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Joshua Ian Faskowitz 

AN EDGE-CENTRIC PERSPECTIVE FOR BRAIN NETWORK COMMUNITIES 

The brain is a complex system organized on multiple scales and operating in both a local 

and distributed manner. Individual neurons and brain regions participate in specific functions, 

while at the same time existing in the context of a larger network, supporting a range of different 

functionalities. Building brain networks comprised of distinct neural elements (nodes) and their 

interrelationships (edges), allows us to model the brain from both local and global perspectives, 

and to deploy a wide array of computational network tools. A popular network analysis approach 

is community detection, which aims to subdivide a network’s nodes into clusters that can used to 

represent and evaluate network organization. Prevailing community detection approaches applied 

to brain networks are designed to find densely interconnected sets of nodes, leading to the notion 

that the brain is organized in an exclusively modular manner. Furthermore, many brain network 

analyses tend to focus on the nodes, evidenced by the search for modular groupings of neural 

elements that might serve a common function.  

In this thesis, we describe the application of community detection algorithms that are 

sensitive to alternative cluster configurations, enhancing our understanding of brain network 

organization. We apply a framework called the stochastic block model, which we use to uncover 

evidence of non-modular organization in human anatomical brain networks across the life span, 

and in the informatically-collated rat cerebral cortex. We also propose a framework to cluster 

functional brain network edges in human data, which naturally results in an overlapping 

organization at the level of nodes that bridges canonical functional systems. These alternative 

methods utilize the connection patterns of brain network edges in ways that prevailing approaches 

do not. Thus, we motivate an alternative outlook which focuses on the importance of information 
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provided by the brain’s interconnections, or edges. We call this an edge-centric perspective. The 

edge-centric approaches developed here offer new ways to characterize distributed brain 

organization and contribute to a fundamental change in perspective in our thinking about the brain. 
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INTRODUCTION 

The brain is a complex system that functions in both a local and distributed manner. We 

can interrogate brain functioning by focusing on segregated elements such as neural populations, 

circuits, or areas, to identify correlated or causal function. Additionally, we can interrogate brain 

functioning by focusing on how collections of localized elements integrate information with other 

elements, to give rise to a range of different functions. Neuroscientists have come to appreciate 

that both levels of organization are important for exploring how the brain works. 

To capture both local and global features of the brain, we can employ the language and 

tools of networks (Barabási and Pósfai 2016). The flourishing field of network neuroscience 

(Sporns 2013, Bassett and Sporns 2017) promotes the application of network science tools to 

complex brain data, to uncover organizational patterns of brain architecture. Through networks, 

brain organization across scales of investigation can be probed—ranging from webs of neurons 

linked by synapses (Cook, Jarrell et al. 2019) to sets of parcellated regions whose aggregate 

electrophysiological or BOLD signals co-activate (Friston 2011).  

The network neuroscience approach has advanced our understanding of the brain by 

providing a framework that allows for the quantification of brain organization (Rubinov and 

Sporns 2010). Networks allow us to abstract complex systems into two simple components: 

distinct elements, called nodes, and the interrelationships between nodes, called edges. By making 

this abstraction, a system as complicated as the brain becomes amenable to mathematical 

operations and computational manipulations. Using tools provided by network science and its 

mathematical foundation called graph theory, we can assess the economic arrangement of brain 

regions (Bullmore and Sporns 2012), identify elements of the brain that serve as putative hubs 

(Sporns, Honey et al. 2007), or even partition the wider network into meaningful sub-networks 
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that associate with specialized functioning (Power, Cohen et al. 2011, Yeo, Krienen et al. 2011, 

Betzel 2020).  

The forthcoming thesis builds upon the model of the brain as a network and provides for a 

new lens through which to explore brain network organization. Notably, most discoveries in 

network neuroscience have focused on the nodes, or distinct elements, of the brain. In this thesis, 

we draw attention to the edges of brain networks, and apply network science tools that consider 

information at the edge level in specialized ways. Specifically, we highlight the importance of 

considering edge-level information through applications of a network science approach called 

community detection. We apply novel community detection algorithms to both human and animal 

structural brain data, as well as to functional data from a large neuroimaging consortium. In this 

thesis, we demonstrate the usefulness of an edge-centric perspective, which is a change in focus 

from the conventional, node-centric approach. It is our hope that an alternative perspective can 

open new possibilities and opportunities for probing the brain’s architecture.  

From brain mapping to brain networks 

Location, location, location in the brain 

Network neuroscience could be considered a quintessential modern discipline, as it draws 

on insights of modern complex systems science, and it operates on data with unprecedented 

resolution and scope. It is true that today’s network neuroscience is made possible by the 

confluence of advancement computational methodology and data availability (Sporns 2017). 

However, network neuroscience is also built on knowledge ascertained from years of experimental 

investigation, localizing brain architecture and function across cortex (Catani, de Schotten et al. 

2013, Swanson and Lichtman 2016). Without the work of brain mapping, which has 
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comprehensively annotated the brain with localized information, the connections between regions 

would be less meaningful. Here we briefly survey the relevant history of modern neuroscience, 

with a focus on tools and techniques that would pave the way for later network investigations.  

Building a map of a system is an act of simplification, visualizing a bevy of features in a 

low-dimensional manner, and in turn, partitioning a complex system into understandable chunks 

(Sporns 2015). To delineate regions across the landscape of the brain, features must be observed 

that vary across locations. Initially, these features came from the microscopic properties of brain 

tissue. Pioneering work was performed in the latter half of the 19th century by scientists such as 

Baillarger, Meynert, and Wernicke, using histological preparations to observe anatomical variation 

in the brain (Catani, de Schotten et al. 2013). In this work, differences in neural tissue properties, 

i.e., cytoarchitecture or myeloarchitecture, were demarcated with a goal to identify anatomical 

markers of psychiatric disorders (Collin, Turk et al. 2016). The meticulous observation of the 

cortical layers, documenting cell size, shape, and arrangement distinguished certain areas, or 

parcels, of the cortex for the initial maps created by the likes of the Vogt’s, Campbell, and 

Brodmann in the early 20th century (ffytche and Catani 2005, Nieuwenhuys 2013). By the 1920s 

and 1930s, dynamic properties of the brain could be localized through the recording of 

electrophysiological signals. Berger initially observed a 10 Hz idling oscillation in posterior parts 

of the brain, which was further characterized shortly thereafter by Adrian (Hari and Puce 2017). 

Also, around this time, Penfield was performing seminal work to map the sensorimotor system via 

electrical stimulation (Ladino, Rizvi et al. 2018). These early mapping studies, conducted without 

the luxury of high-resolution noninvasive imaging or modern computers, remain influential. 

Brodmann’s regions became a common language for anatomical localization (Brett, Johnsrude et 
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al. 2002) and Penfield’s homunculus would be reproduced in textbooks for years1. The knowledge 

gathered from these works further inform contemporary macroscopic mapping studies (van den 

Heuvel, Scholtens et al. 2015) and theories about brain wiring (Passingham, Stephan et al. 2002, 

Goulas, Zilles et al. 2018, Hilgetag, Beul et al. 2019). 

The rise of magnetic resonance imaging (MRI) has introduced a new age of brain mapping, 

by providing millimeter resolution data of the brain’s structure and function. Structural MRI 

provides a high-contrast high-resolution picture of the brain, by measuring the relaxation times of 

water molecules present in neural tissues with differential fatty constitution. These anatomical 

pictures can be analyzed with neuroimage processing software, such as FreeSurfer (Fischl 2012) 

and FSL (Jenkinson, Beckmann et al. 2012), to segment the tissues (Zhang, Brady et al. 2001) or 

to reconstruct layers of the cortex (Dale, Fischl et al. 1999). Using these tools, we can obtain the 

volume of brain structures (Hibar, Westlye et al. 2016, Whelan, Hibar et al. 2016) or the estimated 

thickness of the grey matter (Grasby, Jahanshad et al. 2020). A key development in the analysis of 

anatomical brain images was the effort to create common stereotaxic spaces and nonlinear imaging 

warping algorithms used for anatomical alignment (Thompson and Toga 1996, Toga, Thompson 

et al. 2006, Avants, Epstein et al. 2008). Individual brains are idiosyncratic, with common features 

(such as the central sulcus) surrounded by fingerprint-like gyrification and sulcal patterns 

(Pizzagalli, Auzias et al. 2017, Pizzagalli, Auzias et al. 2020). Aligning these features to a common 

reference space allows for features, such as the modulation of cortical thickness (Van Erp, Walton 

et al. 2018) or the deformation of anatomy (Faskowitz, de Zubicaray et al. 2016, Jahanshad, 

 
1 The pictorial representation of the homunculus has changed since its initial publication. See Catani (2017) for a 
brief review about this, and on the legacy of the homunculus.   
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Roshchupkin et al. 2018), to be measured across people. Collectively, the analyses of structural 

MRI can be used to map anatomical variation, in health and disease.  

Functional MRI (fMRI) allows the dynamics of the brain to be observed in vivo, and 

without the invasiveness of PET tracers. The key to fMRI is the blood oxygen level dependent 

signal (BOLD—coined by Ogawa, Lee et al. (1990)) contrast, which is based on the difference in 

magnetic susceptibility between oxygenated and deoxygenated blood (Bandettini 2020). Even 

though the BOLD signal is vascular, its time course has been demonstrated to be a coupled, 

delayed, lowpass filtered, and prolonged signal of total neural activity at a location (Logothetis, 

Pauls et al. 2001). With the advent of fMRI, neuroscientists could design blocked and event-related 

experiments to localize task-related neural processing; creating colorful statistical maps of 

activation (Buckner, Bandettini et al. 1996) and sensory topography (Engel, Glover et al. 1997) in 

the process. Thus, fMRI ushered in a new era of cognitive neuroscientific investigation capable of 

localizing the neural “activation” patterns in response to a range of tasks and cognitive concepts 

(Poldrack 2006). Through thousands of fMRI experiments, the landscape of the brain has been 

annotated with activation coordinates, documenting the functional relevance of many brain regions 

(Fox and Lancaster 2002, Laird, Lancaster et al. 2005, Yarkoni, Poldrack et al. 2011). To date, 

increasingly sophisticated experiments employing rich stimuli (often with narrative content; see 

Willems, Nastase et al. (2020)) are used to gain an understanding of the functional layout of 

dynamic neural responses (Haxby, Connolly et al. 2014, Huth, De Heer et al. 2016, Baldassano, 

Hasson et al. 2018).  

Filling in the gaps by connecting the maps 

In the parlance of networks, delineating parts of the cortex into distinct areas amounts to 

creating a set of nodes, or elemental pieces of the system. Such divisions alone could be sufficient 
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to describe the static layout of the brain’s components. Like a simple map of the European Union’s 

political borders, such a map does well to visualize how the parts of the system are oriented and 

can provide details about each component, e.g., What is the capital of Germany? Where are the 

Alps? Where does the neural response to a face appear? What is the average thickness at the 

temporal pole? But to understand the function and dynamics of this system, we need to define the 

relational characteristics between the components, e.g., How balanced is economic trade between 

countries? In what patterns does immigration flow? How does the visual system communicate with 

the rest of the brain? Thus, a brain map of components can be enhanced with information about 

the relationships between the components 2 (Swanson 2000), or what we would call network edges. 

In tandem with the rise of localized brain mapping, neuroscientists have collected information 

about the interacting parts of the neural system—forming what we refer to as brain networks.   

A significant first step in the quest to document the brain’s wiring was taken with the 

documentation of the complete C. elegans nervous system (White, Southgate et al. 1986). This 

data would be used as a testbed for network science concepts, like small-worldness (Watts and 

Strogatz 1998) and serve as a valuable resource for studies of neuronal behavioral circuits (Schafer 

2018). The “Mind of a Worm” was well ahead of its time, as the comprehensive connectivity (let 

alone, near complete connectivity) of mammals would not be reported until decades later. The 

aspirational idea of compiling the complete wiring diagram of the human, coined as the Human 

Connectome, was drafted by Sporns and colleagues (Sporns, Tononi et al. 2005). A key idea of 

this proposal is that brain’s wiring fundamentally shapes and constrains the brain’s dynamics. 

Thus, compiling such a comprehensive network would be a fruitful initial step for modeling brain 

 
2Swanson writes: “The profound question really is not ‘what is the brain?’ but rather ‘what are the basic parts of the 
nervous system and how are they interconnected functionally?’” 
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dynamics, just as compiling the genome marked initial progress for understanding the complex 

function DNA. To date, such detailed data from the human remains elusive and seemingly 

unattainable with today’s in vivo methodologies. However, advances in genetic barcoding make 

the collection of a mammalian connectome a seemingly more realistic endeavor (Huang, Kebschull 

et al. 2020).  

Through the 20th century, ever more sophisticated methods of tract tracing were developed, 

to document the mammalian brain’s wiring (Saleeba, Dempsey et al. 2019). Tract tracing is a 

method that involves the injection of tracers (e.g., horse radish peroxidase, dextran-amines, or viral 

vectors) at specific regions, which permeate the efferent or afferent paths from an injection point, 

thereby documenting the region’s connectivity. However, individual injection experiments are 

laborious and limited in scope. In 1991, Felleman and Van Essen demonstrated a database 

approach for collating numerous tracing experiments performed on the macaque (of the 1970s and 

80s) and presented this information in tabular matrix and wiring diagram form (which notably 

conveyed the complexity of the macaque visual system) (Felleman and Van 1991). The advantage 

of such an approach was that it synthesized laboriously acquired information to gain a fuller view 

of the interconnected anatomy. Soon after, a wealth of neuroanatomical data became available 

including the connection matrix of the macaque cortex (Young 1993), cat cortex (Scannell and 

Young 1993), and later, a database of macaque connectivity (Kotter 2004). This new connectivity 

data was used for multivariate analyses aimed at elucidating the hierarchical organization encoded 

by these wiring patterns (Scannell, Blakemore et al. 1995), and to find clusters of differentially 

connected areas (Hilgetag, Burns et al. 2000). Today, tract tracing can be conducted in a systematic 

and comprehensive manner, resulting in inter-areal neuronal connectivity maps that do not rely on 

cross-laboratory data collation (Markov, Ercsey-Ravasz et al. 2014, Knox, Harris et al. 2019). 
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Whereas functional imaging studies of the late 1990’s and early 2000’s involved mapping 

functionally localized brain activity, many of the present day’s studies are increasing focused on 

describing how regions connect to each other. Using diffusion-weighted MRI, which gauges the 

directionality of water flow constrained by neural tissue, paths can be computationally traced 

through the anatomy using a process known as tractography (Conturo, Lori et al. 1999). 

Tractography is an ill-posed algorithmic process that is prone to error (Jbabdi and Johansen-Berg 

2011), yet it remains among our best methods to characterize white matter connections in vivo 

(Jbabdi, Sotiropoulos et al. 2015). Despite the method’s shortcomings, generated streamlines 

form representations of anatomical tracts (Bullock, Takemura et al. 2019) that can differentiate 

between diagnostic group (Zhu, Jahanshad et al. 2016) or report the tissue integrity of 

connections (Yeatman, Wandell et al. 2014). Functional connectivity with fMRI is determined 

by measuring how the slow oscillatory BOLD signals (less than 0.1 Hz) at different parts brain 

co-activate, potentially signaling neural communication or a common driver of the constituent 

areas (Avena-Koenigsberger, Misic et al. 2018, Reid, Headley et al. 2019). Although this 

paradigm first appeared in 1995 as an investigation of co-activation between motor regions 

(Biswal, Zerrin Yetkin et al. 1995), awareness of functional connectivity accelerated when a 

distributed set of regions was shown to strongly correlate during passive rest (or display a 

coherent pattern of oxygen consumption via PET data), possibly reflecting intrinsic functional 

architecture (Raichle, MacLeod et al. 2001, Greicius, Krasnow et al. 2003, Vincent, Patel et al. 

2007).  

The network neuroscience work we perform today builds upon a mountain of knowledge 

gathered from brain mapping studies and the subsequent studies providing the means to connect 

these maps. This prior work shows us that the brain can be delineated into meaningful regions, 
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based on microscopic composition (Catani, de Schotten et al. 2013) or macroscopic patterns 

(Desikan, Ségonne et al. 2006, Smith, Fox et al. 2009). Furthermore, it has been established that 

spatially distinct (and possibly distant) regions can be structurally and functionally related, forming 

the web of relationships that constitute a brain network. Collectively, the modern history of 

neuroscience points to the concepts of segregation and integration (Tononi, Sporns et al. 1994, 

Sporns 2013): how parts of the brain carve out distinct functionality and broadcast to other 

elements, as guiding principles to investigate. Given this, we have fruitfully employed network 

models to describe these concepts.  

A brief network science background  

Networks are a universal phenomenon and are all around us, in natural, man-made, and 

artificial contexts. Networks can be applied to study systems that arise naturally, such as food 

chains of our ecosystem or the communication patterns between animals (Dunne, Williams et al. 

2002). Humans construct and behave in networked patterns, which is evidenced by our 

transportation systems or social gathering tendencies (Stopczynski, Sekara et al. 2014). Finally, 

networks provide architectures used in computing applications and mathematical proofs. Across 

networks of different sizes and contexts, common patterns and properties of networks can be found 

(Watts and Strogatz 1998, Barabasi 2009). The field of network science encompasses the 

exploration of these patterns and properties, via modeling and analysis of distributed data. Studies 

within the realm of network science involve real world networks and range from investigations of 

simple generative models to the complex processes that overlay network structure. Whereas 

network science describes the scientific investigation of networked data, graph theory provides the 

foundation for mathematically describing any single network.  
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Graph theory is a branch of discrete mathematics used to describe core properties of 

networks. This field encompasses the theorems and algorithms that can be applied to networks, 

commonly of arbitrary structure. The origination graph theory is credited to Leonhard Euler, who 

used a mathematical approach to examine the traversal of seven bridges in the city of Konigsberg 

(Sachs, Stiebitz et al. 1988). When solving a puzzle about a path across these bridges, Euler had 

the insight to simplify the problem by modeling the landmasses separated by the river as discrete 

elements, known as nodes, and documenting the landmasses connected by a bridge. These 

connections are termed edges. Thus, he formed a rudimentary network, or graph, that documented 

the arrangement of the geography, encoded as the network’s topology.  

Euler’s initial network could be considered as a basic “flavor” of a graph, with the 

connections denoting the binary presence or absence of a connection. Graphs can be enriched with 

details, such as edge weights describing the strength of a relationship, or the direction of a 

relationship. From these simple components, a practically infinite range of graph topologies can 

be created, ranging from ordered structures like rings or lattices, to highly convoluted, even 

random, graph structures. Using the formalism of a graph, a range of fundamental characteristics 

can be derived from the graph’s arrangement of nodes and edges. Measurements such as the nodal 

degree, which describe the number or sum of edges emanating from (or directed towards) a node, 

or clustering coefficient, which describe the connected triangles emanating from (or directed 

towards) a node, are simple graph theoretic measurements that mathematically result from the 

arrangement of nodes and edges. This contrasts with other network assessments, such as the 

measuring the exponential fit of a degree distribution, which offer a more computational 

description of the network.  
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To date, graph theory has become associated with the theorems and proofs applied to 

networks with arbitrary or statistically governed topology, which are more treatable from a 

mathematics perspective (Iñiguez, Battiston et al. 2020). On the other hand, network science has 

come to describe the approach of practitioners describing real-world networks, which are complex, 

sparse, and potentially noisy. Notably, the network science approach draws on the insights of graph 

theory and depends on graph theoretic measurements but forgoes the mathematical certainties only 

possible in arbitrary graph structures. In this way, the lens of network science is more fruitful to 

use with brain network data, which deviates far from idealized topologies like a random graph or 

lattice (Sporns 2011).  

What have brain networks revealed about brain organization? 

Uncovering and understanding the underlying architecture of the brain is a longstanding 

pursuit for neuroscientists, and the adoption of network modeling and analysis provides new 

opportunities in this quest. Importantly, network tools allow for elusive concept of brain 

organization to be quantified, characterizing the ways in which neural elements collectively form 

a complex system (Bullmore and Sporns 2009, Rubinov and Sporns 2010, Telesford, Simpson et 

al. 2011, Fornito, Zalesky et al. 2016). Through networks, local regions can be placed within the 

wider context of the whole brain architecture and compared to other patterns within this 

architecture. In this way, this approach can complement longstanding a priori knowledge about 

specific regions or circuits (Haber and Knutson 2010), by ascertaining where these neuronal 

elements fit within the context of the greater brain architecture (Passingham, Stephan et al. 2002). 

Here we briefly highlight key findings using networks which characterize the distributed 

organization of the brain. 
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Space 

A key feature unique to brain networks is its spatial layout (Stiso and Bassett 2018), 

confined to the limited space inside of the skull. The brain is thought to have evolved to balance 

metabolic and volumetric constraints with the capability to transfer information (Laughlin and 

Sejnowski 2003, Bullmore and Sporns 2012). The organization of a brain network should reflect 

the tradeoff between the cost of wiring (operationalized frequently as the Euclidean distance 

between nodes) and capacity to transfer information (Achard and Bullmore 2007). The small-

world topology we observe in brain networks—marked by a graph with high clustering coefficients 

and low shortest path length—is a plausible result of such a tradeoff (Bassett and Bullmore 2017). 

Notably, brain networks do not adhere to a strict pattern of absolute wiring cost minimization 

(Kaiser and Hilgetag 2006, Vertes, Alexander-Bloch et al. 2012, Betzel, Avena-Koenigsberger et 

al. 2016). Deviation from the least-costly organization is thought to be indicative of topological 

features vital for brain functioning, such as the formation of integrated and segregated functional 

states (Fukushima and Sporns 2020) or the placement of highly connected nodes (Roberts, Perry 

et al. 2016). 

Hubs 

Within a brain network, not all areas are connected in the same manner. Some areas might 

form connections with a few select regions whereas other areas might form connections far and 

wide (Betzel and Bassett 2018). The heterogeneity of nodal connection profiles can be captured 

using the degree distribution of the network, which for brain networks is observed to be heavy-

tailed, but not necessarily ‘scale-free’ as other less physically constrained networks are argued to 
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be 3. One implication of such a degree distribution is the likely presence of hubs—highly connected 

nodes that are topologically central to the network (Sporns, Honey et al. 2007, van den Heuvel and 

Sporns 2013). Such nodes are located along a disproportionate number of shortest paths in the 

network and often link functional systems (Zamora-Lopez, Zhou et al. 2010, Gordon, Lynch et al. 

2018). One way to formally measure a node’s propensity to link to an array of systems is to employ 

the participation coefficient (Guimera and Nunes Amaral 2005). High participation nodes are 

thought to promote flexible brain functioning across tasks (Bertolero, Yeo et al. 2018). 

Importantly, brain network hubs have been observed to disproportionately connect to other hubs, 

forming a so-called rich-club topology (van den Heuvel and Sporns 2011). This club of high degree 

nodes is thought to support integration of information, with rich connections that are long and 

costly, but that also participate in a majority of potential communication paths (van den Heuvel, 

Kahn et al. 2012).   

Modules 

A hallmark of complex systems is modularity, which describes how a system can be 

decomposed into subgraphs (sub-networks) that are highly intra-connected and sparsely inter-

connected to the rest of the system (Newman and Girvan 2004). This sort of organizational 

configuration enables segregated information processing and in turn, potentially endows a system 

with functional flexibility (Kashtan and Alon 2005). Evidence for modular organization in brain 

networks is widespread and can be found in a range of contexts (Sporns and Betzel 2016). From 

the microscale C. elegans connectome (Sohn, Choi et al. 2011) to the broad networks obtained 

with fMRI (Meunier, Lambiotte et al. 2009), we can identify highly clustered subgraphs of the 

 
3 Many practitioners have observed, including Betzel and Bassett (2018), a log-normal edge weight distribution. 
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network. The identification of these subgraphs is commonly performed via modularity 

maximization (Newman and Girvan 2004), an algorithmic approach to identify highly clustered 

subgraphs relative to a null connectivity model (Betzel 2020).  

The resultant modules, or communities, from modularity maximization are collections of 

nodes that could potentially serve a common purpose or contain a common trait. For example, 

modular groups of neurons within the C. elegans connectome correspond to specific functional 

circuits (Sohn, Choi et al. 2011, Jarrell, Wang et al. 2012) and are enriched for correlated gene 

expression (Arnatkeviciute, Fulcher et al. 2018). For networks that span the whole brain, identified 

modules from both structural (Chen, He et al. 2008, Hagmann, Cammoun et al. 2008) and 

functional data (He, Wang et al. 2009, Meunier, Lambiotte et al. 2009) are commonly related to 

the functional relevance of each node grouping (Crossley, Mechelli et al. 2013). A related approach 

to studying modularity in brain networks is to assess the modularity heuristic, Q, given fitted or 

existing communities. The modularity of brain networks has been shown to differ by age (Hughes, 

Faskowitz et al. 2020, Puxeddu, Faskowitz et al. 2020), track with task performance (Finc, Bonna 

et al. 2020), and even mediate cognitive maturation (Baum, Ciric et al. 2017). Finally, the 

modularity of brain networks has been incorporated into studies of brain pathology, used in part 

for example to examine the spread of induced damage (Zhang, Huang et al. 2019) or assess the 

global organization of pre-symptomatic brains structure (Voevodskaya, Pereira et al. 2018).  

Finding communities in brain networks 

Of the many tools that network science provides to analyze brain organization, the search 

for, and analysis of, modular organization remains a popular and fruitful approach. Several factors 

make the lens of modular organization an excellent approach for analyzing brain organization. To 

begin, finding modular groupings of nodes provides computational results that neatly fit into 
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prevailing framework of segregated and integrated brain organization (Sporns 2013, Wig 2017, 

Shine 2019). A modular partition of the network is one way to show that brain is not uniformly 

connected, but rather clustered into segregated modules that are functionally synchronized (and 

possibly actively communicating). Deviation from this modular structure, often framed as 

integration, can be assessed acutely, in response to cognitive demands (Alavash, Tune et al. 2019, 

Finc, Bonna et al. 2020), or diffusely, as a measurement of general organizational dysfunction or 

age-related impairment (Chen, He et al. 2008, Hughes, Cassidy et al. 2019). After modularity 

maximization is performed, a modular partition of the network provides the information used to 

characterize specialized hub-like roles that nodes can play i.e., provincial, connector, and kinless 

hubs (Guimera and Nunes Amaral 2005, Power, Mitra et al. 2014, Esfahlani, Bertolero et al. 2020). 

Furthermore, modularity is likely an appropriate description for the brain given its spatial 

compactness and the economic constraints it evolved under (Bassett, Greenfield et al. 2010, Betzel, 

Medaglia et al. 2017). And finally, at the level of practical algorithmic implementation, modularity 

can be adapted to multiple types of brain network modalities (Rubinov and Sporns 2011) and can 

be applied with robust algorithms (Blondel, Guillaume et al. 2008, Jeub, Sporns et al. 2018, 

Pedersen, Zalesky et al. 2018), making it a highly usable tool for network neuroscience 

practitioners. Although modularity is entrenched as a key organizational description for brain 

network organization, we must also understand this approach is limited to describing a specific 

network topology. 

The search for, and analysis of, network modules falls under the wider scope of community 

detection for networks (Fortunato and Hric 2016). Community detection describes the tools and 

algorithmic processes used to uncover a network’s underlying community structure, or 

classification of the network into multiple components. Modularity maximization is merely one 
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way in which to find meaningful communities of a network (Schaub, Delvenne et al. 2017). 

Whereas modularity maximization searches for clusters of dense connectivity, other approaches 

use dynamic processes, graph cuts, or statistical models to identify meaningful groupings of nodes, 

known generally as communities. These different methods lead to node groupings with different 

interpretations as well. Whereas a community derived with modularity maximization describes a 

grouping of nodes that are densely interconnected, a community derived with InfoMap (Rosvall 

and Bergstrom 2008) describes a grouping of nodes that does well to ‘contain’ a theoretical random 

walker.  

