonal antibody PerCP/Cy5.5 anti-mouse I-A/I-E, clone

M5/114.15.2

BioLegend Cat# 107626, RRID:

AB_2191071

Rat monoclonal antibody PE anti-mouse Ly6C, clone HK1.4 BioLegend Cat# 128008, RRID:

AB_1186132

Rat monoclonal antibody APC anti-mouse Ly6C, clone HK1.4 BioLegend Cat# 128016, RRID:

AB_1732076

Armenian hamster monoclonal antibody PE anti-mouse CXCL9,

clone MIG-2F5.5

BioLegend Cat# 515603, RRID:

AB_2245490

(Continued)
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Box 1. (Continued)

Rat monoclonal antibody Pacific Blue anti-mouse Ly6C/Ly6G (Gr-

1), clone RB6-8C5

BioLegend Cat# 108430, RRID:AB_893556

Rat monoclonal antibody APC Fire750 anti-mouse Ly6C/Ly6G (Gr-

1), clone RB6-8C5

BioLegend Cat# 108456, RRID:

AB_2616737

Rat monoclonal antibody BV785 anti-mouse CD19, clone 6D5 BioLegend Cat# 115543, RRID:

AB_11218994

Rat monoclonal antibody PE anti-mouse CD94, clone 18d3 eBiosciences Cat# 12-0941-81, RRID:

AB_465783

Mouse monoclonal antibody PE-Cy7 anti-mouse H-2Kb/H-2Db,

clone 28-8-6

BioLegend Cat# 114616

Rat monoclonal antibody FITC anti-mouse Siglec-H, clone 551 BioLegend Cat# 129604, RRID:

AB_1227761

Rat monoclonal antibody anti-mouse CD16/CD32, clone 93 BioLegend Cat#101302

Rat monoclonal antibody BV605 anti-mouse CD19, clone 6D5 BioLegend Cat# 115540, RRID:

AB_2563067

Bacterial and Virus Strains

ECTV Moscow ATCC ATCC VR-1374

ECTV-GFP [28] N/A

Chemicals, Peptides, and Recombinant Proteins

CellTrace™ CFSE Cell Proliferation Kit Thermo Fisher Scientific C34554

DMEM media CORNING 10-013-CV

RPMI media CORNING 10-040-CV

Penicillin Streptomycin Solution, 100x CORNING 30-002-Cl

Fetal Bovine Serum, Heat Inactivated Seradigm 1500–500

GlutaMAX 100x Gibco 35050–061

Hepes 1M CORNING 25-060-Cl

BD Cytofix/Cytoperm™ BD Biosciences 51-2090KZ

Peptide TSYKFESV Genscript

NA/LE mouse anti-mouse Qa-1b, 6A8.6F10.1A6 BD Pharmingen 559827

Dimer Kb—BD™ Dimer X BD Biosciences 550750

Liberase™ Roche 05 401 119 001

RNase-free DNase Set Qiagen 79254

Critical Commercial Assays

cDNA synthesis with High Capacity cDNA Reverse Transcription

Kit

Applied Biosystems™ Thermo Fisher Scientific 4368814

RNeasy1Mini Kit Qiagen 74106

iTaq™ Universal SYBR1 Green PCR Supermix BioRad 172–5124

RNA Clean and Concentrator™-5 Zymo Research R1014

Experimental Models: Cell Lines

Monkey C. aethiops epithelial kidney BS-C-1 cells ATCC CCL-26

Experimental Models: Organisms/Strains

Mouse: C57BL/6NCrl Charles River 027

Mouse: B6.SJL-PtprcaPepcb/BoyCrl Charles River 494

Mouse: C57BL/6 Ifnar1-/- mice Thomas Moran (Mount Sinai School of Medicine, New York,

NY)

Mouse: C57BL/6 Ifnar1fl/fl mice Ulrich Kalinke (Institute for Experimental Infection Research,

Brunswick, Germany)

Mouse: B6.129P2-Lyz2tm1(cre)Ifo/J Jackson Laboratory JAX: 004781

Mouse: B6.Cg-Commd10Tg(Vav1-icre)A2Kio/J Jackson Laboratory JAX: 008610

Mouse: B6.Cg-Speer6-ps1Tg(Alb-cre)21Mgn/J Jackson Laboratory JAX: 003574

(Continued)
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Mice

All mice used in experiments were 8 to 12 weeks old or 16 to 18 weeks old for BMC. To make