The repeated application of modularity maximization to brain networks yields a somewhat 

narrow picture of the brain’s community structure, finding modular partitions while precluding 

other community structure topologies such as core-periphery structure. In the context of brain 

networks, the modular structures are typically disjoint, meaning that no node is assigned to more 

than one community. Given the limited community structure definition provided by modularity 

maximization, there exists a potential gap in our understanding of brain organization: the 

effectiveness and repeated application of modularity maximization has led us to a restricted 

understanding of community structure in brain networks. The community topology, or topological 

characteristics of the network’s community structure, for brain networks could be richer than the 

traditional modular organization we have observed to date.  

Edge-centric network neuroscience and community structures 

A large focus of network neuroscience is on elucidating features of network nodes—what 

we would call a node-centric approach. Many operations performed on brain networks are done 

so that the nodes can be annotated with a value and in turn, differentiated from one another or 

regressed against a trait. In this way, many of the crucial questions we ask in network neuroscience 
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focus on highlighting certain nodes: Which nodes are highly connected (Sporns, Honey et al. 

2007)? Which nodes serve at key conduits of information transmission (van den Heuvel and 

Sporns 2011, Dann, Michaels et al. 2016)? How can nodes be grouped to form coherent clusters, 

which form a system of regions that perform a cognitive operation (Yeo, Krienen et al. 2011, 

Crossley, Mechelli et al. 2013)? Where are the nodes that bridge communities, and crucially 

integrate across systems (Bertolero, Yeo et al. 2015)? In these analyses and many like them, the 

focus is on the information that can be gleaned from the network structure to enrich the 

neuroscientific understanding of the nodes, whether they are neurons, neuronal populations, or 

volumetric areas.  

The node-centric focus can be attributed to the historical roots of cognitive neuroscience, 

which has largely focused on localizing cognitive, behavioral, and disease-related phenomena in 

space and time. As a result, patches of cortex and subcortex are often affiliated with specific 

functions, from word processing and language comprehension, to constructs such as cognitive 

control and task de-activation. The node-centric perspective influences how we think about brain 

networks; in that we treat nodes as fundamental units of brain function, and edges as the 

(secondary) interrelationships between these units. This node-centric perspective is also reflected 

in the way we construct brain networks, treating the challenge of node definition as a primary 

influence on network statistics (Zalesky, Fornito et al. 2010, Arslan, Ktena et al. 2018, Messe 

2020), whereas the edges are simply the measurements that fall between the nodes after a 

parcellation is selected. The prevailing node-centric approach is neither incorrect nor misguided. 

However, we can potentially expand our understanding of distributed brain organization using 

novel network modeling paradigms.   
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In this thesis, we propose that additional progress can be made by focusing on brain 

network edges. An edge-centric perspective focuses on interrelationships within a network and on 

the information that can be read and produced at the edge-level. To demonstrate this perspective, 

we apply community detection techniques not yet widely adopted in the network neuroscience 

community. In doing so, this thesis is positioned at the confluence of two underappreciated topics 

in network neuroscience: the possibility of non-modular community structure and the development 

of more edge-centric models. In the work presented here, we demonstrate how two advanced 

community detection approaches, the weighted stochastic block model and edge clustering, can 

provide an account of the brain’s community structure that is not exclusively modular. Both 

approaches use edge-level information in a manner that is not common for brain investigations. In 

typical network neuroscience fashion, this thesis relies on advances made in network science that 

we can apply to brain networks in a principled manner. Following these empirical investigations, 

this thesis then explains the importance of brain network edges, and further advances how 

information at the edge-level is important and could yield new perspectives on brain organization.  

The organization of this thesis  

In this thesis we provide three exploratory investigations of brain network organization 

using advanced community detection techniques that we consider to be edge-centric. Following 

these chapters is review of brain network edges, detailing the role they play in understanding brain 

organization. We conclude with further synthesis of these chapters and a discussion of future edge-

centric directions for neuroscience.  

The first two chapters of this thesis demonstrate how we can uncover community structure 

that is not exclusively modular in both human and non-human structural brain networks 

(Faskowitz, Yan et al. 2018, Faskowitz and Sporns 2020). Whereas modularity maximization is 
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the traditional approach for partitioning the brain into dense clusters, here we utilize a statistical 

community detection tool called the stochastic block model (SBM) (Holland, Laskey et al. 1983, 

Snijders and Nowicki 1997). Stochastic block modeling is a community detection approach that 

seeks to form communities based on shared edge-connectivity patterns to other communities. The 

key advantage of the SBM is that it can flexibly identify a range of community topologies, which 

include modularity, core-periphery, and disassortative structure. In our applications, we rely on a 

weighted variant of the SBM (Aicher, Jacobs et al. 2013, Aicher, Jacobs et al. 2015), so that we 

can include heterogenous edge weight patterns found in our anatomical brain network data.  

The next chapter of this thesis is a demonstration of a new edge-centric perspective on 

functional connectivity. A large portion of network neuroscience is devoted to analyzing functional 

connectivity networks, whose edges are traditionally formed by measuring the similarity between 

time series at nodes (Friston 2011, Fornito, Zalesky et al. 2016). In our work, we devised an 

approach to finely resolve an edge’s fluctuations across time, which allows us to measure the 

similarity between edge time series. Inspired by network science advancements in the realm of 

edge clustering (Evans and Lambiotte 2009, Ahn, Bagrow et al. 2010), we constructed an edge-

by-edge representation of the brain called eFC (edge functional connectivity). By performing 

community detection on this novel representation of the data, we obtain clusters of edges that have 

similar co-fluctuation patterns. The approach detailed in this chapter is decidedly edge-centric, in 

that it provides a new framework for analyzing edge-edge relationship via the eFC construct and 

a new avenue for representing edge activity over time. In particular, edge time series as described 

here can be adapted for several new applications, making it a fruitful construct for new empirical 

studies. 
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The last chapter of this thesis is a review of brain network edges, which is intended to 

highlight the value of edges elucidating brain network organization. This review seeks to 

understand how the relationships between nodes can be extracted, grouped, and analyzed. Edges 

can represent the physical connections that support communication, index the similarity of 

measurements taken at elements, or indicate an attribute inherent in a connection. Furthermore, 

edges can be grouped to form constructs such as motifs, fingerprints, and topologies that contain 

network information at different scales. The edge-centric approach does not exclude nodes, but 

rather represents a shift in focus and framing when employing networks to analyze brain 

organization. 

The contribution of this thesis to the field of network neuroscience centers on a simple, yet 

underappreciated, aspects of familiar network science concepts applied to the brain. Here, we 

underscore the importance of information at the edges. Beyond the text of these chapters, we 

recognize that our published work is now of the network neuroscience literature, and we hope that 

these methods can be adopted by colleagues. To this end, we have contributed MATLAB code on 

GitHub that implements the key algorithms and frameworks used. Overall, we hope that the 

contributions of this thesis will not cease with the work here. We hope that our colleagues will 

synthesize the ideas presented here with their own work, to uncover new views of the brain’s 

organization. 
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CHAPTER 1: WEIGHTED STOCHASTIC BLOCK MODELS OF THE HUMAN 

CONNECTOME ACROSS THE LIFE SPAN 

This chapter was published as: Faskowitz, J., Yan, X., Zuo, X. N., & Sporns, O. (2018). Weighted 

stochastic block models of the human connectome across the life span. Scientific reports, 8(1), 1-

16. https://doi.org/10.1038/s41598-018-31202-1 

For Supplementary Information, see: doi:10.1038/s41598-018-31202-1 

Abstract 

The human brain can be described as a complex network of anatomical connections 

between distinct areas of the cerebral cortex, referred to as the human connectome. Fundamental 

characteristics of connectome organization can be revealed using the tools of network science and 

graph theory. Of particular interest is the network’s community structure, commonly identified by 

modularity maximization, where communities are conceptualized as densely intra-connected and 

sparsely inter-connected. Here we adopt a generative modeling approach called weighted 

stochastic block models (WSBM) that can describe a wider range of community structure 

topologies by explicitly considering patterned interactions between communities. We apply this 

method to the study of changes in the human connectome that occur across the life span (between 

6-85 years old). We find that WSBM communities exhibit greater hemispheric symmetry and are 

spatially less compact than those derived from modularity maximization. We identify several 

network blocks that exhibit significant linear and non-linear changes across age, with the most 

significant changes involving subregions of prefrontal cortex. Overall, we show that the WSBM 

generative modeling approach can be an effective tool for describing types of community structure 

in brain networks that go beyond modularity. 
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Introduction  

The human brain forms a complex network of anatomically interconnected neurons and 

brain regions, the connectome (Sporns 2011) that can be modeled and analyzed with the tools of 

network science and graph theory (Bassett and Sporns 2017). Modeling the brain as a network 

allows us to explore local as well as distributed properties of brain organization, using both 

descriptive (Hagmann, Cammoun et al. 2008) and generative modeling approaches (Betzel, 

Avena-Koenigsberger et al. 2016). A hallmark of complex networks, including the human 

connectome, is the presence of subnetworks, also called communities or modules (Sporns and 

Betzel 2016). The set of communities that comprise a given network is referred to as the network’s 

community structure. This structure is useful for describing both large-scale and local patterns of 

the network (Sporns 2013). At large-scale, we can measure differential connectivity trends 

between communities, e.g., across age (Betzel, Byrge et al. 2014) or in relation to cognition 

(Bassett, Wymbs et al. 2011). Locally, we can use metrics such as the participation coefficient to 

assess node-wise aspects of the community structure (Sohn, Choi et al. 2011, Baum, Ciric et al. 

2017).  

In many extant studies, network communities are operationalized as modular subnetworks, 

i.e., as groups of nodes that are more densely connected within, and more sparsely connected 

between groups. However, the process of identifying modules in networks, community detection, 

is an ill-defined problem with no universal definition (Von Luxburg, Williamson et al. 2012, 

Fortunato and Hric 2016, Peel, Larremore et al. 2017, Rosvall, Delvenne et al. 2017, Schaub, 

Delvenne et al. 2017). Modular network communities are merely one plausible lens through which 

to analyze brain network communities. In fact, recent evidence demonstrates that the presence of 

diverse community structure connectivity patterns beyond modular configurations correlates with 
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behavioral task performance (Betzel, Medaglia et al. 2018) For this investigation, we employ an 

alternative to the modularity approach by adopting a model from a family of methods called 

stochastic block models (SBM) (Holland, Laskey et al. 1983, Wang and Wong 1987, Wasserman 

and Faust 1994, Karrer and Newman 2011). The SBM splits nodes into blocks, within which all 

nodes are stochastically equivalent in terms of how they connect to the rest of the network. As a 

generative model, it has a well-defined likelihood function with consistent parameter estimates. It 

is also highly flexible, capable of modeling a wide variety of community structures, including the 

conventional modular, but also disassortative, core-periphery or mixed community structures 

(Figure 1). Recent theoretical developments in SBM models have also enabled them to capture 

degree distributions (Karrer and Newman 2011), overlapping communities (Airoldi, Blei et al. 

2008), and weighted edge weights (Aicher, Jacobs et al. 2013, Peixoto 2018) as well as statistically 

principled model selection criteria (Xiaoran, Cosma et al. 2014, Yan 2016).  

  



 

24 

 

 

Figure 1 Three representations of network data: graph, adjacency matrix, block model. The graph is visualized as a 

force-directed (Fruchterman and Reingold 1991) graph layout, the adjacency matrix is visualized as a square matrix 

with entries for each edge between nodes, and the block model is visualized as a square matrix with entries for each 

edge-existence parameter between communities. a) Random network b) Modular network c) Core-periphery network 

d) Disassortative network e) Mixed network, based on an example fit to brain network data of a single hemisphere f) 

An illustration of a binary (unweighted) edge for each network data representation.  

In this study, we employ the stochastic block modeling framework to analyze, cross-

sectionally, how brain networks, and the community structure of these networks, are modulated 

across the human life span. Over the human life span the brain matures nonlinearly, from 

development to young adulthood, and into old age (Sowell, Thompson et al. 2004). Notably, 

morphological changes in the cortical grey matter are heterogeneous, as spatially distinct regions 

of the cortex develop, mature, and decline at different time points and rates (Storsve, Fjell et al. 

2014, Gennatas, Avants et al. 2017). Additionally, the white matter architecture that supports 

connections between these distinct cortical regions develops at variable rates (Imperati, Colcombe 

et al. 2011, Lebel, Gee et al. 2012, Yeatman, Wandell et al. 2014). To characterize these changes 

in brain networks across the human life span several recent studies have applied tools of complex 
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network analysis (Zuo, Kelly et al. 2010, Betzel, Byrge et al. 2014, Cao, Wang et al. 2014, Zhao, 

Cao et al. 2015, Zuo, He et al. 2017). Using resting state functional connectivity MRI networks, 

studies have shown increases in connectivity between modules increases with age while 

connectivity within modules decreases (Betzel, Byrge et al. 2014, Chan, Park et al. 2014). The 

modularity of these networks has been shown to decrease over the life span (Cao, Wang et al. 

2014). Concurrently, overall structural connectivity (total number of recovered streamlines) 

decreases as a function of age (Betzel, Byrge et al. 2014, Lim, Han et al. 2015), hypothesized to 

be a result of preferential detachment of short structural connections within modules (Lim, Han et 

al. 2015).  

SBMs offer great flexibility as the way in which communities are defined transcends the 

narrower definition inherent in classical modularity maximization. Despite their methodological 

advantages, SBMs have only recently been applied to the analysis of brain networks (Pavlovic, 

Vertes et al. 2014, Moyer, Gutman et al. 2015, Bryant, Zhu et al. 2017, Betzel, Medaglia et al. 

2018). Here we apply a weighted variant of the stochastic block model, called the Weighted 

Stochastic Block Model, or WSBM (Aicher, Jacobs et al. 2013, Aicher, Jacobs et al. 2015, Peixoto 

2018), to whole-brain anatomical networks extracted from diffusion imaging and tractography data 

acquired across a major portion of the human life span. After designing a robust strategy for 

applying WSBMs to weighted connectome data, we fit WSBMs to group-averaged connectomes, 

as well as to individual connectome networks. We find patterns of age-related changes that unfold 

in specific sub-blocks of SBMs, representing bundles of connectome edges that exhibit significant 

linear or non-linear changes across the life span. We also demonstrate how to measure community 

structure change across age by conceptualizing community structure as a vector. Finally, we 
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discuss the patterns of change we detected in this study in the context of previous work reporting 

on modularity and age-dependent changes in functional connectivity. 

Methods 

Data description 

Our data was generated from 620 human subjects (63% female) from the enhanced Nathan 

Kline Institute-Rockland Sample (NKI-RS) (Nooner, Colcombe et al. 2012). Institutional Review 

Board approval was obtained for this project at the Nathan Kline Institute (#226781 and #239708) 

and at Montclair State University (#000983A and #000983B) in accordance with relevant 

guidelines. Written informed consent was obtained for all study participants. Written consent and 

assent were also obtained from minor/child participants and their legal guardian. In the present 

study, human data used was de-identified and provided open-access via an Amazon S3 Bucket 

(fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html). The NKI-RS dataset is a cross-

sectional community sample that covers a wide range of the human life span (6-85 years old; std. 

dev: 20.88). Both T1-weighted (T1w) and diffusion (dMRI) images were collected for each study 

participant on a 3T Siemens Magnetom Tim Trio scanner (Siemens Medial Solutions USA: 

Malvern PA, USA) using a 12-channel head coil. T1-weighted magnetization rapid acquisition 

gradient-echo (MPRAGE) were acquired with the following scan parameters: echo time (TE): 2.52 

ms; repetition time (TR): 1900 ms; flip angle (FA): 9 degrees; FOV: 176 sagittal slices at 250 x 

250 mm, with 1mm spacing; GRAPPA acceleration factor of 2; acquisition time: 4:18 min. DWI 

were acquired with the following scan parameters: TE: 85 ms; TR: 2400 ms; FA: 90 degrees; FOV: 

64 axial slices of 212 x 212 mm, with 2mm spacing; multi-band acceleration factor: 4; 128 

directions in single-shell; b-value 1500s/mm2; 9 non-weighed diffusion volumes; anterior >> 
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posterior phase encoding direction; acquisition time: 5:58 min. A total of 671 dMRI datasets were 

initially downloaded. Data exclusions included: 13 subjects did not have viable T1w (FreeSurfer 

failure); 12 dMRI were visually judged as having image artifacts (based on viewing medial axial, 

coronal, and sagittal slices of fractional anisotropy map) ; 24 tractography reconstructions were 

visually judged as poor (~3.8% of tractographies generated; based on 6 rotated views of the 

tractogram and looking for areas of non-smooth streamline paths); 2 streamline count matrices 

were labeled outliers based on an edge density cutoff (sparsity z-scores of -4.1 and -5.6)—

adjacency matrices that failed to reach a binary edge density of 25% were deemed too sparse. 

MRI pre-processing 

T1w images were run through FreeSurfer’s (surfer.nmr.mgh.harvard.edu) recon-all 

pipeline to obtain a cortical surface reconstruction and surface mapping to the FreeSurfer fsaverage 

space. We reconstructed the Yeo17 network parcellation (Yeo, Krienen et al. 2011) (114 cortical 

nodes, source: github.com/ThomasYeoLab) in the T1w native space using FreeSurfer’s nonlinear 

surface warps. We then applied FSL fast (Zhang, Brady et al. 2001) to the skull-stripped T1w to 

obtain grey matter (GM), white matter (WM), and cerebral spinal fluid (CSF) partial volume 

estimation (PVE) maps. The bias-corrected T1w were rigidly aligned to MNI 152 1mm isotropic 

space using FSL flirt. All parcellations and PVE maps were aligned to MNI space by applying the 

flirt linear transformation. PVE maps were thresholded at 0.5, to obtain maps of the majority 

volume estimates for each voxel.  

We first denoised the dMRI using a spatially adaptive denoising algorithm (St-Jean, Coupe 

et al. 2016). dMRI were then corrected for motion using FSL eddy_correct, with the normalized 

mutual information cost metric. The average unweighted diffusion volume (B0 image) was then 

linearly aligned to the T1w in MNI 152 2mm space using the FSL flirt boundary-based registration 
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routine (Greve and Fischl 2009). The inverse of this transformation was applied to the T1w to 

bring the T1w into the dMRI native space. We then used ANTs SyN registration (Avants, Tustison 

et al. 2011) to nonlinearly correct the dMRI for eddy current distortion in the phase encoding 

direction. The dMRI images were finally aligned to MNI 152 2mm space by concatenating and 

applying the eddy_correct, ANTs warp, and flirt transformations, to interpolate the dMRI only 

once. dMRI b-vectors were rotated accordingly.  

We generated streamline tractography in the MNI 152 2mm isotropic space using Dipy 

(Garyfallidis, Brett et al. 2014). We first modeled the fiber orientation distribution function (fODF) 

at each voxel using constrained spherical deconvolution (Tournier, Calamante et al. 2007); fit 

using a recursive calibration (Tax, Jeurissen et al. 2014) and a spherical harmonic order of 8. We 

placed 9 random seeds in each voxel of a white matter mask, generated by calculating the 

intersection of the PVE WM and FreeSurfer WM segmentation. We used Dipy’s LocalTracking 

module to deterministically propagate streamlines bidirectionally from each seed. Streamlines 

were generated at 0.5 mm steps, with a max turning angle of 30 degrees. Streamlines longer than 

5mm and terminating in the GM PVE map, while avoiding the CSF PVE map (Smith, Tournier et 

al. 2012), were retained.  

We constructed streamline count adjacency matrices by counting the number of streamlines 

that terminated in each region of interest (ROI) of the Yeo network parcellation. We disregarded 

nodes connected by only one streamline as noise and set these entries in the count matrix to zero. 

We recorded the voxel volume of each ROI of the Yeo parcellation and normalized the streamline 

count matrices by geometric mean volume of each pair of connected ROIs. This step was taken to 

remove potential edge-weight bias for larger ROIs. Hence, we recorded the weights of our 

structural connectivity matrices (connectomes) as streamline density measurements, as in previous 
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studies (Hagmann, Cammoun et al. 2008, Hagmann, Sporns et al. 2010, Betzel, Medaglia et al. 

2018).  

Community detection with the stochastic block model 

Communities described by the SBM, also called blocks, are groups of nodes that are 

stochastically equivalent. Hence, nodes in the same community connect to all other nodes with a 

similar pattern. An SBM block does not require nodes within a block to connect densely to each 

other, and sparsely to other blocks. Rather, the probability at which nodes in a block connect to 

other nodes in the same block is a parameter with the same importance as all other block 

interactions. For classic SBM, the probability of an edge existing between two nodes of block A 

and block B will be described by a Bernoulli distribution with parameter theta that describes the 

probability of an edge existing between any two nodes of block A and block B. With an SBM of 

k blocks, we can build a k × k affinity matrix b that describes the probability of a connection (edge-

existence) between nodes of each block based on the Bernoulli distribution parameterized by the 

corresponding entry in affinity matrix b (see Figure 1f). The between block edge-existence 

parameters describe the connectivity of each node to each block independently.  

Recently, the SBM has been extended to model networks with weighted edges, referred to 

as the weighted stochastic block model, or WSBM (Aicher, Jacobs et al. 2013, Aicher, Jacobs et 

al. 2015, Peixoto 2018). With this advancement, we can apply the SBM framework to weighted 

networks commonly encountered in the network neuroscience literature. Using openly-available 

code (tuvalu.santafe.edu/~aaronc/wsbm/) (Aicher, Jacobs et al. 2013, Aicher, Jacobs et al. 2015), 

we fit the WSBM to structural connectivity matrices using a variational-Bayesian approximation 

approach. For our application, we chose to use the WSBM described by the following generative 

steps: 
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• For each node, assign a community membership  

• For each pair of communities, assign edge-existence and edge weight parameters 

• For each edge, draw from the Poisson distribution with the corresponding edge-existence 

parameter 

• For each existing edge, draw from the normal distribution with the corresponding edge 

weight parameters 

Community structure fitting workflow 

Fitting the WSBM on connectome data yields stochastic results (like other community 

detection algorithms such as modularity maximization). When comparing across different 

community structures, the correspondence between specific communities could become unclear. 

Therefore, we first sought to create a representative WSBM partition of our data, to serve as a 

generalizable model to provide an initial overview of network structure in a specific age window, 

and to seed further age-dependent analysis. To create a representative matrix to infer the 

community structure of, we aggregated adjacency matrices from 53 young adult subjects (25 – 35 

years old; 51% female) and averaged the data subject to several constraints (Figure 2a) (Misic, 

Betzel et al. 2015, Betzel, Medaglia et al. 2018). Specifically, the edge density of the representative 

matrix was set to match the average edge density of the input sample. Additionally, the distribution 

of streamline lengths across the input matrices was maintained, to mitigate bias against hard-to-

recover long streamlines (Roberts, Perry et al. 2017).  

Fitting WSBM to data requires searching over a large parameter space. Instead of using 

ad-hoc greedy heuristics, we adopt a multi-step fitting scheme. The first level of fitting involves 

fitting the model with a uniform prior, to broadly search the parameter space of plausible block 

partitions. We inferred WSBM structure with uniform block assignment prior parameters for 250 
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independent trials of the inference process. At each trial, the uniform block assignment is used to 

seed an expectation maximization algorithm (Aicher, Jacobs et al. 2015) to fit the following 

WSBM model parameters to the observed data. After 250 trials, the most likely model fit is 

retained (maximum posterior) and the most likely block assignments for each node are recorded. 

The second level of fitting involves fitting the model with increasingly stronger priors. The 

previously inferred block assignment was used to construct a biased block assignment prior 

parameter. That is, for each node, we assign a 100% higher likelihood for that node to be assigned 

to the previous most likely block and assign uniform likelihood to the other (k-1) blocks. With this 

prior, we ran 100 more independent trials. We iterated this second stage 10 times, incrementing 

the concentration of the most likely nodal prior assignment by 1.5 times (150%, 200%, ... 600%).  
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Figure 2 Creation of consensus WSBM model. a) A representative adjacency matrix was constructed by averaging 

across multiple individual matrices. This averaging was performed with specific restraints to mitigate bias. b) The 

number of blocks must be specified a priori; to identify an appropriate number of blocks (k), the WSBM was fit 100 

times at k=6, 7…11. We recorded the average log-evidence of 100 model fits at each k and used Bayes factor to 

determine k in a data-driven manner. (Note that the red box indicates the k=10 parameter identified in this study) c) 

At the k with the highest likelihood, for each of the 100 fits, we recorded the community assignment for each node as 

a vector. We then computed the least distant community assignment vector from the 100 fits. d) Aligned results of the 

100 fits were averaged to create a community assignment prior. This process was repeated until a convergence 

criterion was met.  

We chose the number of communities (k) after repeatedly fitting the WSBM at each value 

of k=6,7…11 (Figure 2b). We fit the WSBM 100 times at each k and recorded the marginal log-
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likelihood (which penalizes model complexity, ensuring that we do not fit the data better simply 

by increasing the number of parameters) at each fit. Using Bayes factors, we compare the partitions 

via the difference in marginal log-likelihood of each model fit (Aicher, Jacobs et al. 2015). 

Next, we sought to derive a Bayesian consensus WSBM from multiple fits of our data 

(Lancichinetti and Fortunato 2012). First, we aggregated the results of the 100 WSBM fits at our 

data-driven selected k. Next, we choose a representative partition from these 100 fits by 

determining the partition least distant from all other partitions (centroid; Figure 2c). To do this, we 

computed the pairwise distance between all 100 partitions using variation of information (VI) 

(Meilă 2007, Sohn, Choi et al. 2011). By summing across the rows of this distance matrix, we 

selected the partition that was least distant (minimum sum) from all others (Meunier, Lambiotte et 

al. 2009). We then aligned the remaining 99 partitions to the reference partition via the Munkres 

algorithm (Munkres 1957). The aligned partition matrix (size: 114 × 100 [nodes × number of fits]) 

was used to make a new nodal assignment prior, based on the frequencies a node was assigned to 

each of the k communities across 100 fits. This new prior was used as input for 100 more WSBM 

fits (Figure 2d). This process was repeated until a convergence criterion was met (Kwak, Choi et 

al. 2009).  

We also created an alternative modular community structure to compare against. To match 

the number of modular communities to the number of communities learned in the WSBM 

consensus model, we ran the deterministic spectral modularity maximization algorithm for 

weighted data implemented in the Brain Connectivity Toolbox (function modularity_und) across 

a range of gamma values (gamma: 0.5 to 4.0, at 0.01 steps). This resulted in 351 modular partitions 

with varying numbers of communities. We identified all partitions with an equal number of 
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communities to the WSBM consensus model and from these partitions we selected one least distant 

to the WSBM consensus model (measured by VI). 

Finally, we used the consensus community structure models to seed community structure 

fitting on individual-level brain network data. The WSBM was fit to each subject’s adjacency 

matrix with a prior community affiliation based on the WSBM consensus model concentrated at a 

level of 3. Thus, for each node, the community assignment of that node in the prior was 3 times 

more likely than an assignment to any of the other k-1 communities. The WSBM fitting procedure 

was then conducted as described previously. We collected five independent WSBM fits for each 

subject and retained the centroid partition of these fits. We also extracted a modular partition for 

each subject by running the spectral modularity maximization for weighted data, sweeping over 

levels of gamma from 0.5 to 4.0 in 0.01 increments. We identified modular partitions with k 

communities and retained the partition closest to the WSBM consensus model as measured by VI, 

to facilitate unbiased comparison. There is no guarantee that a modular partition with k 

communities will result from our sweep across gamma values. We excluded subjects for which we 

did not find a modular partition of k communities from the subsequent individual fits analysis (29 

subjects).  

Analysis methods 

To assess how well our models fit the empirical data, we followed a generative model 

evaluation framework (Betzel, Avena-Koenigsberger et al. 2016). We generated synthetic data 

using the inferred edge-existence and edge weight parameters of the WSBM consensus model. To 

create a comparable generative model from the modular partition, we used the tools of the WSBM 

fitting toolbox to fit the modular structure with an absolute prior (100% and 0% probabilities), and 

thus, did not perform model inference. We generated 10,000 synthetic adjacency matrices from 
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both models. At each iteration, we recorded four binary network statistic distributions of the 

synthetic data: degree (d), clustering coefficient (c), betweenness centrality (b), and node 

Euclidean distance (e). We compared each synthetic statistic distribution with the empirical 

distribution of that statistic from the representative adjacency matrix (the data the model was 

derived from) using the Kolmogorov–Smirnov (KS) statistic, which measures the maximum 

difference between two empirical cumulative distribution functions. We computed the average KS 

statistic and conceptualized this as the energy of the synthetic network compared to the empirical 

network (Betzel, Avena-Koenigsberger et al. 2016).  

𝐾𝐾𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑚𝑚𝐸𝐸𝑚𝑚𝐸𝐸(𝐾𝐾𝑆𝑆𝑑𝑑 ,𝐾𝐾𝑆𝑆𝑐𝑐 ,𝐾𝐾𝑆𝑆𝑏𝑏,𝐾𝐾𝑆𝑆𝑒𝑒) 

Lower energy indicates a synthetic network with network statistic distributions that more 

closely resemble the empirical network statistic distributions. We define energy here as mean KS 

as opposed to maximum KS, as in (Betzel, Avena-Koenigsberger et al. 2016), so as not to bias the 

result by any one statistic that might produce systematically higher KS. In the previous study, the 

max KS was desirable because this metric was used for further optimization of the model. Here, 

our goal was to measure model performance, without changing the inferred model parameters.  

We also sought to evaluate whether the set of inferred parameters of the generative models 

was meaningful for reducing the energy of the generated synthetic matrices. It could be that the 

mere modeling of distributions between blocks, regardless of the parameters, would be sufficient 

to generate synthetic networks with low energy. To test this, we generated 10,000 synthetic 

adjacency matrices and randomly permuted the intact models’ parameters of the edge-existence 

and edge weight distributions at each iteration.  

We next wanted to evaluate the extent to which each community structure preserved 

hemispheric symmetry. We proceeded under the assumption that at this level of analysis, it would 



 

36 

 

be plausible to expect to find homotopic organization (Zuo, Kelly et al. 2010); that is, that large 

patterns of organization of the right and left hemisphere organization should appear similar. To 

measure how the community structure captures laterality, we measured three weighted 

community-based network statistics: participation coefficient, within-community z-score, and 

assortativity. These three network measurements produce node-wise statistics that are relative to a 

given community structure. We measure each statistic given each consensus partition in each of 

the 620 subjects. For each subject, we compute the KS statistic between the left and right 

hemispheric distributions of the community-based network statistics. 

We evaluated how the connectivity patterns between communities change over time. Our 

first approach involved measuring the total edge weight between communities. For each of N 

subject’s brain network data, we created a k × k block matrix recording the total weight between 

each community of the community structure being analyzed. As our brain network data are 

symmetric, we analyzed the upper triangle plus main diagonal of the block matrix, totaling (k2 – 

k) / 2 + k tests. To examine age-related trends in the values of these block strengths, we employed 

a multiple linear regression (MLR) analysis to model block strength as a linear combination of 

predictors. The MLR model was formulated as one of three models: (1) linear, (2) quadratic curve, 

(3) Poisson curve (as in (Lebel, Gee et al. 2012)):  

1) 𝐸𝐸 =  𝛽𝛽0 + 𝛽𝛽1  × 𝑚𝑚𝐸𝐸𝐸𝐸 + 𝛽𝛽𝐺𝐺 × 𝐺𝐺 + 𝜀𝜀 

2) 𝐸𝐸 =  𝛽𝛽0 + 𝛽𝛽1 × 𝑚𝑚𝐸𝐸𝐸𝐸 + 𝛽𝛽2 × 𝑚𝑚𝐸𝐸𝐸𝐸2 + 𝛽𝛽𝐺𝐺 × 𝐺𝐺 + 𝜀𝜀 

3) 𝐸𝐸 =  𝛽𝛽0 + 𝛽𝛽1 × 𝑚𝑚𝐸𝐸𝐸𝐸 × 𝐸𝐸−𝛽𝛽2×𝑎𝑎𝑎𝑎𝑒𝑒 + 𝛽𝛽𝐺𝐺 × 𝐺𝐺 + 𝜀𝜀 

where 𝐸𝐸 is the dependent variable, in this case a vector [number of measurements (𝐸𝐸) × 1] of block 

strengths between communities 𝑖𝑖 and 𝑗𝑗, 𝛽𝛽1 and 𝛽𝛽2 (if necessary) are weights estimated by ordinary 

least squares regression, 𝐺𝐺 is a matrix [𝐸𝐸 × 2] nuisance covariates (sex, total network strength) 
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with 𝛽𝛽𝐺𝐺  [𝐸𝐸 × 2] also representing weights estimated by ordinary least squares regression, and 𝜀𝜀 is 

a vector [𝐸𝐸 × 1] of residual error. We also conducted tests with an additional nuisance parameter 

indexing motion across the DWI acquisition, which would make 𝐺𝐺 and 𝛽𝛽𝐺𝐺  size [𝐸𝐸 × 3]. We 

implemented the MLR by first linearly regressing out the nuisance covariates from the covariate 

of interest and using the residuals to regress against age. We fit each MLR model to each block 

strength vector and calculated model accuracy using leave-one-out cross validation (LOOCV). We 

calculated the root mean-squared-error (RMSE) of each fit and chose the model (linear, quadratic, 

Poisson) with the lowest error. To obtain a p-value, we randomly permuted age across 10,000 

least-squares fit iterations. We retained trends with a computed p-value that passed Bonferroni 

correction for 55 comparisons (α = 0.0009). For each MLR model we report the coefficient of 

determination (𝑅𝑅2) calculated from the LOOCV procedure (Yeatman, Wandell et al. 2014): 

𝑅𝑅2 = 1 −  
∑ (𝐸𝐸𝑖𝑖 −  �́�𝐸𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝐸𝐸𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

 

where 𝐸𝐸 is the number of measurements, 𝐸𝐸 [𝐸𝐸 × 1] is vector of dependent variables, and �́�𝐸 [𝐸𝐸 × 1] 

is the vector of model predictions.  

For our second approach to assess how overall community structure changes across age, 

we pursued mathematical comparisons that measured all community interactions simultaneously. 

To do this, we utilized the block matrix, which is a 𝑘𝑘 × 𝑘𝑘 matrix, in which each entry 𝑖𝑖, 𝑗𝑗 is a 

measure of the edges (e.g., total strength, average strength) between communities 𝑖𝑖 and 𝑗𝑗. Thus, a 

block matrix provides a condensed information about network connectivity, given a community 

structure. We unrolled the upper triangle plus main diagonal of the average block matrix into a 

vector of length 𝑙𝑙 = 𝑘𝑘2−𝑘𝑘
2

+ 𝑘𝑘. We then used this vector as an 𝑙𝑙 dimensional representation of the 

overall pattern of community structure and measured these vectors similarity and distance to our 
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consensus models. For this analysis, we used the block matrix of average strength between 

communities, as opposed to total strength as in the previous analysis, to mitigate the effect of 

community size for this analysis. 

We measured how similar/distant each subject’s community structure vector was to the 

consensus model community structure vector. In the WSBM evaluation, we used the affinity 

parameters of the WSBM consensus model to obtain the WSBM consensus model vector. For the 

modular evaluation, we measured the empirical block matrix based on the modular fit to the 

representative adjacency matrix to obtain the modular consensus model vector. For each of N 

subjects, we unrolled the upper triangle (including diagonal) of an average strength block matrix 

given each partition. We compared each of N community structure vectors to the consensus model 

vector using cosine similarity and city block distance (Aggarwal, Hinneburg et al. 2001). We then 

used the MLR scheme detailed previously to assess the proportion of the variance in subject-level 

vector similarity/distance that is due to age.  

To analyze individually fit community structures, we employed the previously described 

vector comparison scheme with individually fit community structures. We recorded the distance 

of individual vectors to the model prediction vectors, as described previously and employed MLR 

to measure trends in age versus subject-level vector similarity/distance. 

Additionally, we measured nodal versatility across individually fit partition (Shinn, 

Romero-Garcia et al. 2017). Nodal versatility is an index of how consistently nodes are classified 

in the same community across repetitions of a community detection algorithm. We used this 

measure to obtain a versatility index for each of the 114 nodes in use. Instead of measuring nodal 

versatility across repetitions of an algorithm, we measured the node versatility across subjects to 

evaluate differences in community detection techniques. We employed a permutation test to create 
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a distribution of null versatility differences to test for statistical significance. If there is no 

difference between the methods, exchanging subject A’s WSBM community vector for subject 

A’s modular community vector would not affect the node versatility index. Therefore, for each 

permutation we constructed two complementary node × subject matrices, in which we shuffled 

the type of community vector included. We computed the node versatility of each node × subject 

matrix and took the node versatility difference at each node. We measured the empirical versatility 

difference against the null distribution of versatility differences at each node to obtain a p-value, 

and report nodes that pass Bonferroni correction for 114 comparisons (α = 0.0004).  

Results 

Model fitting workflow  

Our consensus fitting procedure was intended to aggregate the results of 100 WSBM model 

fits. We found that our method was consistent despite internal stochastic elements of the code; if 

given the same data, the process produced the same output in each of 20 repetitions. We also ran 

the process on 100 additional independent runs at k=10 to create a new frequency prior and 

observed that the resulting community structure had a 0.80 normalized mutual information (NMI) 

to the obtained WSBM consensus model. As a final test, we bootstrap-sampled the results of the 

100 fits to create different initial frequency priors. Comparing the results of this process with the 

obtained WSBM consensus model resulted in NMI measurements with a mean of 0.97 (± 0.04, 

range=0.86-1.0).  

Consensus community structure  

Using the consensus method outline above, we inferred WSBM community structure from 

the representative brain network data (edge-existence density=30.1%). We identified 10 bilateral 
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communities with mixed topology profiles and attributes (Table 1). Sizes of the communities 

ranged from 6 to 21 nodes. The WSBM model estimates parameters that govern the distribution 

of edge and edge weight between communities; these parameters are visualized in panels d and e 

of Figure 3. Generally, the WSBM modeled a positive relationship between edge existence and 

edge weight; in other words, block interactions with low edge existence were modeled with low 

edge weight or high edge existence with high edge weight. One block interaction, 4-10, stands out 

as having been modeled with a low edge existence but high edge weight (red arrow, panel e, Figure 

3). This interaction is predicted to be connected at a probability of 13% and its edges are predicted 

to have a strength (average streamline density) of 0.29. Three block interactions are notable for 

having high edge weight and edge-existence parameters: 3-3, 6-6, and 7-7. In the modular 

community structure, not all communities identified were bilateral; that is, some communities were 

confined to only one hemisphere. The modular communities range in size from 2-22 nodes. 

Measuring the total Euclidean distance between nodes of communities in each partition, in each 

subject, we find that the modular community structure consists of communities much more 

spatially compact (M=8.29×103mm, SD=89.01) than the WSBM partition (M=8.68×103mm, 

SD=62.54mm; (two-tailed paired t-test with unequal variances; t(1.11×103)=88.35, p < 10-9) .  

Table 1 How consistently high strength nodes (top 25%) appear in the same community, measured across subject with 

the intraclass correlation coefficient; confidence interval computed with 500 bootstrap iterations. 

Community structure 
model 

Binary degree ICC (95% confidence 
interval)  

Weighted degree ICC (95% confidence 
interval) 

WSBM 0.83 (0.82 – 0.84) 0.74 (0.73 – 0.75) 
Modular 0.64 (0.62 – 0.65) 0.59 (0.58 – 0.61) 
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Figure 3 The WSBM consensus model, fit to a representative matrix averaged across 53 young adult subjects. LH = 

left hemisphere; RH = right hemisphere. a) The adjacency matrix ordered by the blocks of the WSBM consensus 

model. On-diagonal blocks are outlined in red, off-diagonal blocks are outlined in light red. b) The adjacency matrix 

of the young adult data with the on-diagonal blocks colored to match the inflated surface view (in panel c). c) The 

community structure of the consensus model visualized on the inflated surface of the left and right hemispheres. d) 

The predicted edge-weight and edge-existence matrices; the entries of these matrices contain the consensus model 

predictions for the average edge-weight and edge-existence for each block interaction. To calculate the consensus 

model’s average block interaction prediction, these two matrices can be multiplied element-wise. e) We plot the paired 

parameters of the block interactions (z-score transformed). From this plot, we observe a general linear trend between 

predicted edge-existence and predicted edge weight for each block interaction. We highlight how the WSBM fit 

densely connected and densely weighted areas (purple dotted circle) as well as non-modular block interactions (red 

arrow). f) Visualization of alternative modular community structure, visualized as adjacency matrices and on the 
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cortical surface in the same manner as WSBM model. The labeling of these alternative community structures 

(represented as colors) is aligned to closely match the labeling of the WSBM model using the Munkres algorithm. 

We also measured how the high strength nodes were distributed amongst communities in 

the different community structure models. We recorded in which communities the top 25%-degree 

(binary degree and weighted degree) nodes for each subject appeared and then measured how 

consistently these high strength nodes were dispersed among the communities across subjects 

(Table 2). We find that the WSBM model most consistently groups high degree nodes in a similar 

pattern across subjects, as measured by the intraclass-correlation coefficient, ICC(3,1) (Shrout and 

Fleiss 1979).  
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Table 2 Table of community statistics for the WSBM and modular consensus partitions. Statistics from the 

representative young adult matrix; across-subject mean ± standard deviation in parentheses. 

Label Mean within- 
community strength 

Mean between- 
community strength 

Mean community  
participation coef. 

Community assortativity 

WSBM     

1 0.11  
(0.096 ± 0.018) 

0.042  
(0.04 ± 0.0066) 

0.77  
(0.73 ± 0.027) 

-0.035  
(-0.027 ± 0.025) 

2 0.095  
(0.08 ± 0.027) 

0.035  
(0.032 ± 0.0076) 

0.82  
(0.76 ± 0.022) 

0.011  
(-0.006 ± 0.032) 

3 0.33  
(0.28 ± 0.076) 

0.054  
(0.05 ± 0.0093) 

0.78 
(0.75 ± 0.022) 

0.19  
(0.16 ± 0.078) 

4 0.051  
(0.046 ± 0.029) 

0.038  
(0.033 ± 0.0086) 

0.73  
(0.64 ± 0.054) 

-0.084  
(-0.084 ± 0.054) 

5 0.11  
(0.12 ± 0.032) 

0.035  
(0.034 ± 0.006) 

0.79  
(0.73 ± 0.027) 

0.032  
(0.034 ± 0.033) 

6 0.4  
(0.37 ± 0.12) 

0.056  
(0.051 ± 0.009) 

0.78 
(0.75 ± 0.025) 

0.26  
(0.24 ± 0.13) 

7 0.33  
(0.33 ± 0.049) 

0.021  
(0.022 ± 0.0041) 

0.48  
(0.45 ± 0.05) 

0.25  
(0.24 ± 0.055) 

8 0.11  
(0.1 ± 0.021) 

0.033  
(0.032 ± 0.0067) 

0.77  
(0.71 ± 0.03) 

0.029  
(0.026 ± 0.022) 

9 0.19  
(0.19 ± 0.098) 

0.052  
(0.049 ± 0.0086) 

0.85  
(0.79 ± 0.032) 

0.098  
(0.082 ± 0.094) 

10 0.084  
(0.063 ± 0.017) 

0.032  
(0.027 ± 0.0046) 

0.7  
(0.66 ± 0.03) 

-0.0068  
(-0.018 ± 0.019) 

Modular     

1 0.2  
(0.19 ± 0.057) 

0.05  
(0.048 ± 0.0095) 

0.81  
(0.75 ± 0.028) 

0.066  
(0.051 ± 0.058) 

2 0.11  
(0.1 ± 0.024) 

0.034  
(0.03 ± 0.0059) 

0.7  
(0.63 ± 0.039) 

0.015  
(0.018 ± 0.028) 

3 0.3  
(0.25 ± 0.061) 

0.042  
(0.041 ± 0.0083) 

0.72  
(0.68 ± 0.034) 

0.21  
(0.15 ± 0.069) 

4 0.27  
(0.23 ± 0.07) 

0.034  
(0.033 ± 0.0073) 

0.7  
(0.66 ± 0.051) 

0.19  
(0.14 ± 0.075) 

5 0.19  
(0.19 ± 0.035) 

0.043  
(0.041 ± 0.0084) 

0.71  
(0.66 ± 0.04) 

0.062  
(0.059 ± 0.049) 

6 0.19  
(0.18 ± 0.063) 

0.046  
(0.042 ± 0.011) 

0.78  
(0.7 ± 0.044) 

0.049  
(0.05 ± 0.073) 

7 0.35  
(0.35 ± 0.055) 

0.025  
(0.026 ± 0.0055) 

0.52  
(0.49 ± 0.042) 

0.28  
(0.27 ± 0.061) 

8 0.14  
(0.14 ± 0.024) 

0.029  
(0.028 ± 0.0061) 

0.57  
(0.52 ± 0.055) 

0.068  
(0.058 ± 0.027) 

9 0.5  
(0.49 ± 0.48) 

0.057  
(0.054 ± 0.015) 

0.87  
(0.81 ± 0.036) 

0.35  
(0.34 ± 0.45) 

10 0.14  
(0.1 ± 0.019) 

0.026  
(0.025 ± 0.0042) 

0.55  
(0.55 ± 0.038) 

0.085  
(0.044 ± 0.023) 
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Model fitting comparison 

 

Figure 4 Comparison of WSBM and modular generative capabilities and characteristics. a) We compared the mean 

KS energy between generated synthetic data based on the community structure models and empirical data; we observe 

that the WSBM generates synthetic data with a lower mean KS statistic—demonstrating that WSBM synthetic 

networks have network statistic distributions more representative of the empirical data. b) We compare each model 

energy distribution with the energy distribution from a randomized model containing the same affinity parameters; we 

observe that the mean energy of the WSBM model is significantly lower than the WSBM randomized model; we 

observe that the mean energy of the modular model is higher than the modular randomized model c) We show the KS 

statistics of each network statistic that comprises the KS energy formulation.  

We found significant differences between the community structures identified through 

WSBM inference and modularity maximization. The mean generative energy of the WSBM model 

(M=0.391, SD=0.011) was significantly lower than the mean of the modular model (M=0.404, 

SD=0.009) (two-tailed paired t-test with unequal variances; t(1971)=-88.03, p < 10-9). This WSBM 

generative energy distribution had a significantly lower mean than the mean of the randomized 

WSBM generative energy distribution (M=0.402, SD=0.377; t(1630)=52.16 , p < 10-9), whereas 

the mean of the randomized modular generative energy distribution (M=0.400, SD=0.360) was 
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lower than its distribution from the intact model (t(1443)=-17.68, p < 10-9). The individual 

distributions averaged over to calculate generative energy are also shown in panel c of Figure 4. 

We studied how the community structures under investigation capture symmetric network 

structure across hemisphere, as measured by node-wise network statistics. We measured the 

histogram distances between the left and right hemisphere histograms of participation coefficient, 

within-community z-score, and assortativity using the KS statistic. We found the mean of 

participation coefficient and node-assortativity KS distributions to be significantly lower for the 

WSBM community structure compared to the KS distribution for the modular community 

structure. Statistical comparisons are shown in Table 3.  

Table 3 Statistical comparisons between community structure-based node statistics 

Node-wise network statistic Mean ± standard 
deviation 

t-statistic p-value 

WSBM participation coefficient 0.14 ± 0.04   

Modular participation coefficient 0.24 ± 0.06   
  t(1128) = -34.10 p < 10-9 
WSBM within-module z-score 0.17 ± 0.06   

Modular within-module z-score 0.14 ± 0.04   
  t(1139) = 9.24 p < 10-9 
WSBM assortativity 0.14 ± 0.05   
Modular assortativity  0.2 ± 0.07   
  t(1107) = -20.61 p < 10-9 

 



 

46 

 

 

Figure 5 Evaluation of the laterality of the WSBM and modular community structures. A) We compute community-

based network statistics on the subject network data, yielding node-wise statistics; we then calculate separate 

distributions of these statistics based on each node’s laterality; we then measure the distance between these two 

distributions (note the shaded grey distribution illustrates the full, bilateral network statistic distribution) b) We 

compare the laterality of each community structure by illustrating the KS between hemispheric distributions of 

community-based network statistics. We observe that the WSBM partition balances the participation coefficient and 

node-wise assortativity distributions across hemispheres better than the modular partition. The modular partition 

preserves within-community z-score better than the WSBM partition.  
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Changes across the life span  

We used multiple linear regression (MLR) to measure trends of block interaction strength 

across age. We observe strong quadratic relationships for within-community trends for both the 

WSBM and modularity models. We report the top 4 MLR trends for each model in Figure 6, and 

the top 12 trends for each model in Figure S3. The inverted-U shaped quadratic trend for block 

interaction 3-3 had the largest 𝑅𝑅2 for both the WSBM and modular partitions (𝑅𝑅2: 0.25 and 0.20 

respectively). Community six was involved in the second strongest trends for both the WSBM and 

modular partitions. Fewer on-diagonal MLR trends were significant for the WSBM partition than 

for the modular partition (4 and 6 block interactions respectively). 
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Figure 6  Results of multiple linear regression analysis on edge strengths of community interactions in the WSBM 

(a) and modular community (b) structures. The strongest quadratic relationship between age and community 

interaction edge strength is the 3-3 block interaction. All community interaction regressions that are statistically 

significant are shown. The top 4 MLR trends are visualized for each community structure model; the bootstrapped 

95% confidence interval is shaded in grey.  
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When measuring community structure as a vector and computing vector similarity and 

distance from each subject to a consensus partition, we observed differences based on community 

partition used and observed strong MLR trends across age. Cosine similarity between subject and 

WSBM consensus vectors (M=0.96, SD=0.027) was significantly higher than the cosine similarity 

between subject and modular consensus vectors (M=0.92, SD=0.066; two-tailed paired t-test with 

unequal variances; t(823.75)=20.46, p < 10-9). Using the city block distance measurement also 

displayed a significant overall difference (t(960.89)=-24.44, p < 10-9) between using the WSBM 

(M=1.00, SD=0.19) or modular vectors (M=1.38, SD=0.34). These trends did not change 

substantially after regressing out covariates (sex, total network strength, movement; Figure 7b).  

 

Figure 7 Measuring community structure vector similarity/distances. a) Regression of age versus vector 

measurements using the static community structure measured on subject-level data. Bootstrapped 95% confidence 

interval of trend shaded in grey. b) Regression of age versus vector distance adjusted for covariates. The trends do not 

change with the adjustment for covariates. c) Regression of age versus vector measurements of individually fit 
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community structure to the consensus partitions. d) Maps displaying across subject nodal versatility for WSBM and 

modular fit partitions e) Map of versatility differences between the two methods. In the difference map, only nodes 

with statistically significant differences are colored.  

Individual vector similarity between subject and consensus partition varied strongly with 

age using the WSBM and modular consensus vectors. When measuring the similarity of subject to 

WSBM vector across age, we observed a Poisson curve with an 𝑅𝑅2 of 0.24. For the analogous 

trend using the modular vector, we observed a Poisson curve with an 𝑅𝑅2 of 0.11. The asymmetry 

of the Poisson curve allowed a fit to the data that suggested a pattern of high similarity between 

individual and consensus partition from childhood through approximately age 60, followed by a 

steep decline. When measuring the distance between subject and consensus vector across age, we 

observe in both the WSBM and modular cases a U-shaped trend (WSBM 𝑅𝑅2: 0.17; modular 𝑅𝑅2: 

0.02).  

When measuring individually fit community structure vectors each consensus vector, we 

again find that the WSBM derived community structure vectors are both more similar 

(t(1.20×103)=22.07, p < 10-9) and less distant (t(1.12×103)=-25.84, p < 10-9) than the modular 

consensus vectors. We find that using the WSBM fit explains more of the variance in vector 

similarity than using the modular fit. However, the MLR trend was weak for regressions of both 

vector distances versus age (𝑅𝑅2: 0.06 for both cosine similarity and city block distance). Using the 

modular fit, we observe that trends that do not, or negligibly, explain the variance in vector 

similarity or distance (𝑅𝑅2: 0 cosine similarity and 𝑅𝑅2: 0.01 for city block distance).  

We recorded the versatility at each node for each community detection method. We 

observed that nodal versatility across nodes is higher when using the WSBM method (M=2.66, 

SD=0.32) compared to modularity maximization (M=0.32, SD=0.31; two-tailed paired t-test with 

unequal variances; t(225.89)= 8.40, p < 10-9). The pattern of node versatility differences (range: -
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0.35 - 0.95) shows differential influence of spatial proximity between the community detection 

methods. We note that along the temporal lobe nodes reach the largest difference between the two 

methods (right temporal-occipital node), with a mean difference of 0.75 in “temporal” labeled lobe 

nodes.  

Additional parcellation analyses  

We also inferred WSBM and modular consensus community structures using an alternative 

parcellation scheme, based on an anatomical node definition (Hagmann, Cammoun et al. 2008). 

We report results of these evaluations in the Supplementary Information and show converging 

results with the analysis performed using the Yeo parcellation (Figures S4-S6). Additionally, we 

evaluated the degree of spatial similarity between community structures across parcellation 

selection. We find that both the WSBM and modular partitions across parcellation selection are 

statistically similar, compared to randomized community structures (Alexander-Bloch, Shou et al. 

2018, Arslan, Ktena et al. 2018).  

Discussion 

Communities in brain networks have been hypothesized to form “building blocks” of the 

global network architecture and form functionally specialized systems that support specific subsets 

of cognitive tasks or information processing (Tononi, McIntosh et al. 1998, Stephan, Hilgetag et 

al. 2000, Bassett, Greenfield et al. 2010, Bullmore and Sporns 2012). It is important to understand 

that the methodological approaches and conceptual assumptions employed when running 

community detection on brain network data affect the community structure outcome. A community 

detection approach ideally suited for all applications does not exist (Von Luxburg, Williamson et 

al. 2012, Peel, Larremore et al. 2017) and the modular, internal density approach represents only 
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one plausible lens through which to view network communities (Rosvall, Delvenne et al. 2017, 

Schaub, Delvenne et al. 2017). The main contributions of the current study are to demonstrate the 

usage and utility of a statistical and generative modeling approach to community detection in brain 

network data, with a specific application to measuring changes in structural networks across the 

human life span. 

Here we demonstrate an application of a block modeling approach to community detection 

in brain networks. The key advantage of this approach is the capacity to parse a brain network into 

a diverse set of communities (Betzel, Medaglia et al. 2018); with communities possibly exhibiting 

modular, core-periphery, or disassortative topologies. In the WSBM consensus partition, we see 

evidence of this mixed topology. Community seven in the model is an example of a disassortative 

community that modularity maximization would not be able to find. The community, consisting 

of nodes along the cingulate cortex, is weakly connected within-community and more strongly 

connected to communities six and ten. Three WSBM communities, one, four, and ten, have an off-

diagonal average strength that exceeds the on-diagonal average strength. Importantly, we should 

note that using the WSBM does not preclude the identification of traditionally modular 

communities, such as the highly inter-connected nodes of community seven, containing nodes of 

the visual area. Additionally, interesting differences exist between the WSBM and modular 

partitions. WSBM community one contains bilateral prefrontal cortex nodes, whereas the 

prefrontal nodes of the modular partition are divided between communities one and six. 

Community nine of the WSBM partition indicated that the bilateral nodes of the PCC and 

precuneus connected in a stochastically equivalent manner, whereas in the modular partition the 

precuneus nodes form a small and segregated two-node community. The WSBM community eight 
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contained temporal nodes of both hemispheres, whereas the modular community eight, contains a 

large community spanning the right hemisphere.  