BMC, we used 4 to 6 weeks old females. For all other experiments, both males and females

were used. No sex differences were observed. C57BL/6NCrl (B6) and B6.SJL-PtprcaPepcb/
BoyCrl (CD45.1) mice were purchased from Charles River directly for experiments or as

breeders. B6 and B6.CD45.1 were bred in-house to generate F1 [B6.CD45.1 x B6.CD45.2] het-

erozygous mice. Ifnar1-/- mice backcrossed to B6 were gifts from Dr. Thomas Moran (Mount

Sinai School of Medicine, New York, NY). Ifnar1fl/fl mice were provided by Dr. John Wherry

(University of Pennsylvania, Philadelphia, PA) by permission from Dr. Ulrich Kalinke (Insti-

tute for Experimental Infection Research, Brunswick, Germany). C57BL/6-Ncr1tm1.1(iCre)

Viv/Orl mice (Nkp46-Cre) were a gift of Dr. E. Vivier (Marseille, France). B6.129S7-Rag1tm1-

Mom/J, B6.129P2-Lyz2tm1(cre)Ifo/J, B6.Cg-Commd10Tg(Vav1-icre)A2Kio/J, B6.Cg-Speer6-ps1Tg(Alb-

cre)21Mgn/J were purchased from the Jackson Laboratory. Colonies were bred at Thomas Jeffer-

son University under specific pathogen-free conditions.

Viruses and infection

ECTV Moscow strain (WT) (ATCC VR-1374) and ECTV-GFP [28] were propagated in tissue

culture, as previously described [13]. Briefly, BS-C-1 cells grown in DMEM media

Box 1. (Continued)

Mouse: B6.129S7-Rag1tm1Mom/J Jackson Laboratory JAX: 002216

Mouse: C57BL/6-Ncr1tm1.1(iCre)Viv/Orl E. Vivier (Marseille, France)

Oligonucleotides

Primer Gapdh forward IDT tgtccgtcgtggatctgac

Primer Gapdh reverse IDT cctgcttcaccaccttcttg

Primer Ifnb1 forward IDT ctggcttccatcatgaacaa

Primer Ifnb1 reverse IDT agagggctgtggtggagaa

Primer Ifna4 forward IDT tcaagccatccttgtgctaa

Primer Ifna4 reverse IDT gtcttttgatgtgaagaggttcaa

Primer Ifna5 forward IDT gccttaaccctcctggtaaaa

Primer Ifna5 reverse IDT tcctgtgggaatccaaagtc

Primer Ifna non-a4 forward IDT ARSYtgtStgatgcaRcaggt

Primer Ifna non-a4 reverse IDT ggWacacagtgatcctgtgg

Primer Isg15 forward IDT agtcgacccagtctctgactct

Primer Isg15 reverse IDT ccccagcatcttcaccttta

Primer EVM36 forward IDT tgccagttagcactgcgtat

Primer EVM36 reverse IDT aggtgttctggagaatcaaaga

Primer Ifnar1 exon 10 forward IDT gctttgaggagcgtctggaa

Primer Ifnar1 exon 10 reverse IDT tcatcaatactgcggggagg

Software and Algorithms

Prism 8 Software GraphPad Software

FlowJo™ version 10 Treestar

Other

TissueLyzer II Qiagen 85300

Thermocycler CFX96 Real-Time System BioRad

BD FORTESSA™ cytometer BD Biosciences

FACSAria™ II sorter BD Biosciences

https://doi.org/10.1371/journal.ppat.1009593.t001
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supplemented with 10% fetal bovine serum (FBS), 100 IU penicillin, 100 μg/mL streptomycin,

1x GlutaMAX, and 10mM HEPES to confluency were infected at MOI 0.01, and viruses were

harvested 4 to 5 days later. For that, cells were rinsed with phosphate-buffered solution (PBS),

scraped and concentrated by centrifugation. ECTV was released by multiple freezing and

thawing cycles. Viruses stocks were sonicated and titrated by plaque assay in BS-C-1 cells.

Mice were infected subcutaneously in the rear footpad with 3000 plaque-forming units (PFU)

of ECTV WT or ECTV-GFP as indicated. For sorting monocytes from dLN, mice were

infected in both rear footpads with 3000 PFU of ECTV-GFP in each footpad. In survival

curves, mice were monitored daily and sacrificed whenever illness resulted in a lack of activity

and unresponsiveness to touch. Euthanasia was performed according to the 2013 edition of

the AVMA Guideline for the Euthanasia of Animals. For virus titer quantification, entire or

portions of spleens and portions of livers were homogenized in supplemented DMEM media

using a TissueLyzer II (Qiagen), and organ titers were determined by plaque assay on BS-C-1

cells as described before [13]. Shortly, BS-C-1 cells at confluency were infected with 10-fold

dilutions of each virus sample for 2 hours at 37˚C. Infected cells were grown in 1% carboxy-

methyl cellulose overlay containing DMEM media supplemented with 2.5% FBS, 100 IU/mL

penicillin, 100 μg/mL streptomycin, 1x GlutaMAX and 10mM HEPES. Virus plaques were

quantified at 5 dpi after staining with 0.2% crystal violet dissolved in 20% methanol.