We measured the extent to which each community structure captured patterns in our brain 

network data and demonstrated that the WSBM partition represented group averaged and group 

level data better than the modular partition. Using a generative modeling evaluation framework 

(Betzel, Avena-Koenigsberger et al. 2016) we demonstrate that parameters of the WSBM generate 

synthetic brain networks that deviate less from empirical data than do synthetic brain networks 

created with parameters estimated from the modular community structure. The WSBM model 

performed most poorly modeling the clustering coefficient distribution, which is expected given 

the design of both modular and SBM models and has been confirmed by previous work (Pavlovic, 

Vertes et al. 2014). In an additional evaluation of how these community structures align with the 

brain network data, we show that the WSBM partition modeled the symmetry of the brain better 

than the modular model. The statistical analysis confirms a visually obvious difference between 

the partitions: the WSBM partition is more symmetrically dispersed across the brain hemispheres 

than the modular partition. 

When evaluating how these community structures change over the life span, we observe 

that the strength between communities follows inverted-U trends—patterns which align with 

previous life span studies (Westlye, Walhovd et al. 2010, Imperati, Colcombe et al. 2011, Betzel, 

Byrge et al. 2014, Yeatman, Wandell et al. 2014, Zhao, Cao et al. 2015). Here we show that these 

patterns extend to communities identified with a WSBM approach that covers a much wider space 

of possible network partitions. We found the strongest age-related change in strength between the 

nodes of community three, which cover the frontal cortex in modularity- as well as WSBM-derived 

partitions. This finding is in line with previous studies that have shown that ventromedial prefrontal 
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white matter connecting ventromedial prefrontal nodes was particularly vulnerable to aging 

processes (Salat, Tuch et al. 2005, Michielse, Coupland et al. 2010). Within-community 

connectivity of WSBM community six, containing bilateral nodes of somatomotor cortex and 

postcentral cortex, also displays a strong inverted-U quadratic trend (Figure 6a) that is likely due 

to age-related changes involving the integrity of corpus callosum connections (Lebel, Gee et al. 

2012, Zhao, Cao et al. 2015, Ruddy, Leemans et al. 2017). In the modular partition, this trend, 

which appears at the connection between communities six and ten, is attenuated (Figure 6b). 

To assess overall community structure changes, we employed vector similarity/distance 

comparisons. Employing the cosine similarity measure, we observe a pattern where individual 

subjects maintain similarity to the consensus partition until around the 6th decade of life, where a 

steep drop-off occurs. This trend could indicate a range of the life span with a stable community 

structure regardless of connectivity strength, since cosine similarity is a measure of vector 

orientation but not magnitude. When employing the city block distance, we can then observe a U-

shaped trend in distances to the consensus partition, which is likely due in part to connectivity 

strengths modulated across age. Given that the WSBM partition results in MLR models in which 

age explains more of the variance in our outcome measures, the WSBM partition appears to be a 

representative group model for the brain network data across a large age range. 

We also fit the WSBM and modular community structures to individual brain networks. 

This analysis rendered much weaker trends with age; indicating that individually fit community 

partitions vary substantially from our consensus model and data. We also used these individually 

fit community structures to analyze the variability of the fit partitions. In panel d of Figure 7, we 

report differences in nodal versatility measured across subjects. The difference in nodal versatility 

maps between the WSBM and modularity maximization methods demonstrates a difference in 
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flexibility between the methods. Recall that the WSBM aggregates nodes with similar connectivity 

patterns into a community, whereas modularity maximization parses the network into densely 

connected subnetworks. Unfortunately, the process of detecting modular communities is 

influenced by a distance-based bias in the structural brain network data (Betzel, Medaglia et al. 

2017), which results in a spatially compact lateralized community structure. This bias most-likely 

affects the overall spatial layout of each community structure; we found smaller within-community 

distance between nodes of the modular than for the WSBM partition. To get closer to the biological 

reality would likely require several interconnected steps, including a systematic investigation of 

spatial and/or geometric bias in tractography, how these biases are expressed across age (Zhao, 

Cao et al. 2015), and how they affect the detection of streamlines and tracts that vary in length, 

curvature and trajectory (Sotiropoulos and Zalesky 2019). Future work is needed to fully address 

these challenges.  

In the present study, we show how a statistical modeling approach to community detection 

in brain networks might differ (and confer some modeling advantages) compared to a modular 

approach. However, we would like to reinforce the notion that the choice of community detection 

algorithm should depend on factors related to the observed data and analytical goals (Fortunato 

and Hric 2016). These two community detection perspectives satisfy differing algorithmic criteria 

to define communities with different properties (Rosvall, Delvenne et al. 2017, Schaub, Delvenne 

et al. 2017). A nuanced, but crucial, point to consider is that community structures reflect a 

plausible grouping of nodes (Peel, Larremore et al. 2017). This organization, sometimes referred 

to as the mesoscale of a brain network (Betzel, Medaglia et al. 2018), in conjunction with 

community-based network statistics (such as participation coefficient) can elucidate patterns or 

trends in a brain network (Sohn, Choi et al. 2011, Baum, Ciric et al. 2017). To infer a community 
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structure from brain network data is to parse the data—which can always be trivially organized 

into some grouping. Whether that organization is biologically and functionally meaningful 

requires further experimental evidence or metadata (Newman and Clauset 2016). Thus, we would 

not assert that the WSBM perspective is ‘better’ at capturing the underlying anatomic organization 

than the modular perspective of communities in brain networks (Peel, Larremore et al. 2017). In 

fact, we present evidence in the supplemental materials that both algorithmic approaches capture 

non-random spatial configurations, across parcellation scheme (Figure S7). The modular approach 

is certainly valid for network neuroscience applications (Sporns and Betzel 2016), and has been 

employed, for example, to help explain how brain networks might be efficiently embedded in 

space (Bassett, Greenfield et al. 2010), to characterize functional MRI during learning (Bassett, 

Wymbs et al. 2011) and to differentiate between clinical groups (He, Lim et al. 2018). In the 

current study, the modular partition does as well as the WSBM partition to capture the block 

interaction (3-3, Figure 6) with the highest 𝑅𝑅2 value. Additionally, while modularity maximization 

is designed to consider on-diagonal block interactions, some unmodeled off-diagonal interactions 

in our evaluation still display statistically significant trends. This considered, recent work has 

demonstrated a theoretic convergence of the statistical modeling and modularity maximization 

approaches in special cases of the SBM (Newman 2016, Young, St-Onge et al. 2018). Future 

advances along this line of research could better clarify the tradeoffs between inference of SBM 

and modular partitions.  

In the current study, we applied new methods to resolve a consensus model from many 

community structure solutions of the WSBM inference. Although we measured the consistency of 

our method, we do note that stochasticity in the current framework still exists. We recognized that 

there are further parameters of the model that could be optimized, such as prior distribution 
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parameters and parameters governing the convergence criterion for the multiple loops of the 

variational-Bayes approximation approach. Additionally, we recognize that the WSBM inferred 

on our data has shortcomings. When using a normal distribution to model edge weights between 

communities, using the WSBM tools at our disposal we cannot assure that the model will 

completely avoid modeling negative weights. However, because there are no actual negative edges 

in our brain network data, we can assume that modeling too many negative edge weights would 

create lower likelihood, meaning such a model would not be retained by the WSBM inference. We 

note that because of this concern, we conducted our generative model analysis with binary network 

statistics based on edge-existence. Thus, the generative modeling validation could be improved 

upon by using non-negative weight distributions in future work. 

Finally, we note that diffusion imaging and tractography perform computational inference 

rather than direct measurement of brain connectivity and thus must be interpreted with care 

(Sotiropoulos and Zalesky 2019). We made efforts in the current study to mitigate against certain 

biases. We used streamline density as an edge-weight to mitigate against the bias of large regions 

of interest and we seeded multiple streamlines randomly in each white matter voxel to obtain 

thorough streamline coverage across the brain. Additionally, we used anatomically-constrained 

streamline filtering process to recover only streamlines terminating in grey matter (Smith, Tournier 

et al. 2012). Despite these efforts, future work is needed to further improve the accuracy and 

sensitivity of structural connectivity measurements derived from noninvasive neuroimaging. In 

particular, objective quality control metrics can be used increase dMRI data fidelity, which could 

lead to more accurate associations between dMRI-derived data and age (Roalf, Quarmley et al. 

2016).  
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In conclusion, we describe a method for applying the WSBM to brain networks, with an 

application across the life span. We hope to demonstrate the efficacy of using a generative model 

community structure when analyzing brain networks, by showing that brain networks are not 

exclusively modular. Our study opens new avenues for using the WSBM for brain network 

analysis as well as introduces frameworks through which WSBM partitions could be associated 

with phenotypic characteristics or variations in cognition/behavior (Newman and Clauset 2016, 

Betzel, Medaglia et al. 2018, Seghier and Price 2018). Future work should use this model to 

identify how community structure regimes, such as modular, core-periphery, or disassortative 

models (or a mix of these regimes), relate to aspects of behavior and cognition. Our study shows 

that the WSBM can provide a flexible and versatile model of brain network community structure 

and may offer new insights beyond those delivered by modularity analysis.  
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CHAPTER 2: MAPPING THE COMMUNITY STRUCTURE OF THE RAT CEREBRAL 

CORTEX WITH WEIGHTED STOCHASTIC BLOCK MODELING 

This chapter was published as: Faskowitz, J., & Sporns, O. (2020). Mapping the community 

structure of the rat cerebral cortex with weighted stochastic block modeling. Brain Structure and 

Function, 225(1), 71-84. https://doi.org/10.1007/s00429-019-01984-9 

For Supplementary Information, see: doi:10.1007/s00429-019-01984-9 

Abstract 

The anatomical architecture of the mammalian brain can be modeled as the connectivity 

between functionally distinct areas of cortex and sub-cortex, which we refer to as the connectome. 

The community structure of the connectome describes how the network can be parsed into 

meaningful groups of nodes. This process, called community detection, is commonly carried out 

to find internally densely connected communities—a modular topology. However, other 

community structure patterns are possible. Here, we employ the Weighted Stochastic Block Model 

(WSBM), which can identify a wide range of topologies. We apply the WSBM to the rat cerebral 

cortex connectome, to probe the network for evidence of modular, core, periphery, and 

disassortative organization, and compare to a modularity maximization approach. Despite its 

algorithmic flexibility, the WSBM identifies substantial modular and assortative topology 

throughout the rat cerebral cortex connectome, significantly aligning to the modular approach in 

some parts of the network. Significant deviations from modular partitions include the identification 

of communities that are highly enriched in core (rich club) areas. A comparison of the WSBM and 

modular models demonstrates that the former, when applied as a generative model, more closely 

captures several nodal network attributes. Leveraging an analysis of variations across an ensemble 
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of partitions provides a more complete understanding of the rat cortex connectome by revealing 

that certain parts of the network participate in multiple topological regimes. Overall, our findings 

demonstrate the potential benefits of adopting a broad definition of community structure that 

transcends the common approach based on cluster density.  

Introduction 

The mammalian brain is characterized by complex patterns of connectivity (Sporns 2011, 

Park and Friston 2013). This connectivity can be comprehensively described by creating a network 

model of the brain’s wiring—an account of the patterns of connectivity between distinct regions, 

referred to as the connectome (Sporns, Tononi et al. 2005). Using the tools of network science, we 

can quantitatively analyze and model the connectome to characterize statistical properties of its 

organization (Bassett and Sporns 2017). A long series of prior studies of anatomical brain networks 

across several different species have revealed a consistent set of attributes, such as heavy-tailed 

degree distributions, a prevalence of specific classes of subgraphs or motifs, as well as the 

existence of densely connected network communities or modules (Sporns and Betzel 2016).  

It is increasingly recognized that brain networks exhibit significant features of organization 

on multiple scales (Betzel and Bassett 2017). Of particular interest is the so-called mesoscale of 

organization, a level of analysis that describes network properties falling between node statistics 

(e.g. degree, clustering coefficient, or centrality) and global statistics (e.g. network density or 

efficiency) (Sporns 2013, Tunc and Verma 2015). A particularly important mesoscale 

organizational property of a connectome is the way in which its nodes can be grouped into distinct 

communities. Modular organization is of neurobiological interest as members of communities 

often share other common attributes, such as geometric placement and contiguity, functional 

specialization, and developmental and evolutionary origin (Sporns and Betzel 2016). In other 
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words, the community structure of a network is an organizational scale that can be used to identify 

meaningful groups of nodes based on patterns of connectivity or coactivation. Such node groups 

could function to support a specific cognitive domain (Crossley, Mechelli et al. 2013). Information 

about this community structure may also be used to classify brains into clinical groups (Kurmukov, 

Ananyeva et al. 2017, He, Lim et al. 2018). Brain network communities have been found in species 

as diverse as the nematode C. elegans (Sohn, Choi et al. 2011), the fruit fly Drosophila 

melanogaster (Shih, Sporns et al. 2015), mouse (Zingg, Hintiryan et al. 2014, Rubinov, Ypma et 

al. 2015), rat (Bota, Sporns et al. 2015, Swanson, Sporns et al. 2016, Swanson, Hahn et al. 2017, 

Swanson, Hahn et al. 2018), and rhesus monkey (Harriger, van den Heuvel et al. 2012). 

Network communities can be detected by global maximization of a modularity metric 

(Newman 2006), which by design identifies collections of nodes densely connected within each 

community and sparsely connected between communities. This approach of modularity 

maximization has been widely applied to brain network data, across many species and anatomical 

subdivisions of the brain. For example, anatomical modules in the human brain have been mapped 

across development (Baum, Ciric et al. 2017) and the lifespan (Zhao, Cao et al. 2015), as well as 

in numerous clinical conditions such as degenerative (Contreras, Avena-Koenigsberger et al. 2019) 

and mental disorders (Alexander-Bloch, Lambiotte et al. 2012). Modular organization of brain 

networks has been theorized to conserve anatomical wiring cost (Bullmore and Sporns 2012, 

Betzel, Medaglia et al. 2017) and to promote efficient embedding in physical space (Bassett, 

Greenfield et al. 2010).  

Despite its popularity, modularity maximization is subject to several important limitations. 

Recent work emphasizes that a single modular partition may represent only one solution to a 

problem with no universally optimal approach (Fortunato and Hric 2016, Peel, Larremore et al. 
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2017). Most complex networks have numerous plausible modular partitions that nearly maximize 

the modularity heuristic (Fortunato and Barthelemy 2007, Good, de Montjoye et al. 2010), and 

thus it is not guaranteed that any single modular partition of the data is truly representative of the 

data. Furthermore, one partition or scale might not adequately capture the richness of the network 

organization (Betzel and Bassett 2017). Recent methodological advances have allowed accessing 

modular organization at multiple scales, through implementing modularity maximization while 

varying a resolution parameter that renders the modularity metric sensitive to modules of different 

sizes (Jeub, Sporns et al. 2018).  

To ascribe importance to any one partition without considering other ‘just as plausible’ 

partitions could lead to misinterpretations of a connectome’s community structure. Two different 

analytical approaches address such concerns: 1) a representative community structure from a 

landscape of community structures, either using a representative partition (Meunier, Achard et al. 

2009) or a consensus method (Lancichinetti and Fortunato 2012), can be chosen; or 2) analysis 

can be performed on a set of many plausible community structure realizations of an algorithm 

(Betzel, Medaglia et al. 2018). 

Furthermore, communities need not necessarily or exclusively satisfy the condition of 

dense intra-community and sparse inter-community connectivity; groups of nodes can also be 

grouped into communities based on graph-cuts, states or types of dynamics, or statistical models 

(Schaub, Delvenne et al. 2017). Here, we are specifically interested in brain network communities 

identified within the framework of stochastic block models (SBM) (Holland, Laskey et al. 1983, 

Aicher, Jacobs et al. 2015, Moyer, Gutman et al. 2015, Faskowitz, Yan et al. 2018). The SBM is 

an edge-generative model that describes how communities connect to each other on average. An 

SBM community of nodes, referred to as a block, can be thought of as a group of nodes who 
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connect to other communities in a similar (i.e. stochastically equivalent) manner. By this design, 

the SBM is flexible; it can describe a range of community structure topologies, such as core-

periphery (Pavlovic, Vertes et al. 2014, Noori, Schottler et al. 2017, Battiston, Guillon et al. 2018) 

or disassortative (Betzel, Medaglia et al. 2018), in addition to modular communities. 

Spurred by recent advances in neuroinformatics, the anatomical wiring of the rat at the 

scale of areas and inter-areal connectivity has been assembled (Bota and Swanson 2007). Among 

the first anatomical subdivisions examined in the rat brain was the cerebral cortex (Bota, Sporns 

et al. 2015), which appears to share fundamental network properties with primate cerebral cortex, 

such as presence of a small-world, modular, and rich club organization (Bota, Sporns et al. 2015, 

van den Heuvel, Scholtens et al. 2016). The community structure of the rat cerebral cortex reveals 

modules that are spatially compact and have meaningful relationships with functionally and 

behaviorally specialized systems. An SBM approach could potentially complement the insights 

gained from standard modularity maximization by revealing partitions based on a different set of 

criteria for defining module membership.  

Here, we identify community structure in the rat cerebral cortex connectome with a 

weighted variant of the stochastic blockmodel (WSBM) (Aicher, Jacobs et al. 2015, Peixoto 2018). 

The goal of the present work is to demonstrate how the blockmodeling approach can be applied to 

a singular brain network in a manner that reveals a range of plausible topologies. In conjunction, 

we compare the blockmodeling approach to a more standard approach, modularity maximization, 

in these analyses. We find that WSBM can recover a consensus community structure with non-

modular elements, and we compare the resulting partitions to a classic modular community 

structure. We also show that this WSBM community structure is well-suited to generate synthetic 

data. We then use the range of plausible community structure partitions to assess the frequency at 
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which nodes and edges participate in certain community structure topologies. Overall, our 

approach provides a novel framework for inferring and utilizing the WSBM to analyze a range of 

community structure topologies in anatomical brain network data. We identify evidence that the 

community structure of the rat cerebral cortex connectome contains non-modular organizational 

elements, including brain regions that participate in core, periphery, or even disassortative 

relationships.  

Methods 

 
Figure 1 Diagrammatic overview of the methods and analyses employed in this study. 
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The rat cerebral cortex connectome 

The data set used for our analysis is derived from (Swanson, Hahn et al. 2017), referred to 

as version RCAMv2. Directed and weighted connectivity was assembled between 77 distinct 

cortical grey matter regions of the rat cortex, delineated based on architecture, topography, and 

connectivity (Swanson, Sporns et al. 2016). Between these 77 regions there are 5,852 (772 – 77) 

potential edges to consider. Connection reports of monosynaptic anterograde and retrograde 

connections were recorded as an adjacency matrix. A total of 2155 nonzero edges were recorded, 

with weights assigned on an ordinal scale, from 0-7 in the following way: absent, very weak, weak, 

weak-moderate, moderate, moderate-strong, strong, and very strong. As in prior work (Bota, 

Sporns et al. 2015), this ordinal scale was transformed to a tapered log-weighted scale: 

{0, 0.0001, 0.001, 0.01, 0.075, 0.3, 0.75, 1.0}.  

Stochastic blockmodel concepts 

The stochastic blockmodel (SBM) is an edge-generative model for describing how groups 

of nodes interact with each other in a network. Importantly, a community as defined by an SBM 

is a group of nodes that connect to the rest of the network in a similar pattern. Specifically, nodes 

in the same community will, on average, have the same connectional profile to other communities 

(for an alternative analysis of node-level connectional similar, see Supplemental Information). 

This property is referred to as stochastic equivalence. The SBM can generate a network by 

assigning a probability of connection for all possible pairs of communities (including within-

community [modular] interactions). In the classic SBM, this probability, Θ, is governed by a 

Bernoulli distribution. The collection of Θ that describe the probability of connection between each 

community is the affinity matrix, 𝐵𝐵. For an SBM describing 𝑘𝑘 communities, 𝐵𝐵 will be size 𝑘𝑘 × 𝑘𝑘.  
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This stochastic block modeling framework serves as a general model that can be extended 

for specialized purposes, such as blockmodels with mixed membership (Airoldi, Blei et al. 2008, 

Moyer, Gutman et al. 2015), degree correction (Karrer and Newman 2011, Xiaoran, Cosma et al. 

2014), and weighted edges (Peixoto 2018). For the present study, we utilize the weighted variant 

of the SBM, known as the WSBM (Aicher, Jacobs et al. 2015). The MATLAB (The MathWorks, 

Inc., Natick, Massachusetts) code implementing this WSBM is available at 

tuvalu.santafe.edu/~aaronc/wsbm/. We provide wrapper scripts useful for the application of the 

WSBM to brain networks at github.com/faskowit/blockmodeltools. 

We use a Bernoulli distribution to describe edge-existence between blocks and an exponential 

distribution to describe the weight distribution between blocks. The generative process of the 

WSBM can be summarized as follows: 

• For each node, assign a community membership  

• For each pair of communities, assign edge-existence and edge weight parameters 

• For each edge, draw from a Bernoulli distribution with the corresponding edge-existence 

parameter 

• For each existing edge, draw from an exponential distribution with the corresponding edge 

weight parameters 

We use a variational Bayes algorithm (Aicher, Jacobs et al. 2015) to infer a block structure 

on the empirical network. This algorithm uses a maximum a posteriori approach to identify the 

WSBM model, which includes the community structure and the parameters for each community 

interaction (edge and weight) that is likely to have generated the observed data. The model 

likelihood (expressed as the log likelihood for mathematical convenience) is expressed as 𝑃𝑃 =

 (𝐸𝐸 | 𝑀𝑀, 𝑧𝑧), where E is the empirical data, 𝑀𝑀 is a parameterized block model and 𝑧𝑧 is the 
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community assignment vector. The number of communities 𝑘𝑘 is a free parameter of the WSBM 

model. Therefore, picking a 𝑘𝑘 value for the WSBM amounts to a model selection problem. In this 

project, we fit models from a range of 𝑘𝑘 = {2, 3, … 20}.  

As with many community detection methods, the WSBM is stochastic, yielding many 

community structure configurations after multiple algorithmic trials. As such, we explore two 

analytical paths: 1) resolve a consensus model from various community structure realizations; or 

2) analyze patterns across various community structure realizations. In what follows, we describe 

frameworks for both approaches.  

Constructing consensus community structures 

We designed a workflow to infer the WSBM in a consensus manner (Lancichinetti and 

Fortunato 2012, Faskowitz, Yan et al. 2018), in order to obtain a median solution from a landscape 

of plausible partitions. First, we select the optimal k-level to investigate, based on model 

likelihoods (Aicher, Jacobs et al. 2015). At this 𝑘𝑘 level we identify an ensemble of 𝑁𝑁 partitions, 

and we measure the pairwise variation of information (VI) (Meilă 2007) between them. We 

identify the 𝑁𝑁𝑞𝑞 partitions that had less than median VI distance and greater than median model log 

evidence, to obtain well-fit and reasonably central partitions from the landscape of 𝑁𝑁 solutions. Of 

𝑁𝑁𝑞𝑞 partitions, we identify the centroid (least distant) partition and align the other 𝑁𝑁𝑞𝑞 − 1 partitions 

to it using Jaccard distance (Munkres 1957). We then create a prior for each node’s community 

affiliation based on the frequency of community assignment for each node across the 𝑁𝑁𝑞𝑞 aligned 

partitions. We then infer the WSBM community structure 100 more times, using the generated 

prior to initialize the inference. This process is iterated until the agreement across 100 inferred 
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partitions reaches a predefined level (Kwak, Choi et al. 2009). We retain the resultant model as 

the consensus WSBM community structure.  

Modular model for comparison 

We sought to compare the consensus WSBM community structure to a modular 

community structure at each scale 𝑘𝑘. We identify plausible modular community structures at 

multiple scales by sweeping across values of the 𝛾𝛾 parameter in the modularity equation. From a 

range of 𝛾𝛾 (from 0.01 to 4.0 in steps of 0.01, resulting in 400 𝛾𝛾 values) we obtain communities 

using the Louvain method implemented in the Brain Connectivity Toolbox (Blondel, Guillaume 

et al. 2008, Rubinov and Sporns 2010). Then, for each level of 𝑘𝑘, we record the lowest and highest 

𝛾𝛾 value that generates a partition with exactly 𝑘𝑘 communities. Within this range, we then uniformly 

randomly sample an ensemble of 𝛾𝛾 values used to obtain 𝑁𝑁 partitions, therefore matching the 

ensemble size obtained from WSBM runs at each level of 𝑘𝑘. 

Generative modeling methods 

We use a previously established framework to measure how a generative model could 

create synthetic networks that vary minimally across several distributions of network properties 

(Betzel, Avena-Koenigsberger et al. 2016). A WSBM models how each community connects to 

all other communities. We can sample from these distributions to create synthetic data adhering to 

the model parameters. For each synthetic network, we record five network statistic distributions: 

directed weighted degree (strength), directed binary degree, weighted directed clustering 

coefficient, weighted node betweenness centrality, and binary node betweenness centrality. We 

include binary network metrics in this evaluation because edge-existence (i.e. binary existence of 

edges between blocks, regardless of weight), is a network feature that the WSBM explicitly 
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models. We then use Kolmogorov–Smirnov (KS) to measure the histogram distance between the 

synthetic distributions and the empirical distributions for the five network statistics. The difference 

between the synthetic and empirical networks can be indexed by the average of these five KS 

statistics; a lower mean KS signifies a more accurate match between synthetic and empirical 

networks. For this evaluation, we also create null generative models to evaluate against. The null 

models are created by randomly permuting the parameters of the intact model’s affinity matrix. 

This procedure therefore retains the parameters of the original model, but the specific 

configuration of block interactions is permuted.  

Community motif analysis 

We also measure the diversity of community motifs across the many inferred WSBM 

models at each 𝑘𝑘 (Betzel, Medaglia et al. 2018). This analysis entails measuring patterns of 

between-community (block interaction) connectivity 𝑤𝑤𝑟𝑟𝑟𝑟, where 𝑤𝑤 is the matrix of average edge 

strength between blocks, and where 𝐸𝐸 and 𝑠𝑠 are communities contained within the total set of 𝑘𝑘 

total communities, {𝐸𝐸, 𝑠𝑠}  ∈ {1, … ,𝑘𝑘}. Community motifs are defined in Table 1. 

Table 1 Definitions for identifying community motif configurations for block matrix 𝑤𝑤. 
Community motif Description  Definition 
On-diagonal block represents within-community connectivity 𝑤𝑤𝑟𝑟𝑟𝑟 𝑤𝑤ℎ𝐸𝐸𝐸𝐸 𝐸𝐸 = 𝑠𝑠 
Assortative minimum on-diagonal value is larger than the 

off-diagonal value 
min(𝑤𝑤𝑟𝑟𝑟𝑟 ,𝑤𝑤𝑟𝑟𝑟𝑟) >  𝑤𝑤𝑟𝑟𝑟𝑟 

Core/periphery off-diagonal value is larger than one on-diagonal 
value; if the off-diagonal value is closer to the 
larger of the on-diagonal values, it is core; 
otherwise it is periphery 

(𝑤𝑤𝑟𝑟𝑟𝑟 > 𝑤𝑤𝑟𝑟𝑟𝑟 > 𝑤𝑤𝑟𝑟𝑟𝑟) 
𝑜𝑜𝐸𝐸 

(𝑤𝑤𝑟𝑟𝑟𝑟 >  𝑤𝑤𝑟𝑟𝑟𝑟 > 𝑤𝑤𝑟𝑟𝑟𝑟) 

Disassortative  off-diagonal value is larger than both on-diagonal 
values 

𝑤𝑤𝑟𝑟𝑟𝑟 > max (𝑤𝑤𝑟𝑟𝑟𝑟 ,𝑤𝑤𝑟𝑟𝑟𝑟) 

 
For each community structure, we label each block interaction according to the above 

definitions. We then record which non-zero edges participate in each type of interaction, for each 

recovered partition. Measuring across partitions provides the frequency that an edge (a non-zero 
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entry in the adjacency matrix) participates in each community motif. We conceptualize this 

frequency as a probability. From this edge-wise probability, we calculate an entropy metric 

(referred to in (Betzel, Medaglia et al. 2018) as a diversity index) that measures the probability for 

an edge (𝐸𝐸) to participate in one or more of the community motifs: 

𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝑜𝑜𝑒𝑒𝐸𝐸𝑒𝑒 =  − �𝑃𝑃𝑎𝑎 𝑙𝑙𝑜𝑜𝐸𝐸2 𝑃𝑃𝑎𝑎 +  𝑃𝑃𝑐𝑐 𝑙𝑙𝑜𝑜𝐸𝐸2 𝑃𝑃𝑐𝑐 +  𝑃𝑃𝑝𝑝 𝑙𝑙𝑜𝑜𝐸𝐸2 𝑃𝑃𝑝𝑝 + 𝑃𝑃𝑑𝑑 𝑙𝑙𝑜𝑜𝐸𝐸2 𝑃𝑃𝑑𝑑 +  𝑃𝑃𝑜𝑜𝑑𝑑 𝑙𝑙𝑜𝑜𝐸𝐸2 𝑃𝑃𝑜𝑜𝑑𝑑� 

where 𝑃𝑃𝑎𝑎, 𝑃𝑃𝑐𝑐, 𝑃𝑃𝑝𝑝, 𝑃𝑃𝑑𝑑 and 𝑃𝑃𝑜𝑜𝑑𝑑 stand for the probability of participating in an assortative, core, 

periphery, disassortative or on-diagonal relationship, respectively. To compute node entropy, we 

sum each nodes’ edge entropy (in- and out- connections) and divide by two.  
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Results 

Consensus community structure results 

 
Figure 2 Community detection results across the number of communities, k, parameter; a) Scatter plots for WSBM 

(left) and modular (right) depicting the community recovered at each level of 𝑘𝑘; WSBM communities are plotted 

against model log evidence, modular communities are plotted against the Louvain algorithm’s modularity metric; 

datapoints are colored by the average VI from one partition to all other partitions at 𝑘𝑘; the identified optimal 𝑘𝑘 = 10 

is denoted by a red vertical line in the WSBM plot; b) The relationship between model log evidence and average VI 
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distance, which explains 4.7% of the variance in model log evidence; points are colored by same scale as in a; opaque 

points indicate the models included in the construction of the consensus WSBM model; c) 750 communities recovered 

using each method, aligned using the Munkres algorithm to a common structure for visualization. 

We fit the WSBM to the rat cortex connectome across a range of 𝑘𝑘 and monitor when we 

reach a point of diminishing gains in model likelihood (Figure 2a). We recovered 750 models (the 

target 𝑁𝑁) for 𝑘𝑘 = {2,3 … 12}. Due to algorithm runtime, we recovered 500 models at 𝑘𝑘 = 13, and 

200 models at 𝑘𝑘 = {14,15}. At 𝑘𝑘 = {16, 17 … 20}, the WSBM inference tools struggle to recover 

models with the specified 𝑘𝑘. At these levels, only 91, 32, 53, 7, and 2 valid models were recovered. 

We sampled with replacement 100 models from the available recovered models at 𝑘𝑘 =

{16,17 … 20}.  

To estimate the optimal 𝑘𝑘, we identified the scale at which model log evidence begins to 

decline as k grows. At each scale, we bootstrapped (104 iterations) the difference between mean 

model log evidence at 𝑘𝑘 and 𝑘𝑘 + 1. The transition at which the 99% confidence interval of these 

differences overlapped with 0 was taken to be a stopping criterion. This approach identified an 

optimum 𝑘𝑘 = 10. At the 𝑘𝑘 = 10 scale, we found that model log evidence relates to the mean VI 

distance (cross-validated 𝑅𝑅2 = 0.05; Figure 2b). 
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Figure 3 Consensus community structures; a) WSBM and modular consensus community structures at k=10; b) 

average block matrix for each community structure, depicting the average edge for each block interaction; areas in 

white indicate no edges present; c) Agreement matrix between community structures, permuted by the order of each 

structure; agree: classified in same community across structures; differ: not in same community; n/a: not applicable.  

We obtained consensus community structures using two different approaches to 

community detection, each designed to parse a network based on different criteria: the WSBM and 

modularity maximization (Figure 3). Supplemental Table 1 provides complete listings of rat 

cerebral cortex brain areas, arranged by community, for approach. Differences in the resulting 

consensus partitions are apparent when visualizing the average between-block density (i.e. average 

edge weight). The WSBM, as a statistical description of network communities, identifies 

communities with strong (e.g. community 6) as well as weak (e.g. communities 3,7) on-diagonal 

density. The modular model, which optimizes the modularity metric, only identifies partitions with 

on-diagonal communities whose densities are, in all cases, stronger than any other off-diagonal 

interaction. Despite significant differences in the way communities are defined under the two 

approaches, the WSBM and modular consensus community structures are significantly less distant 
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from each other than expected by chance (VI: 0.359; randomization test, 104 iterations, 𝑒𝑒 <

 10−4). We compared how each of these structures concentrate edge weight in a modular manner, 

by evaluating the ratio of within on-diagonal blocks divided by edge weight between blocks: 

𝑀𝑀𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖𝑜𝑜 =  ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟=𝑟𝑟
∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟≠𝑟𝑟

 . The modular structure has a 𝑀𝑀𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖𝑜𝑜 = 0.846 and the WSBM structure has a 

𝑀𝑀𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖𝑜𝑜 = 0.448. The difference between these ratios was tested after randomizing the original rat 

cortex connectome data (with BCT function randmio_dir_connected) at edge rewiring 

probabilities of 𝑒𝑒 = {0.25, 0.20, 0.15,0.10, 0.05, 0.01}. For rewiring probabilities 0.25 − 0.05, 

the empirical difference in 𝑀𝑀𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖𝑜𝑜 was at least greater than 95% of synthetically generated 𝑀𝑀𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖𝑜𝑜 

values (104 iterations). We compared the modularity 𝑄𝑄 of the WSBM partition to synthetically 

generated 𝑄𝑄 values (rewiring the network with 0.05 probability, keeping partition order intact) and 

found that no synthetic values were greater than the empirical 𝑄𝑄 value (104 iterations). 

Table 2 Node affiliations of WSBM and modular consensus community structures compared to a previously published 

community structure: Swanson2017. 

 WSBM communities 
 1 2 3 4 5 6 7 8 9 10 
Swanson2017 Module 1 15 10 1 3 1 0 0 0 2 9 
Swanson2017 Module 2 0 0 0 1 10 5 5 0 0 0 
Swanson2017 Module 3 0 0 2 3 0 1 0 7 2 0 
 Modular communities 
 1 2 3 4 5 6 7 8 9 10 
Swanson2017 Module 1 9 5 7 1 0 7 0 0 4 8 
Swanson2017 Module 2 0 3 0 0 8 0 10 0 0 0 
Swanson2017 Module 3 0 0 0 5 0 0 0 10 0 0 

 
We compared these consensus community structures to a previously published modular 

arrangement of these 77 nodes into three communities (Swanson, Hahn et al. 2017) (Table 2). We 

find that for the WSBM model, five out of 10 communities are fully contained within one of the 

Swanson2017 modules, while for the modular model, eight out of 10 communities are fully 

contained within of one the Swanson2017 modules. Divergence between the Swanson2017 and 
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WSBM partitions is greatest for WSBM communities 3, 4, and 9, which are communities with no 

more than two thirds of the nodes co-classified to any one of the Swanson2017 modules. These 

WSBM communities also maintain strong off-diagonal block interactions relative to their 

respective on-diagonal block interaction (Figure 3). Six out of seven previously (Swanson, Hahn 

et al. 2017) identified hub nodes (ENTl, AIp, PERI, ECT, BLAp, LA) are found in WSBM 

communities 2 and 4. All seven members of WSBM community 4 were previously identified as 

rich club areas (ENTl, ORBv, ORBm, MOs, PERI, ECT, CLA), with five more rich club areas 

found in community 2 (comprising half of its membership; CA1v, ILA, AIp, BLAp, LA), and the 

remaining three areas part of communities 3, 5 and 8. This high concentration of hubs/rich club 

areas in two WSBM communities indicates that the WSBM partition significantly captures the 

network’s hub and rich club (or core-periphery) architecture.  
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Generative modeling results 

 
Figure 4 Evaluation framework for synthetically generated networks by measuring Kolmogorov–Smirnov (KS) 

energy from empirical network; a) Distribution of mean KS values of 104 generated networks from WSBM and 

modular community structures; b) KS energy values of intact generative model (emp) versus permuted model (null); 

c) Top: Individual KS distances for each network metric of the mean KS energy calculation; Bottom: Individual KS 

distances for each network metric of permuted model, with the median of the intact model distribution indicated with 

vertical line; d) Schematic of how the generative model affinity matrix is permuted to create a ‘null’ generative model; 

note that values of the inferred parameters are the same, but in new positions, introducing null community interactions.  

When we fit a WSBM to network data, we obtain a generative model of the network based 

on the inferred community structure. We recorded the energy, computed as mean KS, between 

synthetic networks generated by the consensus WSBM and modular models. We find that the 
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WSBM created synthetic data that deviated less from the empirical data than the modular 

generative model (Figure 4a; bootstrapped difference of means, 104 iterations, 𝑒𝑒 < 10−4). 

Additionally, the difference between the WSBM energy distribution and its corresponding null 

distribution is greater than the difference between the modular counterparts (Figure 4b; 

bootstrapped difference of differences, 104 iterations, 𝑒𝑒 < 10−4). Observing the individual 

measures that comprise the overall energy, we see that the WSBM model produces less divergent 

strength, binary degree, and betweenness centrality distributions, while the modular model 

produces less divergent clustering coefficient and binary betweenness centrality distributions 

(Figure 4c).  
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Community motif results 

 
Figure 5 Quantification of edge-wise community motif participation; a) Diagram of steps used to evaluate community 

motif patterns; first, a matrix describing the average edge strength between blocks is obtained; second, the between-

block relationships are labeled as either on-diagonal (light blue), assortative (dark blue), core (light green), periphery 

(dark green), or disassortative (salmon); third, these labels are assessed across multiple community structures; b) A 

visualization of the edge-wise probability of participating in each community motif at k=10; across modular 

communities at this scale, there are no core, periphery, nor disassortative community motifs identified; c) Left: each 

edge is colored according to the community motif it is more likely to participate in; Right: blocks are colored by the 

mode community motif for each block interaction; on-diag: on-diagonal, assort: assortative, periph: periphery, 

disassort: disassortative.  

Unlike classic modularity, WSBM builds on a considerably broader definition of network 

community that goes beyond assortative partitions. We can assess the extent to which certain 
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community topology configurations occur by evaluating community motifs (Figure 5a). Across 

750 WSBM community structures at 𝑘𝑘 = 10, we find instances of each type of community motif, 

whereas across 750 modular community structures, we observe only on-diagonal and assortative 

configurations (Figure 5b). Concerning the motif probabilities derived from the WSBM model, 

99.4% of edges participated in at least two community motifs across WSBM community 

structures. The top 10 highest probability edges for the core, periphery, and disassortative 

community motifs are shown in Table 3.  

In contrast, considering the motif probabilities derived from the modular model, 79.1% 

percent of nonzero edges displayed no variation in community motif configuration (100% on-

diagonal: 247 edges; 100% assortative: 1458 edges). 2 out of 10 modular communities were fully 

comprised of on-diagonal nonzero edges with 100% on-diagonal participation (communities 7 and 

10). 6 out of 10 modular communities were comprised of nonzero edges with an average on-

diagonal probability >98% (communities 2, 4, 5, 6, 8, and 9).  

For each edge, we recorded the highest probability motif (Figure 5c, left). For each block 

interaction, we recorded the mode motif (Figure 5c, right). The block matrix of motif modes 

classifies 3 block interactions as core (4 → 3, 6 → 7, 7 → 6), 5 block interactions as periphery 

(2 → 10, 3 ↔ 3, 3 → 4, 3 → 10, 4 → 10), and no block interactions as disassortative.  
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Table 3 Top 10 most probable edges for core, periphery, and disassortative community motif participation across 

WSBM community structures; 𝑖𝑖 indicates row (source), and 𝑗𝑗 indicates column (target) for entry in the rat cortex 

connectome adjacency matrix 

 Core Periphery Disassortative 
 𝑖𝑖 𝑗𝑗 Probability 𝑖𝑖 𝑗𝑗 Probability 𝑖𝑖 𝑗𝑗 Probability 
1 VISp VISlla 0.5827 ENTl MOB 0.9307 ORBm PL 0.2893 
2 VISam VISlla 0.5827 ENTl AOB 0.9293 ORBv ORBvl 0.284 
3 VISp VISll 0.5827 ENTm IG 0.9133 MOs ORBvl 0.2707 
4 VISam VISll 0.5827 ENTl IG 0.9013 ECT ORBvl 0.2707 
5 VISp VISli 0.5813 ENTl FC 0.8973 CLA ORBvl 0.2453 
6 VISam VISli 0.5813 ENTm DG 0.868 ORBv ORBl 0.2427 
7 VISpm VISli 0.5813 ENTl DG 0.856 ORBm ORBl 0.2427 
8 VISal VISlm 0.5813 ENTl CA3 0.8427 MOs ORBl 0.2387 
9 VISp VISlm 0.5813 ENTm CA2 0.824 ECT ORBl 0.2213 
10 VISam VISlm 0.5733 ENTl CA2 0.8013 CLA ORBl 0.216 

 

 
Figure 6 Visualization of community motif entropy measure, and its relationship to node strength and edge weight; 

a) Adjacency and block matrices of community motif entropy; b) Scatterplot of node strength versus node entropy for 
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both the WSBM and modular models; c) Scatterplot of log edge weight versus edge entropy measurement, colored by 

the edge weight quantile; *quantile computed within each unique edge weight.  

We observe higher overall community motif entropy for the WSBM model than for the 

modular model (Figure 6a). For the WSBM model, the greatest average between-block entropies 

involve community 4 (4 → 2, 4 → 3). For the modular model the greatest average between-block 

entropies concerned communities 1 and 3 (3 ↔ 3, 1 ↔ 1, 1 → 3, and 3 → 1). Using a randomized 

block null model (like in Figure 4d), we show that at random, node entropy is highly correlated 

with node degree (Figure 6b; 𝜌𝜌 > 0.97 for WSBM and modular). Community motif entropy 

measured across WSBM and modular partitions correlated with node degree substantially less than 

the entropy measured across random structure (WSBM 𝜌𝜌 = 0.85, 𝑒𝑒 < 10−8; modular 𝜌𝜌 = 0.11, 

not significant; for both models: difference between null and intact 𝑒𝑒 < 10−4). Further, we 

measured this change as a percentage change in entropy for each node (Supplemental Figure 2). 

These patterns in entropy change are not correlated with node degree (WSBM 𝜌𝜌 95% confidence 

interval: [−0.14, 0.27]; modular WSBM 𝜌𝜌 95% confidence interval: [−0.02, 0.42]). At an edge-

wise scale, we observe that both WSBM (𝜌𝜌 = 0.31) and modular (𝜌𝜌 = 0.21) edge entropies 

correlate with log edge weight (Figure 6c); the WSBM correlation is reliably greater than the 

modular correlation across bootstrapped samples (bootstrapped difference of means, 104 

iterations, 𝑒𝑒 < 10−4). All correlations reported are non-parametric Spearman’s rank correlations. 

Here we analyzed the one-hemisphere rat cerebral cortex brain. We also performed these 

analyses on a version of the data containing commissural connections and a second hemisphere. 

These analyses rendered analogous findings when comparing the WSBM and modular approaches 

(see Supplemental Information: Analysis for two-hemisphere data).  
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Discussion 

This article describes a framework for fitting a blockmodel to the rat cortex connectome, 

represented as a weighted and directed connection matrix. First, we demonstrate how the 

blockmodel framework can be used to construct a consensus community structure from many 

plausible partitions. We compare the resulting consensus partition to another approach, more 

commonly used in the field, based on modularity maximization. We then compare the generative 

capabilities of these two different consensus community approaches. To gain a deeper 

understanding of the ensemble of partitions created by WSBM and modularity maximization we 

analyze the variation in community structure configurations across many runs of community 

detection. Overall, leveraging these analyses, we observe features specific to the way that the 

WSBM and modular algorithms parse the rat cortex connectome.  

The consensus community structure derived by WSBM parses the rat cerebral cortex in a 

manner that, in some respects, significantly differs from the partition resulting from modularity 

maximization. The WSBM community structure captures non-modular aspects, such as block 

interactions classified as core and periphery (Figure 4c) in addition to strong off-diagonal block 

interactions (e.g. inter-modular interactions 4 → 2, 6 → 7, and 7 → 6). The 4 → 2 interaction links 

two communities that are highly enriched in putative hub and rich club areas, identified in previous 

work (Swanson, Hahn et al. 2017). The 6 → 7 and 7 → 6 interactions link two communities 

dominated by visual sensory areas, one containing areas that are mutually densely connected 

(community 6; VISrl, VISal, VISp, VISam, VISpm), the other containing areas that are mutually 

sparsely connected (community 7; VISlla, VISll, VISli, VISlm, VISpl).  

Other aspects of the WSBM community structure are significantly modular, and node 

groupings resemble those detected by modularity maximization. In a previous report using 
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effectively the same data, a symmetric arrangement of three modules per hemisphere was 

identified using modularity maximization (Swanson, Hahn et al. 2017): a lateral module consisting 

of perceptive systems related to interactions with the environment such as visual, auditory, and 

somatosensory areas; a ventromedial module containing regions involved in visceral monitoring 

and memory; and a dorsomedial module containing regions that are mainly associated with 

executive function. In this paper, we used modularity maximization to identify a consensus 

partition with 𝑘𝑘 = 10 modules (intended to serve as a point of comparison to the ‘optimal’ WSBM 

solution). Despite the much larger set of modules, the modular communities 1, 3, 6, 9, and 10 

mostly recapitulate the Swanson2017 module 1, 5 and 7 the Swanson2017 module 2, and 4 and 8 

the Swanson2017 module 3. Indeed, as observed when applying multiresolution consensus 

clustering on rat sub-connectomes (Swanson, Hahn et al. 2018), finer-scale modular partitions 

generally represent hierarchical subdivisions of modules identified at coarser scales. Notably, even 

though the WSBM covers a much wider range of possible topologies than are accessed by 

modularity maximization, the overall WSBM partitioning scheme is less distant from modular 

community structure than chance, and it exhibits modularity, as indexed by the Q-metric, at levels 

far above those seen in random networks. 

 We demonstrate that a generative model based on the WSBM community structure 

produces synthetic networks with several network statistic properties that match the original 

network more closely than those obtained from modular synthetic networks. This implies that 

community structure formed by the WSBM can generate higher fidelity synthetic data. This 

capability could be explored further in future studies for creating surrogate brain networks that 

consider community structure information. The WSBM better matches the binary degree and 

weighted degree (strength) distributions, demonstrating its superior capability to model the 
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existence of connections and their weights. On the other hand, both methods perform worst at 

generating synthetic networks with accurate clustering coefficient distributions, a result that 

comports with previous blockmodeling studies (Pavlovic, Vertes et al. 2014, Faskowitz, Yan et al. 

2018); this finding is likely due to the higher on-diagonal density of the modular model, which 

tends to produce more highly connected triplets (triangles). Both community structures are non-

trivially organized with regards to their generative capacities, as randomly permuting the block-

interaction significantly decreases their generative performance (Figure 3b).  

When we fit the WSBM many times, we observe many ways in which the rat cortex 

connectome is parsed into plausible communities. To quantify this variation, we measure the 

proportion of times edges participate in specific community motifs (Betzel, Medaglia et al. 2018), 

across 750 runs of community detection. Across many runs of WSBM community detection, we 

find evidence of all five community motif configurations. More than 99% of the nonzero edges 

participate in at least two types of community motifs. In contrast, across many runs of modularity 

maximization, we observe only on-diagonal and assortative motifs. This analysis highlights 

complementary strengths of each community structure model: WSBM flexibly identifies 

communities based on various statistical patterns; modularity maximization reliably identifies 

communities with strong-within, and weak-between, topologies.  

The probabilities of participating in community motifs demonstrate how connections of 

some brain areas might influence the structure of the communities that are formed. We observe 

how certain edges are repeatedly placed by the WSBM within the on-diagonal blocks, such as the 

edges within communities 5 and 6, communities composed of predominantly somatosensory, 

auditory, and visual areas. Numerous edges linking the visual community 6 to visual community 

7 are classified as participating in core motifs. Edges between medial/lateral entorhinal areas and 
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areas of the olfactory bulb and hippocampus are most likely classified as participating in peripheral 

motifs; previously, the medial and lateral entorhinal areas were considered candidate hub and rich 

club nodes (Swanson, Hahn et al. 2017). While we do not find strong evidence of disassortative 

topologies across a majority of the WSBM, we note that the edges most likely to be disassortative 

all involve subdivisions of the orbital region of the rat cortex, as well as putative hub and rich club 

areas.  

Across many recovered community structures, the WSBM partitions vary more than the 

modular partitions (Figure 2c). We quantify this variation with the community motif entropy and 

observe how this entropy is organized across the nodes and edges of the rat cortex connectome 

(Figure 6). Entropy is highly related to node degree when partitions are random. When the brain 

network is partitioned into a plausible community structure, we observe that entropy is 

systematically reduced relative to the random configuration. However, this reduction in entropy 

does not necessarily correlate with degree (Supplemental Figure 2); the entropy decreases the most 

for nodes of the visual areas for both methods. Across modular partitions, edge-wise entropy is 

mostly contained in connections between communities 1 and 3, which signal that node 

assignments between these communities are likely to exchange with one another; indeed, these 

two WSBM communities are placed within the same Swanson2017 module, indicating their 

mutual affinity. This concurs with the modular agreement matrix, which also indicated this 

possibility (Supplemental Figure 1). A future direction of investigation would be to evaluate how 

such structural characteristics could relate to patterns of brain function. In a similar analysis, it was 

shown that the diversity community motif patterns correlated with individual difference in human 

task performance (Betzel, Medaglia et al. 2018). We note that variability of the identified partitions 

is in part based on input the network data and the stochasticity of the algorithm. Therefore, these 
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results should be interpreted as variability relative to the community detection methods employed. 

We repeated these analyses with an alternative modularity maximization algorithm to demonstrate 

this (Supplemental Figure 9). 

The analyses reported in this paper add to a growing body of work indicating that a single 

community partition of brain data provides only an incomplete understanding of the brain’s 

mesoscale organization. Instead, a more complete account of communities should consider 

multiple scales (Jeub, Sporns et al. 2018, Yeh, Panesar et al. 2018, Akiki and Abdallah 2019), the 

possible ‘fuzziness’ of partitions (Moyer, Gutman et al. 2015, Najafi, McMenamin et al. 2016), or 

build consensus structures from the data (Lancichinetti and Fortunato 2012, Faskowitz, Yan et al. 

2018, Kurmukov, Musabaeva et al. 2018). Ensemble approaches to network communities take into 

account that (i) community structure can vary across multiple runs of the same community 

detection algorithm (Shinn, Romero-Garcia et al. 2017, Betzel, Bertolero et al. 2019); (ii) different 

annotations can afford different perspectives on the same data (Peel, Larremore et al. 2017); and 

(iii)  different community detection algorithms maximize different criteria (Schaub, Delvenne et 

al. 2017). This idea carries over to the WSBM framework. Any single WSBM community structure 

is likely to be just one of many plausible partitions of the data, in a similar manner to the 

degeneracy of the modularity landscape (Fortunato and Barthelemy 2007, Good, de Montjoye et 

al. 2010). Here, we outline analytical approaches demonstrating that a brain network’s community 

structure may be more than a grouping of nodes based on mutual density of connections. The 

identification of the community structure of a brain network reflects specific algorithmic goals and 

represents one of many plausible divisions of the network. By analyzing information across 

ensembles of network partitions, across scales and under varying definitions of what constitutes a 

‘community’, we can achieve a fuller picture of the architecture of brain networks.  
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The understanding of mesoscale organization of the rat cerebral cortex will continue to 

develop as the connectivity data become more complete and the community detection algorithms 

grow more sophisticated. New connections continue to be added to the rat connectome dataset, 

including association fibers (Swanson, Hahn et al. 2017), connections to the endbrain (Swanson, 

Hahn et al. 2018), and thalamic nuclei connections (Swanson, Sporns et al. 2019). We provide 

further analyses of the two-hemisphere rat cerebral cortex connectome in Supplemental 

Information and report analogous results to the one-hemisphere findings. Notably, the two-

hemisphere WSBM consensus community structure is symmetric across the hemispheres, 

reflecting a limitation of the underlying data. Future work on the organization of the rat 

connectome could focus on inferring mesoscale structure with added metadata (Hric, Peixoto et 

al. 2016) such as neurochemical relationships (Noori, Schottler et al. 2017) or using alternative 

node definitions or informatically collated data (Schmitt and Eipert 2012). Such added information 

could enhance our understanding of the potential functions identified communities might play. 

Further, algorithmic advances in community detection could aid in inferring the rat brain 

mesoscale organization. The WSBM algorithm recovered substantially less unique partitions at 

high values of k (i.e. k >= 17; Supplemental Figure 4), but future SBM algorithms could be more 

efficient for larger networks (Peixoto 2018). Alternatively, future work on the variability of 

plausible partitions could be conducted using different community detection criteria (Chen, 

Nguyen et al. 2013, Schaub, Delvenne et al. 2017).  
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CHAPTER 3: EDGE-CENTRIC FUNCTIONAL NETWORK REPRESENTATIONS OF 

HUMAN CEREBRAL CORTEX REVEAL OVERLAPPING SYSTEM-LEVEL 

ARCHITECTURE 

This chapter was published as: Faskowitz, J., Esfahlani, F. Z., Jo, Y., Sporns, O., & Betzel, R. F. 

(2020). Edge-centric functional network representations of human cerebral cortex reveal 

overlapping system-level architecture. Nature neuroscience, 23(12), 1644-1654. 

https://doi.org/10.1038/s41593-020-00719-y 

For Supplementary Information, see: doi:10.1038/s41593-020-00719-y 

Abstract 

Network neuroscience has relied on a node-centric network model in which cells, 

populations, and regions are linked to one another via anatomical or functional connections. This 

model cannot account for interactions of edges with one another. Here, we develop an edge-centric 

network model, which generates the novel constructs of “edge time series” and “edge functional 

connectivity” (eFC). Using network analysis, we show that at rest eFC is consistent across datasets 

and reproducible within the same individual over multiple scan sessions. We demonstrate that 

clustering eFC yields communities of edges that naturally divide the brain into overlapping 

clusters, with regions in sensorimotor and attentional networks exhibiting the greatest levels of 

overlap. We show that eFC is systematically modulated by variation in sensory input. In future 

work, the edge-centric approach could be useful for identifying novel biomarkers of disease, 

characterizing individual variation, and for mapping the architecture of highly resolved neural 

circuits. 
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Introduction 

Network science offers a promising framework for representing and modeling neural 

systems (Bassett and Sporns 2017). From interconnected cells (Schröter, Paulsen et al. 2017), to 

neuronal populations (Dann, Michaels et al. 2016), to large-scale brain areas (Park and Friston 

2013), network analysis has contributed insight into the topological principles that govern nervous 

system organization and shape brain function. These include small-world architecture (Sporns and 

Zwi 2004), the emergence of integrative hubs and rich clubs (Power, Schlaggar et al. 2013), 

modular structure to promote specialized information processing (Sporns and Betzel 2016), and 

tradeoffs between topological features and the material and metabolic costs of wiring (Bullmore 

and Sporns 2012). 

Central to these and other discoveries in network neuroscience is a simple representation 

of the brain in which neural elements and their pairwise interactions are treated as the nodes and 

edges of a network, respectively (Bullmore and Sporns 2009). This standard model is 

fundamentally node-centric in that it treats neural elements (nodes) as the irreducible units of brain 

structure and function. This emphasis on network nodes is further reinforced by the analyses 

carried out on brain networks, which tend to focus on properties of nodes or groups of nodes, e.g. 

their centralities or community affiliations (Rubinov and Sporns 2010). 