Bone marrow chimeras

Were prepared as previously described [56]. Briefly, 4- to 6-week-old mice previously treated

for three days with acidified water (pH 2.5) were irradiated with 900 Gy using a GammaCell

40 apparatus (Nordion Inc.). Bone marrow cells were isolated in RPMI media supplemented

with 10% FBS, 100 IU/mL penicillin, and 100 μg/mL streptomycin. Red blood cells were lysed

with 0.84% NH4Cl and cells were filtered and counted. Irradiated mice were reconstituted

intravenously with 5–10 million bone marrow cells from donors. Chimeras were given acidi-

fied water for four weeks and rested for eight weeks after reconstitution.

Flow cytometry and sorting

Flow cytometry was performed as previously described [13]. Briefly, organs were processed

into single-cell suspensions. Spleens were smashed with frosted slides, and cells were washed

with RPMI media supplemented with 10% FBS, 100 IU/mL penicillin, and 100 μg/mL strepto-

mycin. Livers were cut into smaller pieces and smashed using syringe plungers and metal

strainers. White and red blood cells were percoll-enriched, and hepatocytes were discarded.

Red blood cells were lysed with 0.84% NH4Cl, washed in media, and counted for staining.

Cells were incubated for 25 min in the fridge in the presence of ab 2.4G2 (Fc gamma receptor

FcRII, ATCC) and surface antibodies. Kb dimer was loaded with TSYKFESV peptide overnight

at 37˚C and subsequently incubated with PE anti-mouse IgG1 for 1 hour at room temperature.

Kb-TSYKFESV PE IgG1 conjugates were incubated with cells for 1 hour at 4˚C. According to

the manufacturer’s instructions, cells were fixed, permeabilized, and stained for 30 min for

intracellular markers with BD Cytofix/Cytoperm™ kit. Data were acquired with a BD FOR-

TESSA™ cytometer and analyzed with FlowJo™ version 10. For sorting iMOs from dLN, mice

were infected as previously with ECTV-GFP in both rear footpads, and 3 dpi popliteal dLN

were collected from infected mice. Spleens from naïve mice were used for sorting naïve iMOs.

dLN were treated with Liberase TM (1.67 Wünsch units/mL) for 30 min in PBS supplemented

with 10mM Hepes. Single-cell suspensions were prepared with 70μm strainer, and repetitive

washes with PBS supplemented with 2% BSA and 10mM Hepes. Cells were counted, treated

with anti-mouse CD16/CD32 (BioLegend—0.25μL per million of cells) for 15 min in the at
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4˚C in PBS supplemented with 2% BSA and 1mM EDTA and subsequently stained with sur-

face antibodies for 20 min at 4˚C. Cells were washed and sorted with a FACSAria™ II sorter in

PBS supplemented with 1% BSA, 25mM Hepes, and 1mM EDTA.

CFSE labeling and adoptive transfers

Splenocytes from indicated donor mice were isolated in RPMI media supplemented with 10%

FBS, 100 IU/mL penicillin, and 100 μg/mL streptomycin. Red blood cells were lysed with

0.84% NH4Cl. Splenocytes were washed with a pre-warmed phosphate-buffered solution

(PBS) containing 0.1% bovine serum albumin (BSA) and filtered in 70μm sterile nylon mesh.

Cells were adjusted to 50 million cells/ml concentration, and a 1:1 ratio of donor mix was

labeled with 4μM CellTrace™ CFSE Cell Proliferation Kit for 10 min at 37˚C. Recipient mice

were injected intravenously with 0.4 to 2 x 107 of CFSE-labeled cells and infected at indicated

times with ECTV.

RNA preparation and Reverse Transcription-qPCR

Total RNA from spleens and livers was purified with the RNeasy Mini Kit (Qiagen) and treated

with DNase I (Qiagen). RNA quantified using NanoDrop, and 300 ng were used as a template

for cDNA synthesis with High Capacity cDNA Reverse Transcription Kit in a 20μL reaction.