A limitation of the node-centric approach is that it cannot capture potentially meaningful 

features or patterns of interrelationships among edges. In other scientific domains, prioritizing 

network edges, for example by modeling and analyzing edge-edge interactions as a graph, has 

provided important insights into the organization and function of complex systems (Evans and 

Lambiotte 2009, Ahn, Bagrow et al. 2010). Nonetheless, network neuroscience has remained 

largely focused on nodal features and partitions, paralleling a rich history of parceling, mapping, 
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and comparing cortical and subcortical gray matter regions (Eickhoff, Constable et al. 2018). On 

the other hand, several recent papers have begun modeling brain networks from the perspective of 

interacting edges, including one foundational paper that applied graph-theoretic measures to a “line 

graph” (Evans and Lambiotte 2009) of interrelated white matter tracts (de Reus, Saenger et al. 

2014). Though highly novel, line graphs were never adopted widely, as their construction requires 

users to first specify and apply a sparsity threshold to a connectivity matrix.  

Here, we present a novel modeling framework for investigating functional brain network data from 

an edge-centric perspective. Our approach can be viewed as a temporal “unwrapping” of the 

Pearson correlation measure – the metric commonly used for estimating the strength of functional 

connectivity between pairs of brain regions (Smith, Miller et al. 2011) – thereby generating 

interpretable time series for each edge that express fluctuations in its weight across time. 

Importantly, edge time series allow the estimation of edge correlation structure, a construct we 

refer to as edge functional connectivity (eFC). High eFC indexes strong similarity in the co-

fluctuation of two edges across time, while low eFC indicates co-fluctuation patterns that are 

largely independent. 

From a neuroscientific perspective, eFC can be viewed both as an extension of, and a 

complement to, traditional node-centric representations of brain networks. In node-centric network 

models, functional connections represent the temporal correlation of activity recorded from 

spatially distinct regions and often interpreted as a measure of inter-regional communication (Reid, 

Headley et al. 2019). That is, strong functional connections are thought to reflect the time-averaged 

strength of “communication” between brain regions. eFC, on the other hand, tracks how 

communication patterns evolve over time and ultimately assesses whether similar patterns are 

occurring in the brain simultaneously (See Supplementary Figure 1). 
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Here, we first demonstrate that eFC is highly replicable given sufficient amounts of data, 

stable within individuals across multiple scan sessions, and consistent across datasets. Next, we 

apply data-driven clustering algorithms to eFC, which result in partitions of the eFC network into 

communities of co-fluctuating edges. Each community can be mapped back to individual nodes, 

yielding overlapping regional community assignments. We find that brain regions associated with 

sensorimotor and attention networks participated in disproportionately many communities 

compared to other brain systems, but that, relative to one another, those same regions participate 

in similar sets of communities. Finally, we compare the organization of eFC at rest and during 

passive viewing of movies, and find that eFC is consistently and reliably modulated by changes in 

sensory input. 

Results 

In this section we analyze edge functional connectivity (eFC) estimated using 

neuroimaging data from three independently acquired datasets: 100 unrelated subjects from the 

Human Connectome Project (HCP) (Van Essen, Smith et al. 2013), ten subjects scanned ten times 

as part of the Midnight Scan Club (MSC) (Gordon, Laumann et al. 2017), and ten subjects scanned 

multiple times as part of the Healthy Brain Network Serial Scanning Initiative (HBN) (O’Connor, 

Potler et al. 2017). 

Edge functional connectivity 

Many studies have investigated networks whose nodes and edges represent brain regions 

and pairwise functional interactions, respectively (Park and Friston 2013). Here, we extend this 

framework to consider interactions not between pairs of brain regions, but pairs of edges. 
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Extant approaches for estimating edge-edge connectivity matrices include construction of 

line graphs (Evans and Lambiotte 2009) or calculating edge overlap indices (Ahn, Bagrow et al. 

2010). While suitable for sparse networks with positively weighted edges, these approaches are 

less appropriate for functional neuroimaging data, where networks are typically fully weighted and 

signed. Here, we introduce a method that is well-suited for these types of data, operates directly 

on time series, and is closely related to the Pearson correlation coefficient (typically used to assess 

strength of interregional functional connections). We refer to the matrices obtained using this 

procedure as “edge functional connectivity” (eFC). 

Beginning with regional time series, calculating eFC can be accomplished in three steps, 

starting by z-scoring the time series (Figure 1a,d). Next, for all pairs of brain regions, we calculate 

the element-wise product of their z-scored time series (Figure 1b,e). This results in a new set of 

time series, referred to as “edge time series,” whose elements represent the instantaneous co-

fluctuation magnitude between pairs of brain regions and whose average across time is exactly 

equal to the Pearson correlation coefficient (Figure 1c) (van Oort, Mennes et al. 2018). Co-

fluctuation values are positive when activity of two regions deflects in the same direction at 

precisely the same moment in time, are negative when activity deflects in the opposite direction, 

and zero when activity is close to baseline. Importantly, the magnitude of these edge time series is 

not systematically related to in-scanner motion (Supplementary Figure 2). The third and final step 

involves calculating the element-wise product between pairs of edge time series. When repeated 

over all pairs of edges, the result is an edge-by-edge matrix, whose elements are normalized to the 

interval [−1, 1] (Figure 1f and Figure 2a). See Materials and Methods for additional details on 

eFC construction. 
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Figure 1 Derivation of edge functional connectivity (eFC) matrix. Each element of the eFC matrix is calculated 

based on the fMRI BOLD activity time series from four nodes (brain regions). In panels a and d, we show four 

representative times series from regions i, j, u, and v. Nodal FC (panel c; nFC) is typically calculated by standardizing 

(z-scoring) each time series, performing an element-wise product (dot product) of time series pairs, and calculating 

the average value of a product time series (actually the sum of each element divided by T −  1, where T is the number 

of observations). To calculate eFC, we retain the vectors of element-wise products for every pair of regions. In panels 

b and e we show product time series for the pairs {i, j} and {u, v}, respectively. The elements of these product time 

series represent the magnitude of time-resolved co-fluctuation between region pairs (or edges in the nFC graph). We 

can calculate the magnitude of eFC by performing an element-wise multiplication of the product time series and 

normalizing the sum by the squared root standard deviations of both time series, ensuring that the magnitude of eFC 

is bounded to the interval [−1,1]. The resulting value is stored in the eFC matrix, shown in panel f.  

While eFC is, to our knowledge, a novel construct, we note that the first two steps in 

calculating eFC are the same as those used to calculate nodal FC; the mean value of any co-

fluctuation time series is simply the Pearson correlation coefficient. Given that eFC is 

mathematically related to nodal functional connectivity (nFC), we first asked whether it was 
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possible to approximate eFC using estimates of nFC. This is an important question; while the 

calculation of eFC can be implemented efficiently, performing certain operations on the eFC 

matrix can prove computationally expensive (it is a fully-weighted [𝑀𝑀 ×  𝑀𝑀] matrix, where 𝑀𝑀 =

 𝑁𝑁(𝑁𝑁−1)
2

 and 𝑁𝑁 is the number of nodes; Figure 2b). However, a direct comparison of eFC and nFC 

is not possible due to differences in dimensionality. Still, we can approximate eFC using nFC edge 

weights. Perhaps the simplest approach is to model the edge connection between region pairs {𝑖𝑖, 𝑗𝑗} 

and {𝑢𝑢, 𝑣𝑣} as a linear combination of the six edges that can be formed from those regions (see 

Materials and Methods). Although this model performs poorly (correlation of observed and 

approximated eFC; 𝐸𝐸 =  0.21; 𝐸𝐸 = 197,995,050 edge-edge pairs;), we can improve upon its 

performance by including interaction terms based on node connectivity, i.e. 𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ×  𝐸𝐸𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢 (𝐸𝐸 =

 0.73; 𝑒𝑒 <  10−15; 𝐸𝐸 = 197,995,050 edge-edge pairs; Figure 2c). Collectively, these 

observations suggest that eFC is not well approximated using linear combinations of nFC, but with 

non-linear transformations and inclusion of interaction terms, nFC can approximate eFC. 

However, these transformations are unintuitive, and the approximation still fails to fully explain 

variance in eFC. 
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Figure 2 Organization of edge functional connectivity (eFC). (a) Force-directed layout of eFC matrix (largest 

connected component). Nodes in this graph represent edges in the traditional nodal functional connectivity (nFC) 

matrix. Here, nodes are colored according to whether the corresponding edge fell within or between cognitive systems. 

Within-system edges are encircled in black. (b) eFC matrix in which rows and columns correspond to pairs of brain 

regions. (c) Two-dimensional histogram of relationship between eFC and the product of edges’ respective nFC 
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weights. (d) Two-dimensional histogram of relationship between eFC and the surface area of the quadrilateral defined 

by the four nodes. (e) Mean eFC among edges where both edges fall between systems (between; n = 2.3 × 108), 

where one edge falls within and the other between systems (mixture; n = 1.7 × 108), and where both edges fall within 

systems (within; n = 8.1 × 105). (f) Mean eFC among edges within sixteen cognitive systems (n = 6.5 × 104). All 

results presented in this figure derived from Human Connectome Project data. Boxplots, shown in green and overlaid 

on data points in panels e and f, depict the interquartile range (IQR) and median value of the distribution. Whiskers 

extend to the nearest points ±1.5× IQR above and below 25th and 75th percentiles. Note that in panel e, not all points 

can be displayed due to the large number of edge-edge connections. 

Next, we explored variation of eFC across acquisitions and processing decisions. We found 

that eFC weights are similar across three independently acquired datasets (Supplementary Figure 

3), and that the omission of global signal regression from our preprocessing pipeline induced a 

consistent upwards shift of eFC weights, analogous to its effect on nFC (Supplementary Figure 4). 

Additionally, we found that the overall pattern of eFC calculated using edge time series estimated 

from observed data was uncorrelated with the pattern of eFC calculated using edge time series 

estimated from phase-randomized surrogate time series (Supplementary Figure 5). 

Next, we asked whether eFC exhibits any clear spatial dependence, as nFC is known to 

decay as a function of Euclidean distance (Esfahlani, Bertolero et al. 2020). We assessed the spatial 

dispersion of eFC with the surface area of the quadrilateral formed by the centroids of the brain 

region pairs (we explore an alternative edge-level distance metric in Supplementary Figure 6). We 

found evidence of a weak negative relationship between surface area and eFC (𝐸𝐸 =  −0.14, 𝑒𝑒 <

 10−15; 𝐸𝐸 = 197,995,050 edge-edge pairs; Figure 2d), suggesting that unlike traditional nFC, 

whose connection weights are more strongly influenced by spatial relationships of brain areas to 

one another, eFC is less constrained by the brain’s geometry. 
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Finally, we asked whether eFC bears the imprint of nFC communities – brain regions 

whose activity is highly correlated with members of its own community, but weakly or anti-

correlated with members of other communities (Sporns and Betzel 2016). To address this question 

we classified every edge in the nFC network according to whether it fell within or between 

communities (Schaefer, Kong et al. 2018), resulting in three possible combinations of connections 

in the eFC graph: eFC could link edges that both fell within a community, edges that both fell 

between communities, or an edge that fell within and an edge that fell between communities. In 

general, we found that eFC was significantly stronger for within-community edges compared to 

the other two categories (Figure 2e). Interestingly, we found eFC could be distinguished further 

by dividing within-community edges by cognitive system (Schaefer, Kong et al. 2018) (one-way 

ANOVA; 𝑛𝑛 (15, 65819)  =  2667.4, 𝑒𝑒 <  10−15; Figure 2f). 

Edge functional connectivity is stable within individuals 

In this section, we test the robustness of eFC to scan duration, i.e. how much data is 

required before eFC stabilizes, and whether eFC is consistent across repeated scans of the same 

individual. To address these questions, we leveraged the within-subject design of the MSC dataset. 

For each subject, we aggregated their fMRI data across all scan sessions and estimated a single 

eFC matrix. Then, we sampled smaller amounts of temporally contiguous data, thus approximately 

preserving the auto-correlation structure, and estimated eFC, which we compared against the 

aggregated eFC matrix (this procedure was repeated 25 times). Similar to other studies (Laumann, 

Gordon et al. 2015), we found that with small amounts of data eFC was highly variable (Figure 

3a). However, we observed a monotonic increase in similarity as a function of time, so that with 

30 minutes of data, the similarity was much greater (𝐸𝐸 =  0.78; 𝑒𝑒 <  10−15; 𝐸𝐸 = 197,995,050 

edge-edge pairs). This is of practical significance; like traditional nFC, it implies that eFC 
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estimated using data from short scan sessions may not deliver accurate representations of an 

individual’s edge network organization. We note that this relationship is strengthened when data 

are subsampled randomly and uniformly (𝐸𝐸 =  0.90; 𝑒𝑒 <  10−15; 𝐸𝐸 = 197,995,050 edge-edge 

pairs; See Supplementary Figure 7). 

 

Figure 3 Intra- and inter-subject similarity of eFC across scan sessions. (a) Correlation of session-averaged eFC 

matrices with eFC estimated using different amounts of data; mean value shown as black line. (b) Similarity of eFC 

within and between subjects. Each block corresponds to data from a single subject; subjects are also identifiable by 

the color of the rectangle alongside each bock. (c) Violin plots of within- and between-subject similarity values from 

the matrix shown in panel b; nw = 450 and nb = 4500 within- and between-subject comparisons (two-sample t-test; 

t(4948) = 62.98; p < 10−15). Boxplots, shown in green and overlaid on data points in panel c, depict the interquartile 

range (box) and median value of the distribution. Whiskers extend to the nearest points ±1.5× IQR above and below 

25th and 75th percentiles. (d) Scan sessions plotted according to coordinates generated by performing a two-

dimensional multi-dimensional scaling analysis of the matrix in panel b. Note that scans from the same subject (shown 

here with the same color) are located near each other. All panels from this figure were generated using data from the 

Midnight Scan Club. 

Next, we examined the reliability of eFC over multiple scan sessions. That is, if we imaged 

an individual on separate days, would their eFC on those days be more similar to each other than 

to that of a different individual?. We estimated eFC and calculated the pairwise similarity (Pearson 

correlation) between all pairs of MSC subjects and scans. We found eFC to be highly reliable in 

the MSC dataset, where the mean within-subject similarity was 𝐸𝐸 =  0.53 ± 0.10 compared to 
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𝐸𝐸 =  0.30 ±  0.07 between subjects (two-sample t-test; 𝑒𝑒(4948) = 62.98; 𝑒𝑒 < 10−15; Figure 

3b,c). Indeed, we found that for each eFC matrix, the matrix to which it was most similar belonged 

to the same subject (100% accuracy). Additionally, eFC exhibited slightly greater differential 

identifiability compared to nFC (0.224 to 0.210) – calculated as the difference between mean 

within- and between-subject similarity (Amico and Goni 2018). In Figure 3d, we show the results 

of applying multi-dimensional scaling to the similarity matrix from Figure 3b. We found similar 

results in the HBN and HCP datasets (see Supplementary Figure 8). 

Collectively, these findings suggest that eFC exhibits a high level of subject specificity and 

captures idiosyncratic features of an individual, provided that eFC was estimated over a 

sufficiently long time period. This observation serves as an important validation of eFC, and 

suggests that eFC may be useful in future applications as substrate for biomarker generation and 

“fingerprinting” (Finn, Shen et al. 2015). 

The overlapping community structure of human cerebral cortex 

While many studies have investigated the brain’s community structure (Sporns and Betzel 

2016), most have relied on methodology that forces each brain region into one and only one 

community. However, partitioning brain regions into non-overlapping communities clashes with 

evidence suggesting that cognition and behavior requires contributions from regions that span 

multiple node-defined communities and systems (Anderson, Kinnison et al. 2013). Accordingly, a 

definition of communities is needed that more closely matches the brain’s multifunctional nature 

and the pervasive overlap of its community structure (Pessoa 2014). 

While deriving overlapping communities of brain regions can be challenging when using 

nFC, overlap is inherent (indeed, pervasive (Ahn, Bagrow et al. 2010)) within the eFC construct. 

Clustering the eFC graph assigns each edge to a community. Each edge is associated with two 



 

100 

 

brain regions (the nodes it connects). Thus edge community assignments can be mapped back onto 

individual brain regions and, because every region is associated with 𝑁𝑁 −  1 edges, allow regions 

to simultaneously maintain a plurality of community assignments. 

In this section, we cluster eFC matrices to discover overlapping communities in human 

cerebral cortex. More specifically, we use a modified k-means algorithm to partition the eFC graph 

into non-overlapping communities and map the edge assignments back to individual nodes.  

 

Figure 4 Edge communities. We applied similarity-based clustering to eFC from the HCP dataset. Here, we show 

results with the number of clusters fixed at k =  10. (a) Here, we reordered edge time series according to the detected 

community assignments. In this panel, horizontal lines divide communities from each other. The colors to the left of 

the time series plots identify each of the ten communities. (b) We also reordered the rows and columns of the eFC 
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matrix to highlight the same ten communities. Note that, on average, within-community eFC is greater than between-

community eFC. (c) We calculated the probability that pairs of edges (node pairs) were co-assigned to the same 

community. Here, we show the co-assignment matrix with rows and columned reordered according to community 

assignments. Note that, in general, the range of co-assignment probabilities goes to 1. Here, we truncate the color 

limits to emphasize the 10-community partition (In Supplementary Figure 9 we show the same co-assignment matrix 

at different values of k and with non-truncated color limits). We present two visualizations of the edge communities 

projected back to brain regions (nodes). In d, we depict overlapping communities in matrix form. Each column in this 

matrix represents one of ten communities. For each community and for each node, we calculated the proportion of all 

edges assigned to the community that included that node as one of its endpoints (“stubs”), indicated by the color and 

brightness of each cell. Dark colors indicate few edges; bright colors indicate many (e) Topographic distribution of 

communities. Note that many of the communities resemble known intrinsic connectivity networks. However, because 

the communities here can overlap, it is possible for nodes associated with a particular intrinsic connectivity network 

to participate in multiple edge communities. 

In Figure 4 we show representative communities obtained with 𝑘𝑘 =  10 (See 

Supplementary Figure 9 and Supplementary Figure 10 for examples with different numbers of 

communities). To demonstrate that the communities capture meaningful variance in our data, we 

show the edge co-fluctuation time series, the eFC matrix, and the community co-assignment matrix 

reordered according to the derived communities (Figure 4a,b,c). Here, the elements of the co-

assignment matrix represent the probability that two edges were assigned to the same community 

across partitions as we varied the number of communities from 𝑘𝑘 =  2 to 𝑘𝑘 =  20. 

While the communities detected here are defined at the level of edges rather than nodes, 

we can project edge communities back onto brain regions. This was accomplished by extracting 

the edges associated with each community, determining which nodes were at the endpoints of each 

edge (the “stubs”), and counting the number of times that each node was represented in this stub 
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list. We show these results in matrix form in Figure 4d. In this panel, rows and columns represent 

nodes ordered according to the canonical system labels described in Schaefer, Kong et al. (2018).  

The overlapping nature of communities is made clearer in Figure 4e, in which communities 

are represented topographically. The edges associated with the same visual nodes are all involved 

in communities 7, 8, 9, and 10 to some extent, thereby linking the visual system to multiple other 

brain systems. In community 8, for example, edges incident upon nodes in the visual and 

somatomotor systems are clustered together, whereas in community 9, edges incident upon visual 

and control network nodes are assigned to the same community.  

Community overlap and functional diversity of cognitive systems 

In the previous section, we showed that the human cerebral cortex could be partitioned into 

overlapping communities based on its edge correlation structure. This observation leads to a series 

of additional questions. For instance, which brain areas participate in many communities? Which 

participate in few? If we changed the scale of inquiry – the number of detected communities – do 

the answers to these questions change? Do the answers depend on which dataset we analyze? In 

this section we explore these questions in detail. 
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Figure 5 Edge community entropy and overlap. (a) Topographic distribution of normalized entropies. Normalized 

entropy, in this case, measures the uniformity of a node’s community assignments across all communities and serves 

as a measure of overlap. In general, higher entropy corresponds to greater levels of overlap. (b) Brain systems 

associated with the highest levels of normalized entropy. These include visual, attentional, somatomotor, and temporo-

parietal systems. (c) Entropy values for all brain systems; n = 200 brain regions. Boxplots, shown in green and 

overlaid on data points in panel c, depict the interquartile range (box) and median value of the distribution. Whiskers 

extend to the nearest points ±1.5× IQR above and below 25th and 75th percentiles. (d) Here, we highlight 

communities in which somatomotor (red) and visual (blue) systems are represented. 

One strategy for assessing community overlap is to simply count the number of different 

communities to which each nodes’ edges are assigned (Yeo, Krienen et al. 2014). A more nuanced 

measure that accounts for the distribution of edge community assignments is the normalized 

entropy, which indexes the uniformity of a distribution. We therefore calculated normalized 

entropy for every brain region while varying the number of communities from 𝑘𝑘 =  2 to 𝑘𝑘 =  20. 

In this section we focus on results with 𝑘𝑘 =  10. 
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We found that normalized community entropy was greatest within sensorimotor and 

attentional systems and lowest within regions traditionally associated with control and default 

mode networks (Figure 5a,b,c). Importantly, we obtained similar results from the MSC and HBN 

datasets (Supplementary Figure 11), at the level of individual subjects (Supplementary Figure 12), 

as we varied the number of clusters (Supplementary Figure 13), and using different parcellation 

schemes (Supplementary Figure 14). These observations seemingly contradict previous reports in 

which functional overlap was greatest in control networks and lowest in primary sensory systems 

(Figure 5d)6,28. 

Is it possible to reconcile these seemingly opposed viewpoints? To address this question, 

we calculated a second measure of functional diversity. Whereas normalized entropy was defined 

at the level of individual brain regions based on the edge communities in which they participated, 

this second measure was defined at the level of brain systems as a whole, and assessed the average 

similarity of edge community assignments among the system regions (Figure 6a,b; see Materials 

and Methods). Intuitively, functionally diverse systems are comprised of brain regions whose 

edge community assignments are unique and dissimilar from one another. We find that regions 

within sensorimotor networks, which exhibited among the highest levels of entropy, exhibited the 

greatest levels of within-system similarity (Figure 6c). In contrast, sub-networks that make up the 

control network exhibit the lowest levels of within-system similarity, while their constituent nodes 

have among the lowest entropy (Figure 6c).  
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Figure 6 System-level similarity of edge communities. (a) Edge communities can be mapped into a [N ×  N] matrix. 

The element at row i and column j of the edge community matrix denotes the community label of edge {i, j}. (b) We 

can then calculate the similarity of edge communities involving nodes i and j by comparing the values of columns i 

and j. This matrix depicts the similarity for all pairs of nodes. (c) Within-system similarity values for each of the 16 

pre-defined brain systems; n = 1,272 within-system similarity values. Boxplots, shown in green and overlaid on data 

points in panel c, depict the interquartile range (box) and median value of the distribution. Whiskers extend to the 

nearest points ±1.5× IQR above and below 25th and 75th percentiles. 

In the supplementary material, we explore the relationship of normalized entropy with 

more familiar measures of overlap derived from nFC, including participation coefficient, dynamic 

flexibility, and versatility (see Supplementary Figure 15 and Supplementary Figure 16). We also 

compare patterns of normalized entropy derived from eFC community structure with entropy 

patterns obtained using alternative methods, including line graphs, the affiliation graph model, 

Bayesian non-negative matrix factorization, and mixed-membership stochastic blockmodels (see 

Supplementary Figure 17). 

Edge functional connectivity is modulated by changes in sensory input 

In the previous sections, we demonstrated that eFC is a reliable marker of an individual 

and that by clustering eFC we naturally obtain overlapping communities. We leveraged this final 
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observation to demonstrate that primary sensory and attentional systems participate in 

disproportionately more communities than association cortices. Analogous to previous studies 

documenting the effect of task on nodal FC, we expect that eFC is also modulated by task.  

To address this question, we analyzed fMRI data from the Healthy Brain Network Serial 

Scanning Initiative recorded during rest and while subjects passively viewed the movie “Raiders 

of the Lost Ark.”  We estimated group-averaged eFC separately for each of the movie and rest 

scans. 

In general, we found that eFC during movie-watching was highly correlated with eFC 

estimated during rest (Figure 7a). Across six movie scans, the mean correlation with resting eFC 

was 𝐸𝐸 =  0.55 ± 0.02 (all 𝑒𝑒 <  10−15; 𝐸𝐸 = 197,995,050 edge-edge pairs). When we compared 

the pairwise similarity of all movie-watching scans with rest, we found that similarity of eFC was 

greater within a given task than between tasks (𝑒𝑒 <  10−4, uniform and random permutation of 

movie and rest conditions; Figure 7b). To better understand what was driving this effect, we 

generated representative matrices for rest and movie conditions and computed the element-wise 

difference between these matrices. We contrasted these differences with those estimated after 

randomly permuting scan (condition) labels, and found that 8.63% of all edge connections 

exhibited significant changes between conditions (permutation test; 𝑒𝑒 <  10−4; uncorrected). 

While eFC differences were widespread, the most pronounced effects were associated with two 

specific communities (Figure 7c), one of which exhibited a decrease in its within-module eFC, 

while both decreased eFC with respect to each other. These communities, consisted of edges 

associated with somatomotor and visual systems (Figure 7d). To confirm that these system-level 

effects were statistically significant, we compared the mean within- and between-system eFC 

differences against a constrained null model in which edge communities were randomly permuted 
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(1000 repetitions; see Supplementary Figure 18 for a detailed schematic illustrating this 

procedure). As expected, the eFC involving systems 5 and 6 was significantly decreased from rest-

to-movie (permutation test; false discovery rate fixed at 5%; 𝑒𝑒𝑎𝑎𝑑𝑑𝑖𝑖𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑 = 3.7 × 10−5). See 

Supplementary Figure 19a for the complete list of condition differences. 

 

Figure 7 Effect of passive movie-watching on eFC. (a) Two-dimensional histogram of eFC estimated at rest with 

eFC estimated during movie-watching. (b) Similarity of whole-brain eFC estimated at rest with movie-watching. Note 

that within-condition similarity is greater for both conditions. (c) Community-averaged differences in eFC. 

Communities 5 and 6 are associated with the largest magnitude differences, on average. Note: these are communities 

estimated from HBN data and are not identical to those shown in Figure 4, which were estimated from HCP data. (d) 

Topographic distribution of communities 5 and 6. Note that these communities involve edges associated with visual 

and somatomotor systems. (e) Averaged differences in community overlap (normalized entropy); n = 200 brain 

regions whose entropy scores were compared across rest and movie-watching conditions (permutation test; mean 

difference in paired sample; p = 0.019). (f) Similarity of whole-brain normalized entropy estimated at rest with 

movie-watching. (g) Violin plot showing system-specific differences in normalized entropy. Note that some of the 

greatest increases in entropy are concentrated with control and default mode networks; n = 200 brain regions. (h) 

Topographic distribution of differences in entropy. Boxplots, shown in green and overlaid on data points in panels e 
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and g, depict the interquartile range (box) and median value of the distribution. Whiskers extend to the nearest points 

±1.5× IQR above and below 25th and 75th percentiles. 

The differences in the connection weights of eFC between movie-watching and rest 

strongly suggested that the locations of high and low cluster overlap might also differ between 

conditions. To test this, we used the same clustering algorithm described earlier to partition node 

pairs into non-overlapping clusters and, based on these clusters, calculated each node’s cluster 

overlap as a normalized entropy. We found that compared to rest, entropy increased during movie-

watching (permutation test; mean difference in paired samples; 𝑒𝑒 = 0.019), indicating increased 

overlap between communities (Figure 7e), and that the brain-wide pattern of entropy also differed 

(permutation test; 𝑒𝑒 <  10−4; Figure 7f). We performed analogous tests at the level of individual 

brain regions, and found that 28% of brain regions passed statistical testing (permutation test; false 

discovery rate fixed at 5%; 𝑒𝑒𝑎𝑎𝑑𝑑𝑖𝑖𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑 =  0.014; Supplementary Figure 19b). We further tested 

whether these differences exhibited system-specific effects by calculating the mean change in 

entropy for each system and comparing it against mean changes after randomly and uniformly 

permuting system labels. We found that seven systems exhibited such effects, with increases 

concentrated within control  and salience/ventral attention networks and decreases in dorsal 

attention temporal-parietal, and visual systems (permutation of system labels; false discovery rate 

fixed at 5%; 𝑒𝑒𝑎𝑎𝑑𝑑𝑖𝑖𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑 =  0.012; Figure 7,g,h; Supplementary Figure 19c). 