Quantitative PCR (qPCR) was performed as previously described [11,54]. Shortly, 1μL of

cDNA was used as a template for amplification using SYBR Green PCR Master Mix through

92˚C for 3 min, 25 cycles of 92˚C for 30 sec, 56˚C for 45 sec, 65˚C for 50 sec, plate read in a

Thermocycler CFX96 Real-Time System (BioRad). For purifying RNA from sorted popula-

tions, cells were sorted into Trizol, and the RNA was purified with the RNA Clean and Con-

centrator (Zymo Research). RNA was eluted in 10μL, and all RNA was used as a template for

cDNA synthesis. Gene expression was normalized by Gapdh levels.

Quantification and statistical analysis

Data were analyzed with Prism 8 Software. Log-rank (Mantel-Cox) analysis was used for sur-

vival experiments. ANOVA with Tukey correction for multiple comparisons or paired and

unpaired Student’s t-test were used as applicable for other experiments. In all figures, �p<0.05,
��p<0.01, ���p<0.001, ����p<0.0001. Graphs show mean +/- SEM.

Supporting information

S1 Fig. (relate to Fig 5). Deletion of IFNAR1 in NK cells results in increased frequency of

immature NK cells after ECTV. (A-B) The indicated mice were infected with 3000 pfu of

ECTV-GFP in the footpad and spleens were harvested at 6 dpi. (A) Concatenated histograms

and graphs showing proportions of KLRG1, NKG2D, CD69 and CD94 expression in gated

NK cells (NK1.1+ TCRβ-) and MFI of expression of Qa-1b+ NK cells. (B) Concatenated flow

cytometry plots and pie charts showing average proportions of NK cells subpopulations based

on CD27 and CD11b expression. Data are represented as mean from two pooled independent

experiments (N = 6 or 7 for each group, ANOVA with Tukey correction compared to Ifnar1fl/fl

infected mice).

(TIF)

S2 Fig. (related to Fig 7). iMOs require intrinsic IFNAR for efficient Ly6C and MHC-II

expression but not to migrate to dLNs, produce CXCL9, or resist infection. (A-D) Indi-

cated mice were infected with 3000 pfu of ECTV-GFP in the footpad, and at 2 dpi, the popliteal

dLN and collateral non-draining lymph node (ndLN) were harvested. (A) Concatenated flow
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cytometry plots showing proportions of iMOs (CD8-CD4-NK1.1-CD11b+Gr-1+), proportions

of infected (ECTV+), and uninfected (ECTV-) iMOs determined by GFP expression, propor-

tions of CXCL9 expression within ECTV+ and ECTV- iMOs populations, and proportions of

NK cells (CD8-CD4-NK1.1+) observed in the dLN. (B) Numbers of iMOs in dLN. (C) Fre-

quency of infected iMOs expressing GFP in dLN. (D) Numbers of uninfected iMOs expressing

CXCL9. (E) Frequency and numbers of NK cells in dLN. Data are represented as mean ± SEM

from two pooled independent experiments (N = 8–9 for each Cre+ mice and N = 15 for

Ifnar1fl/fl mice, ANOVA with Tukey correction compared to Ifnar1fl/fl mice). (F-I) Mixed

BMCs B6.CD45.1 + Ifnar1-/-! F1 [B6.CD45.1 x B6.CD45.2] were infected with 3000 pfu of

ECTV-GFP in the footpad and the popliteal dLNs were harvested at 3 dpi. (F) Flow cytometry

histograms showing iMOs proportions within WT (B6.CD45.1) and Ifnar1-/- (CD45.2) popu-

lations and histograms depicting levels of Ly6C expression in each of these iMOs populations.

(G) Flow cytometry plots showing ECTV- and ECTV+ iMOs as determined by GFP expression

in WT and Ifnar1-/- iMOs and graph showing the percentages of ECTV+ iMOs. (H) Flow

cytometry histograms showing Ly6C expression in infected and uninfected iMOs and mean

fluorescence intensity of Ly6C+ in ECTV- and ECTV+ iMOs populations. (I) Flow cytometry

histograms showing levels of KbDb MHC-I and MHC-II expression in Ly6C+ ECTV+ iMOs

and mean fluorescence intensity of these molecules in ECTV+ and ECTV- Ly6C+ iMOs. Data

are represented as mean ± SEM from three pooled independent experiments in which dLNs

from individual BMCs (N = 8–10 mice per experiment) were pooled together for flow cytome-

try analysis. The statistical analysis shown is multiple comparison ANOVA with Tukey correc-

tion.

(TIF)
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