Collectively, these results suggest that, like nFC, eFC is reconfigurable and can be 

modulated by sensory inputs. The observed changes in eFC, which implicated two clusters 

associated both with somatomotor and visual systems, is in close agreement with past studies of 

passive movie-watching that documented changes in activity and nFC in similar areas (Wilf, 

Strappini et al. 2017). We also found increased overlap in areas associated with control and default 
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mode networks, which agrees with evidence that activity throughout these areas is sensitive to 

movie narrative structure (Baldassano, Hasson et al. 2018). An important area of future research 

involves systematically assessing the effect of different cognitively demanding tasks on eFC. 

Discussion 

Here, we presented a network model of human cerebral cortex that focused on edge-edge 

interactions. The network formed by these interactions, a construct we referred to as edge 

functional connectivity (eFC), was similar across datasets and more similar within subjects than 

between. When clustered, eFC provided a natural estimate of pervasively overlapping community 

structure. We found that the amount of overlap varied across the cortex but peaked in sensorimotor 

and attention networks. We found that brain regions associated with sensorimotor and attention 

networks participated in disproportionately many communities compared to other brain systems, 

but that, relative to one another, those same regions participated in similar sets of communities. 

Lastly, we showed that eFC and community overlap varied systematically during passive viewing 

of movies. 

Edge-centric perspective on functional network organization 

Node-centric representations have dominated the field of network neuroscience and have 

served as the basis for nearly every discovery within that field (Bassett and Sporns 2017). The 

edge-centric representation shifts focus away from dyadic relationships between nodal activations 

and onto the interactions between edges (similarity in patterns of co-fluctuation, a potential 

hallmark of communication), instead. While related models have been explored in other scientific 

domains (Evans and Lambiotte 2009, Ahn, Bagrow et al. 2010) including neuroscience, where 

they were first used in a study to represent interacting white matter tracts (de Reus, Saenger et al. 
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2014), they require as input sparse node-node connectivity matrices and are poorly suited for 

continuous-valued time series data. 

Here, we developed a novel edge-centric representation of functional neuroimaging data 

that operates directly on observed time series. Our method for estimating connection weights 

between edges can be viewed as a temporal “unwrapping” of the familiar Pearson correlation – the 

measure frequently used to estimate the magnitude of nFC between pairs of brain regions. Whereas 

the Pearson correlation coefficient calculates the time-averaged co-fluctuation magnitude for node 

pairs, we simply omit the averaging step, yielding “edge time series,” which represent the co-

fluctuation magnitude between two nodes at every instant in time. This simple step enables us to 

track fluctuations in edge weight across time and, critically, allow for dyadic relationships between 

edges, creating an edge-centric representation of nervous system architecture (Figure 1).If we 

interpret edge time series as a temporal unwrapping of nFC, which is thought to reflect the 

aggregate effect of communication processes between neural elements (Avena-Koenigsberger, 

Misic et al. 2018), then edge times series track, with high temporal resolution, the communication 

patterns between distributed neural elements. 

We note that our edge-centric approach is conceptually similar to several existing methods. 

For instance, “multiplication of temporal derivatives” (MTDs) (Shine, Koyejo et al. 2015) 

calculates the element-wise products using differenced activity time series for all pairs of nodes. 

These time series are then convolved with a kernel to generate smooth estimates of time-varying 

nFC. Though similar, our approach relies on untransformed activity to estimate edge time series, 

thereby preserving the relationship between static nFC and the mean value of each edge time series. 

Another related method is “Co-activation Patterns” (CAPs) (Liu and Duyn 2013), which extracts 

and clusters voxel- or vertex-level activity during high-activity frames. Because a voxel can be co-
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active under different contexts, the cluster centroids spatially overlap with one another. Though 

both CAPs and eFC result in overlapping structures, they operate on distinct substrates, with CAPs 

focusing on activity and eFC focusing on similarity of co-activity. While CAPs requires the 

specification of additional parameters compared to eFC, e.g. the threshold for a high-activity 

frame, CAPs may scale better due to the focus on activity rather than connectivity. 

Finally, we note that nFC and eFC are both frameworks for investigating pairwise 

relationships from neural time series. Critically, however, nFC and eFC differ in terms of what 

elements are being related to one another and how we interpret those relationships. In the case of 

nFC, correlations refer to similarities in the activity of individual neural elements, often interpreted 

as two parts of the brain “talking” to one another. In the case of eFC, on the other hand, correlations 

express similarities in co-fluctuations along edges, which may loosely be interpreted as 

“conversations” between node pairs (Supplementary Figure 1). In other words, nFC focuses on co-

activation between nodes while eFC focuses on co-fluctuation along edges. In this way, nFC and 

eFC should be viewed as complementary approaches that can reveal unique organizational features 

of nervous systems. 

Overlapping communities extend our understanding of system-level cortical organization 

Here, we demonstrated that clustering eFC using community detection methods naturally 

leads to communities that overlap when mapped back to the level of brain regions and nodes. Past 

investigations of cortical organization have focused almost exclusively on non-overlapping 

communities. The decision to define communities in this way is partially motivated by 

interpretability but also by limitations of the methods used to detect communities, which assign 

nodes to one community, only (Newman and Girvan 2004, Rosvall and Bergstrom 2008). This 

current view of communities has been profoundly successful (Sporns and Betzel 2016). It provides 
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a low-dimensional description of the brain, it can be used to define node roles and to detect hubs 

(Bertolero, Yeo et al. 2015), and can be applied to both anatomical and functional networks with 

equal success. 

The dominant non-overlapping perspective of communities has strongly influenced how 

we think about brain function. Because functional communities exhibit reliable correspondence 

with patterns of task-evoked activity (Smith, Fox et al. 2009), we have come to associate individual 

communities with specific cognitive domains. For instance, it is not uncommon to refer to 

communities as primarily processing visual information, enacting cognitive control, or performing 

attentional functions. This localization of brain function to communities, though likely a 

reasonable first-order approximation, perpetuates a view of brain function in which brain areas, 

systems, and communities are fundamentally unifunctional. Such a view, however, disagrees with 

observations that many aspects of cognition and behavior transcend these traditional community 

labels. 

Another perspective is that overlap arises from time-varying fluctuations in community 

structure (Bassett, Wymbs et al. 2011). That is, at any given instant communities are non-

overlapping, but appear “fuzzy” due to nodes changing their community allegiances over time. 

The approach developed here is closely aligned with the perspective that brain areas and 

communities are dynamic and exhibit highly degenerate functionality. Other studies have 

investigated overlapping and dynamic communities by studying overlap in co-activation or 

through the use of sliding window analysis and multilayer models to detect flexible regions that 

change their community assignment over time. Our approach, however, is distinct, emphasizing a 

state of pervasive overlap (Ahn, Bagrow et al. 2010) in which nodes belong to several communities 

instantaneously.  
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Limitations 

One of the most important limitations concerns the estimation of edge time series from 

functional imaging data. To calculate edge time series, we first z-score regional time series. Here, 

the z-score is only appropriate if the time series has a temporally invariant mean and standard 

deviation. If there is a sustained increase or decrease in activity, e.g. the effect of a blocked task, 

then the z-scoring procedure can result in a biased mean and standard deviation, resulting in poor 

estimates of fluctuations in activity. In future work, investigation of task-evoked changes in eFC 

could be investigated with already common preprocessing steps, e.g. constructing task regressors 

to remove the first-order effect of tasks on activity (Cole, Ito et al. 2019). 

Another limitation concerns the scalability of eFC. Calculating eFC given for a brain 

divided into N parcels results in an eFC matrix of dimensions 𝑁𝑁(𝑁𝑁−1)
2

. This means that an increase 

in the number of parcels results in a squared increase in the dimensionality of eFC; if the number 

of parcels is large, then this can result in large, fully-weighted matrices that require large amounts 

of memory to store and manipulate. In the future, however, it may be necessary to explore 

dimension reduction methods to retain the most relevant subgraphs for a given task or set of 

behaviors. 

Future directions 

While eFC characterizes interactions between edges rather than nodes, it can still be 

analyzed using the same methods previously applied to nFC. We can use graph theory to detect its 

hubs and communities (Power, Schlaggar et al. 2013) (see Supplementary Figure 20 for examples), 

estimate edge gradients (Margulies, Ghosh et al. 2016), and compare eFC connection weights 

across individuals (Finn, Shen et al. 2015) and conditions (Cole, Ito et al. 2019). On the other hand, 
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eFC affords many new opportunities, beginning with the edge time series used to estimate eFC. 

Essentially, edge time series offer a moment-to-moment assessment of how strongly two nodes 

(brain regions) co-fluctuate with one another, providing an estimate of time-varying nFC without 

the requirement that we specify a window (Zamani Esfahlani, Jo et al. 2020). This overcomes one 

of the main limitations of sliding window estimates of time-varying nFC, namely that the use of a 

window leads to a “blurring” of events across time (Lurie, Kessler et al. 2020). Other directions 

for future work include developing whole-brain functional atlases with overlapping system labels 

and applications to specific brain areas and sub-systems for constructing fine-grained overlapping 

atlases (King, Hernandez-Castillo et al. 2019). We note, also, that because the derivation of eFC 

is based on Pearson correlations, it would be straightforward to estimate analogs of eFC based on 

lagged and partial relationships. 

eFC might be useful in applications of machine learning and classification of neuroimaging 

data (Pereira, Mitchell et al. 2009). The dimensionality of the eFC matrix is much greater than that 

of a typical nFC matrix. We speculate that some of the added dimensions may be useful for 

studying brain-behavior relationships, for example by identifying manifolds along which subjects, 

clinical cohorts, or behaviors naturally separate, enhancing classification accuracy (Huys, Maia et 

al. 2016) (we show results of exploratory analyses of brain-behavior relationships based on eFC 

in Figs. S21, S22, S23). On the other hand, the increased dimensionality of eFC requires special 

considerations, as it presents statistical and interpretational challenges. Multivariate methods 

(McIntosh and Misic 2013) like canonical correlation analysis or partial least squares, both of 

which can help circumvent multiple comparison issues, may prove useful and should be 

investigated in future brain-behavior analysis involving eFC.  
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Additionally, future studies should investigate appropriate null models for eFC. Like nFC, 

eFC is correlation-based and the weights of edge-edge connections are not independent of one 

another (Zalesky, Fornito et al. 2012). This means that rewiring-based null models (which treat 

connections as independent) are not appropriate. Consideration should be given to other classes of 

null models, including time-series based surrogates. Appropriate null models may help clarify 

brain-behavior relationships in future studies. 

The framework proposed here for investigating interactions between pairs of nodes can be 

generalized to study mutual interactions between many more nodes by simply calculating the 

element-wise product of nodes triplets, quartets, quintets (Owen, Chang et al. 2019). This 

extension is, in some respects, analogous to recent applications of algebraic topology (Sizemore, 

Phillips-Cremins et al. 2019), which can uncover higher-order relationships in a network (through 

graph simplices). We note, however, that while generating higher-order time series is 

straightforward, it is necessarily accompanied by an increase in dimensionality, potentially making 

the approach computationally intractable for whole-brain networks. On the other hand, higher-

order time series (and their corresponding eFC analogs) may be useful for investigating the 

organization of predefined circuits composed of relatively few brain regions or nuclei. 

Lastly, the edge-centric framework developed here is not limited to functional MRI and 

can be easily extended to different recording modalities, including scalp/intracranial EEG or MEG, 

which makes it possible to track seizure propagation at the level of edges (Khambhati, Davis et al. 

2015). Similarly, the application of this approach to datasets resolving single neuron activity could 

uncover important connection-level insight into circuit organization (Dann, Michaels et al. 2016). 
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Materials and Methods 

In this study, we utilized data from three independently acquired, openly available 

neuroimaging datasets (Van Essen, Smith et al. 2013, Gordon, Laumann et al. 2017, O’Connor, 

Potler et al. 2017) and therefore, did not collect any data for this study. No statistical methods were 

used to pre-determine sample sizes, but our sample sizes are similar to those reported in previous 

publications (Power, Schlaggar et al. 2013, de Reus, Saenger et al. 2014, Davison, Schlesinger et 

al. 2015, Finn, Shen et al. 2015, Gordon, Laumann et al. 2017, Shine, Breakspear et al. 2019 ) and 

represent either all usable data (MSC, HBN) or a subset preselected by the study coordinators 

(HCP). We did not perform any randomization of subjects into experimental groups, and we opted 

to analyze each dataset separately. Appropriate counterbalancing of task conditions was performed 

by the authors of the original studies (Van Essen, Smith et al. 2013, Gordon, Laumann et al. 2017, 

O’Connor, Potler et al. 2017). Data analysis was not performed blind to the conditions of the 

experiments. Blinding was not relevant because subjects were not evaluated based on group 

membership and blinding is not applicable to the whole-group analyses reported in this study. All 

analyses were performed with MATLAB (The MathWorks Inc.) version 2019a. Further study 

design and statistical details can be found in the Life Sciences Reporting Summary available 

online. 

Datasets 

The Human Connectome Project (HCP) dataset (Van Essen, Smith et al. 2013) included 

resting state functional data (rsfMRI) from 100 unrelated adult subjects (54% female, mean age = 

29.11± 3.67, age range = 22-36). These subjects were selected as they comprised the “100 

Unrelated Subjects” (U100) released by the Human Connectome Project. The study was approved 
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by the Washington University Institutional Review Board and informed consent was obtained from 

all subjects. Subjects underwent four 15-minute rsfMRI scans over a two-day span. A full 

description of the imaging parameters and image preprocessing can be found in Glasser, 

Sotiropoulos et al. (2013). The rsfMRI data was acquired with a gradient-echo EPI sequence (run 

duration = 14:33 min, TR = 720 ms, TE = 33.1 ms, flip angle = 52◦, 2 mm isotropic voxel 

resolution, multiband factor = 8) with eyes open and instructions to fixate on a cross. Images were 

collected on a 3T Siemens Connectome Skyra with a 32-channel head coil. 

The Midnight Scan Club (MSC) dataset (Gordon, Laumann et al. 2017) included rsfMRI 

from 10 adults (50% female, mean age = 29.1± 3.3, age range = 24-34). The study was approved 

by the Washington University School of Medicine Human Studies Committee and Institutional 

Review Board and informed consent was obtained from all subjects. Subjects underwent 12 

scanning sessions on separate days, each session beginning at midnight. 10 rsfMRI scans per 

subject were collected with a gradient-echo EPI sequence (run duration = 30 min, TR = 2200 ms, 

TE = 27 ms, flip angle = 90◦, 4 mm isotropic voxel resolution) with eyes open and with eye tracking 

recording to monitor for prolonged eye closure (to assess drowsiness). Images were collected on a 

3T Siemens Trio. 

The Healthy Brain Network Serial Scanning Initiative (HBN) dataset (O’Connor, Potler et 

al. 2017) included rsfMRI and movie watching (mvfMRI) data from 13 adults (54% female, mean 

age = 30.3 ± 6.4, age range = 21-42). Three subjects of the HBN dataset did not have enough non-

outlier functional scans (see quality control criteria below) to be meaningfully analyzed (non-

outlier scan percentage = 7%, 0%, and 0%), and were excluded entirely from the current study. 

This rendered the HBN dataset as 10 subjects (50% female, mean age = 29.8 ± 5.3, age range = 

23-37). The study was approved by the Chesapeake Institutional Review Board and informed 
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consent was obtained from all subjects. Subjects underwent 14 scanning sessions over a 1-2 month 

period, in which 13 rsfMRI runs were acquired per subject. On the 8th session, subjects viewed 

the movie “Raiders of the Lost Ark” (Lucasfilm Ltd., 1981) in six approximately 20-minute scans. 

The rsfMRI and mvfMRI were acquired with a gradient-echo EPI sequence (run duration rsfMRI 

= 10:18 min, mvfMRI = 20 min per segment, TR = 1450 ms, TE = 40 ms, flip angle = 55◦, 

2.46x2.46x2.5 mm voxel resolution, multiband factor = 3) with subjects instructed to keep their 

eyes open and gazed directed towards a cross during the fsMRI scan. Images were collected on a 

1.5T Siemens Avanto with a 32-channel head coil. The mvfMRI was divided into six successive 

scan sessions, which we further truncated by retaining the first 420 samples so that the duration 

matched that of the HBN rsfMRI, of which we retained the first six for the sake of balance.  

Image preprocessing 

HCP functional preprocessing 

Functional images in the HCP dataset were minimally preprocessed according to the 

description provided in Glasser, Sotiropoulos et al. (2013). Briefly, these data were corrected for 

gradient distortion, susceptibility distortion, and motion, and then aligned to a corresponding T1-

weighted (T1w) image with one spline interpolation step. This volume was further corrected for 

intensity bias and normalized to a mean of 10000. This volume was then projected to the 

32k_fs_LR mesh, excluding outliers, and aligned to a common space using a multimodal surface 

registration (Robinson, Jbabdi et al. 2014). The resultant cifti file for each HCP subject used in this 

study followed the file naming pattern: *REST{1,2}_{LR,RL}_Atlas_MSMAll.dtseries.nii. 

MSC and HBN functional preprocessing 

Functional images in the MSC and HBN datasets were preprocessed using fMRIPrep 1.3.2 

(Esteban, Markiewicz et al. 2019) which is based on Nipype 1.1.9 (Gorgolewski, Burns et al. 
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2011). The following description of fMRIPrep’s preprocessing is based on boilerplate distributed 

with the software covered by a “no rights reserved” (CC0) license. Internal operations of fMRIPrep 

use Nilearn 0.5.0 (Abraham, Pedregosa et al. 2014), ANTs 2.2.0 , FreeSurfer 6.0.1 , FSL 5.0.9, and 

AFNI v16.2.07. For more details about the pipeline, see the section corresponding to workflows 

in fMRIPrep’s documentation. 

The T1-weighted (T1w) image was corrected for intensity non-uniformity with 

N4BiasFieldCorrection (Avants, Epstein et al. 2008, Tustison, Avants et al. 2010), distributed with 

ANTs, and used as T1w-reference throughout the workflow. The T1w-reference was then skull-

stripped with a Nipype implementation of the antsBrainExtraction.sh workflow, using NKI as the 

target template. Brain surfaces were reconstructed using recon-all (Dale, Fischl et al. 1999), and 

the brain mask estimated previously was refined with a custom variation of the method to reconcile 

ANTs-derived and FreeSurfer-derived segmentations of the cortical gray matter using Mindboggle 

(Klein, Ghosh et al. 2017). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical 

template version 2009c (Fonov, Evans et al. 2009) was performed through nonlinear registration 

with antsRegistration, using brain extracted versions of both T1w volume and template. Brain 

tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray matter (GM) was 

performed on the brain-extracted T1w using FSL’s fast (Zhang, Brady et al. 2001). 

Functional data was slice time corrected using AFNI’s 3dTshift and motion corrected using 

FSL’s mcflirt (Jenkinson, Bannister et al. 2002). Fieldmap-less distortion correction was 

performed by co-registering the functional image to the same-subject T1w image with intensity 

inverted (Wang, Peterson et al. 2017) constrained with an average fieldmap template (Treiber, 

White et al. 2016), implemented with antsRegistration. This was followed by co-registration to the 

corresponding T1w using boundary-based registration (Greve and Fischl 2009) with 9 degrees of 
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freedom. Motion correcting transformations, field distortion correcting warp, BOLD-to-T1w 

transformation and T1w-to-template (MNI) warp were concatenated and applied in a single step 

using antsApplyTransforms using Lanczos interpolation. Several confounding timeseries were 

calculated based on this preprocessed BOLD: framewise displacement (FD), DVARS and three 

region-wise global signals. FD and DVARS are calculated for each functional run, both using their 

implementations in Nipype (Power, Mitra et al. 2014). The three global signals are extracted within 

the CSF, the WM, and the whole-brain masks. The resultant nifti file for each MSC and HBN 

subject used in this study followed the file naming pattern: *space-T1w_desc-preproc_bold.nii.gz. 

Image quality control 

All functional images in the HCP and MSC datasets were retained. The quality of 

functional images in the MSC and HBN were assessed using fMRIPrep’s visual reports and 

MRIQC 0.15.1 (Esteban, Birman et al. 2017). Data was visually inspected for whole brain field of 

view coverage, signal artifacts, and proper alignment to the corresponding anatomical image. 

Functional data were excluded if greater than 25% of the frames exceeded 0.2 mm framewise 

displacement (Parkes, Fulcher et al. 2018). Furthermore, HBN functional data were excluded if 

marked as an outlier (exceeding 1.5x inter-quartile range in the adverse direction) in more than 

half of the following image quality metrics (calculated within-dataset, across all functional 

acquisitions): dvars, tsnr, fd mean, aor, aqi, snr, and efc. Information about these image quality 

metrics can be found within MRIQC ’s documentation. 

  



 

121 

 

Functional and structural networks preprocessing 

Parcellation preprocessing 

A functional parcellation designed to optimize both local gradient and global similarity 

measures of the fMRI signal (Schaefer, Kong et al. 2018) (Schaefer200) was used to define 200 

areas on the cerebral cortex. These nodes are also mapped to the Yeo canonical functional networks 

(Yeo, Krienen et al. 2011). For the HCP dataset, the Schaefer200 is openly available in 32k fs LR 

space as a cifti file. For the MSC and HBN datasets, a Schaefer200 parcellation was obtained for 

each subject using a Gaussian classifier surface atlas (Fischl, van der Kouwe et al. 2004) (trained 

on 100 unrelated HCP subjects) and FreeSurfer’s mris_ca_label function. These tools utilize the 

surface registrations computed in the recon-all pipeline to transfer a group average atlas to subject 

space based on individual surface curvature and sulcal patterns. This method rendered a T1w space 

volume for each subject. For use with functional data, the parcellation was resampled to 2mm T1w 

space. This process could be repeated for other resolutions of the parcellation (i.e. Schaefer100). 

Functional network preprocessing 

Each preprocessed BOLD image was linearly detrended, band-pass filtered (0.008-0.08 

Hz) (Parkes, Fulcher et al. 2018), confound regressed and standardized using Nilearn signal.clean, 

which removes confounds orthogonally to the temporal filters (Lindquist, Geuter et al. 2019). The 

confound regression employed (Satterthwaite, Elliott et al. 2013) included 6 motion estimates, 

time series of the mean CSF, mean WM, and mean global signal, the derivatives of these nine 

regressors, and the squares these 18 terms. Furthermore, a spike regressor was added for each 

fMRI frame exceeding a motion threshold (HCP = 0.25 mm root mean squared displacement; 

MSC, HBN = 0.5 mm framewise displacement). This confound strategy has been shown to be 

relatively effective option for reducing motion-related artifacts (Parkes, Fulcher et al. 2018). 
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Following preprocessing and nuisance regression, residual mean BOLD time series at each node 

were recovered. eFC matrices for each subject were computed and then averaged across subjects, 

to obtain a representative eFC matrix for each dataset. This processing was performed for both 

resting state and movie watching data. 

Edge graph construction 

Constructing networks from fMRI data (or any neural time series data) requires estimating 

the statistical dependency between every pair of time series. The magnitude of that dependency is 

usually interpreted as a measure of how strongly (or weakly) those voxels or parcels are 

functionally connected to each other. By far the most common measure of statistic dependence is 

the Pearson correlation coefficient. Let 𝒙𝒙𝑖𝑖 =  [𝑥𝑥𝑖𝑖(1), . . . , 𝑥𝑥𝑖𝑖(𝑇𝑇)] and 𝒙𝒙𝑖𝑖 =  �𝑥𝑥𝑖𝑖(1), . . . , 𝑥𝑥𝑖𝑖(𝑇𝑇)� be the 

time series recorded from voxels or parcels 𝑖𝑖 and 𝑗𝑗, respectively. We can calculate the correlation 

of 𝑖𝑖 and 𝑗𝑗 by first z-scoring each time series, such that at 𝒛𝒛𝑖𝑖 = 𝒙𝒙𝑖𝑖−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

 where 𝜇𝜇𝑖𝑖 = 1
𝑇𝑇
∑ 𝑥𝑥𝑖𝑖(𝑒𝑒)𝑟𝑟  and 𝜎𝜎𝑖𝑖 =

� 1
𝑇𝑇−1

∑ (𝑥𝑥𝑖𝑖(𝑒𝑒) − 𝜇𝜇𝑖𝑖)2𝑟𝑟  are the time-averaged mean and standard deviation. Then, the correlation of 

𝑖𝑖 and 𝑗𝑗 can be calculated as: 𝐸𝐸𝑖𝑖𝑖𝑖 = 1
𝑇𝑇−1

∑ �𝑧𝑧𝑖𝑖(𝑒𝑒) ∙ 𝑧𝑧𝑖𝑖(𝑒𝑒)�𝑟𝑟 . Repeating this this procedure for all pairs 

of parcels results in a node-by-node correlation matrix, i.e. an estimate of FC. If there are 𝑁𝑁 nodes, 

this matrix has dimensions [𝑁𝑁 ×  𝑁𝑁]. 

To estimate edge-centric networks, we need to modify the above approach in one small but 

crucial way. Suppose we have two z-scored parcel time series, 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑖𝑖. To estimate their 

correlation we calculate the mean their element-wise product (not exactly the average, because we 

divide by 𝑇𝑇 − 1 rather than 𝑇𝑇 ). Suppose, instead, that we never calculate the mean and simply 

stop after calculating the element-wise product. This operation would result in a vector of length 
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T whose elements encode the moment-by-moment co-fluctuations magnitude of parcels 𝑖𝑖 and 𝑗𝑗. 

For instance, suppose at time 𝑒𝑒, parcels 𝑖𝑖 and 𝑗𝑗 simultaneously increased their activity relative to 

baseline. These increases are encoded in 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑖𝑖 as positive entries in the tth position, so their 

product is also positive. The same would be true if 𝑖𝑖 and 𝑗𝑗 decreased their activity simultaneously 

(because the product of negatives is a positive). On the other hand, if 𝑖𝑖 increased while 𝑗𝑗 decreased 

(or vice versa), this would manifest as a negative entry. Similarly, if either 𝑖𝑖 or 𝑗𝑗 increased or 

decreased while the activity of the other was close to baseline, the corresponding entry would be 

close to zero. 

Accordingly, the vector resulting from the element-wise product of 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑖𝑖 can be viewed 

as encoding the magnitude of moment-to-moment co-fluctuations between 𝑖𝑖 and 𝑗𝑗. An analogous 

vector can easily be calculated for every pair of parcels (network nodes), resulting in a set of co-

fluctuation (edge) time series. With 𝑁𝑁 parcels, this results in 𝑁𝑁(𝑁𝑁−1)
2

 pairs, each of length 𝑇𝑇. From 

these time series we can estimate the statistical dependency for every pair of edges. We refer to 

this construct as edge functional connectivity (eFC). Let 𝑐𝑐𝑖𝑖𝑖𝑖 =  �𝑧𝑧𝑖𝑖(1)  ∙ 𝑧𝑧𝑖𝑖(1) , . . . , 𝑧𝑧𝑖𝑖(𝑇𝑇)  ∙ 𝑧𝑧𝑖𝑖(𝑇𝑇)� 

and 𝑐𝑐𝑢𝑢𝑢𝑢 =  [𝑧𝑧𝑢𝑢(1)  ∙ 𝑧𝑧𝑢𝑢(1) , . . . , 𝑧𝑧𝑢𝑢(𝑇𝑇)  ∙ 𝑧𝑧𝑢𝑢(𝑇𝑇)] be the time series for edges {𝑖𝑖, 𝑗𝑗} and {𝑢𝑢, 𝑣𝑣}, 

respectively. Then we can calculate eFC as: 

𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢 =
∑ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑒𝑒) ∙ 𝑐𝑐𝑢𝑢𝑢𝑢(𝑒𝑒)𝑟𝑟

�∑ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑒𝑒)2𝑟𝑟 �∑ 𝑐𝑐𝑢𝑢𝑢𝑢(𝑒𝑒)2𝑟𝑟
 

Here, the denominator is necessary to bound eFC to the interval [−1, 1]. 

Clustering algorithm 

In general, eFC matrices are much larger than traditional nodal FC matrices. While most 

clustering algorithms can be applied to hundreds or even thousands of observations, estimating 
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clusters for eFC (which consists of tens of thousands of observations, each paired with at least as 

many features), presents a computational challenge, especially if the aim is to explore the space of 

possible partitions. To address this issue and to cluster eFC, we developed a simple two-step 

clustering procedure that operates on a low-dimensional representation of the eFC matrix. 

First, we performed an eigen decomposition of the eFC matrix, retaining the top 50 

eigenvectors. These eigen-vectors were rescaled to the interval [−1, 1] by dividing each 

eigenvector by its largest magnitude element. Then simply clustered the rescaled eigenvectors 

using a standard k-means algorithm with Euclidean distance. We varied the number of 

communities, 𝑘𝑘, from 𝑘𝑘 =  2 to 𝑘𝑘 =  20, repeating the clustering algorithm 250 at each value. 

We retained as a representative partition the one with the greatest overall similarity to all other 

partitions. We note that the edge time series can be clustered directly and that, in general, the 

results were highly similar (Supplementary Figure 12). 

We note that, in general, other community detection algorithms could be used in place of 

k-means; our decision to use this algorithm was practically motivated, as k-means exhibited 

significantly faster runtimes than other algorithms, e.g. modularity maximization (Newman and 

Girvan 2004) and Infomap (Rosvall and Bergstrom 2008), which have been used extensively in 

previous work to derive communities in both functional and structural brain networks. 

Community overlap metrics 

The clustering algorithm partitioned edges into non-overlapping clusters. That is, every 

edge {𝑖𝑖, 𝑗𝑗}, where 𝑖𝑖, 𝑗𝑗 ∈  {1, . . . ,𝑁𝑁}, was assigned to one of 𝑘𝑘 clusters. In this list of edges, each 

node appeared 𝑁𝑁 − 1 times (we excluded self-connections). Region 𝑖𝑖’s participation in cluster 𝑐𝑐 

was calculated as: 
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𝑒𝑒𝑖𝑖𝑐𝑐 =
1

𝑁𝑁 − 1
�𝛿𝛿�𝐸𝐸𝑖𝑖𝑖𝑖 , 𝑐𝑐�
𝑖𝑖≠𝑖𝑖

 

where 𝐸𝐸𝑖𝑖𝑖𝑖 ∈  {1, . . . ,𝑘𝑘} was the cluster assignment of the edge linking nodes 𝑖𝑖 and 𝑗𝑗 and 𝛿𝛿(𝑥𝑥, 𝐸𝐸) is 

the Kronecker delta, whose value is 1 if 𝑥𝑥 =  𝐸𝐸 and 0 otherwise. By definition, ∑ 𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐 = 1, and we 

can treat the vector 𝑒𝑒𝑖𝑖  =  [𝑒𝑒𝑖𝑖1, . . . ,𝑒𝑒𝑖𝑖𝑘𝑘] as a probability distribution. The entropy of this distribution 

measures the extent to which region i’s community affiliations are distributed evenly across all 

communities (high entropy and high overlap) or concentrated within a small number of 

communities (low entropy and low overlap). We calculate this entropy as: 

ℎ𝑖𝑖 = −�𝑒𝑒𝑖𝑖𝑐𝑐 log2 𝑒𝑒𝑖𝑖𝑐𝑐
𝑐𝑐

 

To normalize this measure and bound it to the interval [0,1], we divided by log2 𝑘𝑘. We refer to 

this measure as community entropy and interpret this value as an index of overlap. Intuitively, as 

the distribution of edge community assignments approaches uniformity its normalized entropy is 

close to 1; when edges are assigned to a single community normalized entropy is closer to 0. 

Edge community similarity 

When we cluster an eFC matrix, we assign each edge to a single community. These edge 

communities can be rearranged into the upper triangle of a 𝑁𝑁 ×  𝑁𝑁 matrix, 𝚾𝚾, whose element 𝑥𝑥𝑖𝑖𝑖𝑖 

denotes the edge community assignment of the edge between nodes 𝑖𝑖 and 𝑗𝑗. The ith column of 𝚾𝚾, 

which we denote as 𝑥𝑥𝑖𝑖  =  [𝑥𝑥1𝑖𝑖 , . . . , 𝑥𝑥𝑁𝑁𝑖𝑖], encodes the community labels of all edges in which node 

𝑖𝑖 participates. Note that we do not consider self-edges, so the element 𝑥𝑥𝑖𝑖𝑖𝑖 is left empty. 

From this matrix, we can compare the edge communities of nodes 𝑖𝑖 and 𝑗𝑗 by calculating 

the similarity of vectors 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖. Here, we measure that similarity as the fraction of elements in 

both vectors with the same community label. That is: 
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𝑠𝑠𝑖𝑖𝑖𝑖 =
1

𝑁𝑁 − 2
� 𝛿𝛿�𝑥𝑥𝑖𝑖𝑢𝑢, 𝑥𝑥𝑖𝑖𝑢𝑢�
𝑢𝑢≠𝑖𝑖,𝑖𝑖

 

Here, 𝛿𝛿(𝑥𝑥, 𝐸𝐸) is the Kronecker delta and takes on a value of 1 when 𝑥𝑥 and 𝐸𝐸 have the same value, 

but is zero otherwise. Note that the normalization of over 𝑁𝑁 −  2 because we ignore the self-

connections 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑖𝑖𝑖𝑖. Repeating this comparison for all pairs of nodes generates the similarity 

matrix, 𝑺𝑺 =  �𝑠𝑠𝑖𝑖𝑖𝑖�. 

Estimating overlapping community structure from nFC 

In this paper we applied a clustering algorithm to eFC, which generates overlapping nodal 

communities. In contrast, field-standard community detection algorithms like Infomap (Rosvall 

and Bergstrom 2008) and modularity maximization (Newman and Girvan 2004) partition nFC into 

non-overlapping communities. However, there are non-standard methods that can be applied 

directly to nFC that generate overlapping communities. These include but are not limited to 

stochastic variational inference for the mixed-membership stochastic block model (Gopalan and 

Blei 2013) (SVINET), the Affiliation Graph Model (Yang and Leskovec 2014) (AGMFIT), 

Bayesian non-negative matrix factorization (Psorakis, Roberts et al. 2011) (NMF), and thresholded 

weighted link clustering (Ahn, Bagrow et al. 2010, de Reus, Saenger et al. 2014) (ThrLink). 

We applied these methods to group-representative nFC data from the HCP dataset (with 

the number of communities fixed at 𝑘𝑘 =  10) and compared their patterns of overlap with those 

obtained from clustering eFC. In general, each of these alternative methods require that the input 

connectivity matrix contain only positively weighted or binary edges, necessitating that it be 

thresholded. To do this, we computed the maximum spanning tree of the nFC matrix (to ensure 

that all nodes form a single connected component) and added edges to this backbone to reach a 

desired network density. We repeated the following comparisons across densities of 10%, 20%, 
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30% and 40% (a range in which negative edges were not retained). For each method, 250 

overlapping community structures were recovered. We describe each method in more detail, 

below, and summarize the results in Supplementary Figure 17. 

The SVINET method employs a mixed-membership stochastic block model algorithm, 

which is a generative model of network communities based on grouping nodes with similar 

connectivity patterns (Gopalan and Blei 2013). This method has been previously used to 

demonstrate the areas of the brain that participate in many cognitive functions also participate in 

proportionally more communities (Najafi, McMenamin et al. 2016). This method operates on 

binary connections; thus, edge weights were discarded. Each run was seeded with a random integer 

and run for 250 iterations with link-sampling. Resulting community assignments with at least 5% 

membership likelihood were recorded as a membership affiliation. 

The AGMFIT method employs a generative model of communities based on a bipartite 

graph structure, linking nodes to communities (Yang and Leskovec 2014). The central concept of 

the AGMFIT algorithm is that communities overlap in a “tiled” manner, meaning that nodes with 

overlapping community membership are more densely interconnected than non-overlapping 

nodes. This model of overlapping structure has been shown to accurately capture core-periphery 

structure in large-scale social networks. This method operates on binary connections; thus, edge 

weights were discarded. Each run was seeded with a random integer. 

The NMF method employs a probabilistic data reduction model that results in a soft 

partitioning of the network (Psorakis, Roberts et al. 2011). This method has been shown to avoid 

over-fitting communities in synthetic random graph data where no real communities exist. Edge 

weights were retained for this method and diagonal entries of the adjacency matrix were set to the 

nodal degree (as suggested in the documentation). Each run was randomly initialized. Runs that 
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did not produce the desired number of communities were rejected and sampling continued until 

250 partitions were obtained. Resulting community assignments with at least 5% membership 

likelihood were recorded as membership affiliation. 

For the ThrLink method, we created a weighted line graph from the thresholded adjacency 

matrix (Evans and Lambiotte 2009). This matrix was clustered using the generalized Louvain 

algorithm with the resolution parameter, γ, tuned to produce the desired number of communities. 

To tune this parameter, a range of values were used to recover communities of varying sizes. The 

minimum and maximum values producing the desired number of communities were recorded. 

Uniformly randomly sampled γ values within this range were used to recover communities of the 

weighted line graph. Runs that did not produce the desired number of communities were rejected 

and sampling continued until 250 partitions were obtained. Community memberships of the 

weighted line graph were projected to the nodes to gather the overlapping structure. 

We compare community entropy against a series of related statistics that can be easily 

derived from nFC as opposed to eFC. These include static measures of participation coefficient 

(Guimera and Nunes Amaral 2005) and versatility (Shinn, Romero-Garcia et al. 2017) and the 

“dynamic” measure of flexibility (Bassett, Wymbs et al. 2011, Pedersen, Zalesky et al. 2018). We 

calculated static measures using a group-representative nFC matrix that was the average nFC data 

from all scans and subjects. Flexibility was calculated first at the single subject level where time 

series were divided into 10 non-overlapping windows containing L = 120 samples each 

(approximately 86 seconds) and subsequently averaged across individuals. Details of how each 

measure was calculated are presented below. 
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Participation coefficient measures the uniformity with which a node’s connections are 

distributed across (non-overlapping) communities. Values closer to 1 indicate that connections are 

distributed evenly. Participation coefficient is calculated as: 

𝑒𝑒𝑐𝑐𝑖𝑖 = 1 −��
𝑘𝑘𝑖𝑖𝑟𝑟
𝑘𝑘𝑖𝑖
�
2

 

Here, 𝑘𝑘𝑖𝑖 is the total strength of node 𝑖𝑖 and 𝑘𝑘𝑖𝑖𝑟𝑟 is the strength of node 𝑖𝑖 to community 𝑠𝑠. We 

calculated several variants of participation coefficient in which we varied how communities were 

defined. First, we treated the system labels from Schaefer, Kong et al. (2018) as a communities 

and calculated participation coefficient with respect to these labels. We also tested a more data-

driven procedure in which we used multiscale modularity maximization (Reichardt and Bornholdt 

2006) to detect the communities of the nFC matrix. In doing so, we used a uniform null model 

(Traag, Van Dooren et al. 2011, Bazzi, Porter et al. 2016), which is appropriate for correlation 

matrices and has been used extensively in the neuroimaging community (see Betzel, Bertolero et 

al. (2019) as just one example), and systematically varied the resolution parameter, γ over the 

interval [0, 0.5] (repeating a Louvain-like algorithm 1000 times). In all cases, we separately 

calculated participation coefficient using for positive and negative connection weights. 

We also used the detected communities to estimate regional versatility (Shinn, Romero-

Garcia et al. 2017), which measures the variability of a node’s community assignment across 

repeated runs of a community detection algorithm. We calculated versatility as: 

𝑣𝑣𝑖𝑖 =
∑ sin�𝜋𝜋 ∙ 𝑒𝑒𝑖𝑖𝑖𝑖�𝑖𝑖

∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
 

For a given value of γ, 𝑒𝑒𝑖𝑖𝑖𝑖 denotes the fraction of times that nodes 𝑖𝑖 and 𝑗𝑗 were co-assigned to the 

same community. We calculated versatility with respect to communities detected using the same 

values of γ. 
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Lastly, we calculated network flexibility, which measures how frequently a brain region 

changes communities across time. We modeled FC estimated within each non-overlapping 

window as a layer in a multilayer network, and a used multilayer modularity maximization 

algorithm (Mucha, Richardson et al. 2010) to cluster all layers simultaneously. The result is a node-

by-layer matrix of communities, whose element 𝐸𝐸𝑖𝑖,𝑟𝑟 indicates the community assignment of node 

𝑖𝑖 in layer 𝑠𝑠. From this matrix, we calculate flexibility as: 

𝑓𝑓𝑖𝑖 = 1 −
1

𝑇𝑇 − 1
�𝛿𝛿�𝐸𝐸𝑖𝑖,𝑟𝑟,𝐸𝐸𝑖𝑖,𝑟𝑟+1�
𝑇𝑇−1

𝑟𝑟=1

 

Here, 𝑇𝑇 =  10 is the number of layers and 𝛿𝛿�𝐸𝐸𝑖𝑖,𝑟𝑟,𝐸𝐸𝑖𝑖,𝑟𝑟+1� is the Kronecker delta function and is 

equal to 1 when 𝐸𝐸𝑖𝑖,𝑟𝑟 =  𝐸𝐸𝑖𝑖,𝑟𝑟+1 and is zero otherwise. In essence, flexibility measures the fraction 

of times that a node’s community assignment changes in successive layers (time points). In 

addition to the γ resolution parameter, the output of the multilayer modularity maximization 

algorithm depends upon a second parameter, ω, that controls the consistency of communities 

across layers. We systematically varied these parameters over the ranges 𝛾𝛾 =  [0, 0.25, 0.5] and 

𝜔𝜔 =  [0.1, 0.5, 1] and calculated flexibility for all possible {𝛾𝛾,𝜔𝜔} pairs. 

Graph-theoretic analysis of eFC 

We applied graph-theoretic measures to the eFC matrix to characterize its topological 

features (Rubinov and Sporns 2010). We focused on local measures that characterize features at 

the level of a network’s nodes (in the case of eFC, nodes represent pairs of brain regions). To 

visualize these measures, we reshaped their values into the upper triangle of a region-by-region 

matrix (Supplementary Figure 20). We focused on several different measures: 
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1. Degree (±) measures separately the total number of positive and negative connections 

incident upon a given node in the eFC network. 

2. Strength (±) is the weighted analog of degree and measures separately the total weight of 

positive and negative connections incident upon a given node in the eFC network. Both 

degree and strength tell us, on average, how strongly or weakly a given node in the eFC 

network interacts with other nodes in the eFC network. 

3. Participation coefficient (±) measures the extent to which a node’s connections in the eFC 

network are concentrated within or distributed across edge communities. Values close to 

zero mean that a given node in the eFC network interacts primarily with other nodes in its 

own edge community; values close to one mean that given node in the eFC network 

interactions uniformly with all edge communities. 

4. Betweenness centrality measures the number of shortest paths between pairs of nodes in 

the eFC network that pass through a given node. In general, betweenness centrality implies 

that a particular node in the eFC network may occupy a position of importance in the 

network. 

5. Clustering coefficient measures the extent to which node’s neighbors in the eFC network 

are also connected to one another. 

Exploratory analyses of brain-behavior relationships using eFC 

Correlations of eFC weights with behavior 

We also used eFC data to explore brain-behavior relationships (Smith, Nichols et al. 2015). 

The overall pipeline begins by calculating each subjects edge-by-edge eFC matrix (Supplementary 

Figure 21a) and representing its upper triangle elements as a vector (Supplementary Figure 21b). 

This procedure is repeated for all subjects in the HCP 100 unrelated subjects cohort so that the 
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vectorized eFC is stored in a single matrix (Supplementary Figure 21c). In parallel, we z-scored 

subjects’ behavioral data and performed principal components analysis, resulting in a set of scores 

that characterize orthogonal modes of behavioral variability (Supplementary Figure 21d; see 

Supplementary Table 1 for more details). We the compute the correlation of scores with rows from 

the matrix of vectorized eFC matrices (each row represents the eFC for a particular edge-edge 

interaction; (Supplementary Figure 21e)). Repeating this procedure for all rows results in a vector 

of correlation coefficients that can be reshaped to fit into the upper triangle of an edge-by-edge 

matrix, resulting in a correlation map (Supplementary Figure 21f). This entire process is repeated 

separately for principal components 1-10 and for scans REST1 and REST2. 

We compare the correlation maps from REST1 and REST2 and find good correspondence 

(Supplementary Figure 21,h,i). To better interpret these maps, we adopted a community-level 

analysis (see Supplementary Figure 22 for a short schematic). Briefly, this involves aggregating 

and averaging correlation coefficients by edge communities (Supplementary Figure 22b), 

comparing the average correlation coefficients against a null distribution obtained using a 

constrained permutation test (Supplementary Figure 22c), and performing statistical evaluation, 

controlling for false-discovery rate at the level of communities (Supplementary Figure 22d). 

Further details of the permutation test can be found in Supplementary Figure 18. 

Using this community-level approach, we investigated the relationship between eFC and 

PC1 in greater detail. We note that PC1 explains approximately 17% of the variance in behavioral 

data (almost three times as much as PC2) and defines a task accuracy/reaction time axis of behavior 

(Supplementary Figure 21j,k). We include brief descriptions of the other PCs in Table. S1. We 

show the correlation map for PC1 with eFC in Supplementary Figure 21l. To illustrate how the 

community-level analysis facilitates a clearer interpretation of brain-behavior correlations, 
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consider eFC of edges in communities 7 and 9 (the block highlighted in Supplementary Figure 

21l). Community 7 links higher order cognitive areas in the control and default mode networks 

with visual cortex, forming an “executive-visual” complex, while community 9 links control and 

default mode to the salience/ventral attention network as part of an “executive-insular” complex 

(Supplementary Figure 21m,n). Accordingly, the positive correlation eFC between community 7 

and 9 with PC1 means that as the edges within those communities become more synchronized 

across time (stronger eFC) the value of PC1 increases proportionally (Supplementary Figure 

21o,p). 

In addition to modeling brain-behavior relationships using the original eFC data, we 

repeated this same analysis with residual eFC after regressing out the effect of nFC. Specifically, 

we used the procedure described in Figure 2c to generate an approximation of eFC using only nFC 

data. We then regressed out the approximated eFC from the actual eFC and assessed brain-

behavior relationships using the residual values. As with the previous analysis, we found that 

brain-behavior correlation maps were reproducible across scan sessions (Supplementary Figure 

23). 

Correlations of regional statistics with behavior 

We also compared eFC and nFC brain-behavior relationships by deriving a series of 

regional (local) network statistics from each and calculating the correlations of behavioral 

measures with these statistics (Supplementary Figure 24). We note that the measures derived from 

both nFC and eFC have identical dimensionality, effectively accounting for any differences in the 

dimensionality of the original nFC and eFC matrices. In general, we found that the correlation 

patterns estimated using nFC-derived statistics were highly similar to one another, while the 

correlation pattern derived from the eFC statistic was dissimilar (Supplementary Figure 24f). 
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These findings demonstrate that eFC has the potential to uniquely explain patterns of inter-

individual variability not currently explainable by nFC, opening new opportunities for studying 

individual differences in subjects’ cognitive, developmental, and clinical states. 

Modeling eFC in terms of nFC 

eFC and nFC are both derived from the same substrate: regional fMRI BOLD time series. 

Can the eFC between edges {𝑖𝑖, 𝑗𝑗} and {𝑢𝑢, 𝑣𝑣} be easily modeled in terms of nFC? We tested whether 

this was the case using linear regression to explain the eFC between pairs of edges {𝑖𝑖, 𝑗𝑗} and {𝑢𝑢, 𝑣𝑣} 

using information about the pairwise nFC among the same set of nodes: {𝑖𝑖, 𝑗𝑗}, {𝑖𝑖,𝑢𝑢}, {𝑖𝑖, 𝑣𝑣}, {𝑗𝑗,𝑢𝑢}, 

{𝑗𝑗, 𝑣𝑣}, and {𝑢𝑢, 𝑣𝑣}. We considered two classes of models. The first modeled eFC in terms of the six 

nFC weights: 

𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢 = 𝛽𝛽1𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑢𝑢 + 𝛽𝛽3𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑢𝑢 + 𝛽𝛽4𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑢𝑢 + 𝛽𝛽5𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑢𝑢 + 𝛽𝛽6𝐸𝐸𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢 + 𝛽𝛽0 + 𝜀𝜀 

The second modeled eFC in terms of nFC interactions: 

𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖,𝑢𝑢𝑢𝑢 = 𝛽𝛽1�𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢� + 𝛽𝛽0 + 𝜀𝜀 

In this model, we systematically varied the interaction term, 𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢, so that we tested all 

possible pairs of edges. 

In general, we found that neither model 1 nor model 2 could fully reproduce eFC. Model 

1 performed particularly poorly (𝐸𝐸 =  0.21). The results of model 2 were more varied. When all 

nodes were represented in the interaction term, e.g. 𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢, the model performed well 

(𝐸𝐸 =  0.72 ±  0.05), consistent with what we reported in Figure 2c. When any node is repeated, 

e.g. 𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑛𝑛𝑖𝑖𝑢𝑢, the model performed poorly (𝐸𝐸 =  0.06 ±  0.04). 

Collectively, these observations suggest that eFC is not well approximated using linear 

combinations of nFC, but with non-linear transformations and inclusion of interaction terms, nFC 
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can approximate eFC. However, these transformations are unintuitive and the approximation still 

fails to fully explain variance in eFC. 
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CHAPTER 4: EDGY BRAINS: A REVIEW OF EDGES FOR NETWORK 

NEUROSCIENCE 

Abstract 

Network models describe the brain as sets of nodes and edges that represent its distributed 

organization. So far, nearly all discoveries in network neuroscience have prioritized insights that 

highlight distinct groupings and specialized functional contributions of the network’s nodes. 

However, between the nodes exists a web of relationships, formed by the network’s edges, that 

crucially document how the nodes relate to each other. Here, we underscore the importance of 

brain network edges for understanding distributed brain organization. Edges can represent 

different types of relationships, which can fundamentally alter how we comprehend and analyze a 

brain network. By focusing on the edges, and the higher-order or dynamic information they can 

chracterize, we bring attention to how brain organization can be found beyond the nodes.  

Introduction 

Modern neuroscience has come to appreciate the complexity of the brain’s wiring structure 

and functional dynamics. Increasingly, neuroscientists employ the tools of network science to 

model the brain as a network, a mathematical representation of data well suited to investigate 

complex systems (Bullmore and Sporns 2009, Bassett and Sporns 2017). Brain networks can 

reveal many aspects of brain structure and function, including hierarchical organization (Zamora-

Lopez, Zhou et al. 2010), clusters and modules (Betzel, Medaglia et al. 2018), or information flow 

and communication (Avena-Koenigsberger, Misic et al. 2018). Approaching the brain as a 

network, a connectome (Sporns, Tononi et al. 2005) composed of distinct elements and their 

interrelationships, naturally integrates local and global perspectives, linking the roles of individual 
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network elements to distributed function. In essence, networks map neuronal architecture from 

neurons, neural populations, and large-scale regions, to their mutual relationships (Park and Friston 

2013).  

There are many ways to map and represent connectomes. For a select few “model” 

organisms the micro-scale, single neuron networks of the compete nervous system have been 

meticulously documented via electron microscopy (White, Southgate et al. 1986, Ryan, Lu et al. 

2016). Other approaches, using techniques that afford less spatial resolution while offering broader 

coverage, have yielded meso and macroscale connectomes across many species, including 

humans. For example, noninvasive imaging allows the brain to be represented as a network of 

inferred paths of axonal tracts through the white matter (Hagmann, Cammoun et al. 2008), of 

morphometric similarity between parts of the cortex (Alexander-Bloch, Raznahan et al. 2013, 

Seidlitz, Vasa et al. 2018), or of functional correlation of intrinsic hemodynamic fluctuations 

across time (Biswal, Mennes et al. 2010, Gratton, Laumann et al. 2018). Brain networks provide a 

common modeling framework enabling comparisons across data modality, scale, and species.  

The nodes are generally taken to represent distinct neural elements, such as neurons, neural 

populations, or regions, and the edges record the relationships between these elements. 

Fundamentally, these two parts of the network model are inseparable. Nodes would not connect 

without edges, and edges would be nonsensical without nodes. Yet, when applied to the brain, 

networks are often used as a vehicle to describe and differentiate the nodes. Key concepts are hubs 

or “important nodes”, which integrate information, or dense clusters or coherent communities of 

nodes, that serve specialized functional roles. Furthermore, we obtain distributions of measures 

like clustering or participation coefficient, to associate with certain traits or characteristics. Less 

heralded are the edges, which provide crucial information to make these nodal network 



 

138 

 

assessments. The focus on the nodal characteristics extends prevailing trends in the long history 

of brain mapping, which has been dominated by the search for localized neural elements that relate 

to specific functions (Raichle 2009).  

Even though edges are half of the network model, many issues concerning the brain’s 

interrelationships have so far been underappreciated. The edges of the brain, and the topology they 

collectively form, are the information that elevate static maps of the brain, into wiring diagrams 

capable of supporting the functional dynamics of the system (Sporns 2012). Here we shine a 

spotlight on brain network edges, surveying the ways in which information located between the 

nodes can be used to understand brain network organization. We begin by clarifying that the type 

of edge, supported by underlying neural data, is consequential for the downstream network 

analyses. Then, we review the various constructs that edges can jointly form, which are useful 

because they can capture relationships that extend beyond pairwise interactions. We cover the 

importance of edges for studying brain communication and briefly review ways in which 

communication dynamics evolve over time at the edge level. Finally, we look to the future, at a 

few new developments for interpreting information at the edge level. Overall, we endeavor to bring 

attention to the importance of brain network edges, and to demonstrate the value in carefully 

considering the information that can be resolved at the edges.   

Network Primer  

Network definition and construction 

Networks offer a universal language to describe complex systems with many interacting 

parts. The basic ingredients for any network are its nodes and edges. The set of N nodes describes 

the discrete units of a system, whereas the E edges express the relationships that can be measured 
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between the nodes. While the definition of networks as sets of nodes and edges is universal, which 

real-world constructs are taken to be nodes and which as edges depends on assumptions and 

interpretations that guide the construction of the network model (Butts 2009). Depending on the 

system being modeled, edges may be binary or may carry a weight. Weights may be both positive 

and negative, and they may express directed or undirected relations. In many real-world networks, 

like a social network, the subway map, or a power grid, these basic network ingredients are 

generally well-defined and accessible to data collection. In contrast, defining the nodes and edges 

of a brain network is less straightforward.  

Aside from the micro-scale, where it could be argued that nodes and edges can 

unambiguously be represented as neurons and synaptic contacts, representing brain data as a 

network requires choosing from a range of reasonable node definitions and picking a valid metric 

for their interrelationships. As such, it has been demonstrated that definition of nodes and nodal 

parcellations can significantly influence the results of downstream network analyses (Wang, Wang 

et al. 2009, Zalesky, Fornito et al. 2010, Arslan, Ktena et al. 2018, Messe 2020). Edge definition 

is just as consequential. Neuroscientists can choose from a wide range of instruments and 

techniques to collect neural data. These choices determine how the constructed network model 

relates to the brain (Bassett, Zurn et al. 2018). Focusing on the brain’s interrelationships, we can 

broadly classify edges as documenting connectivity or similarity between the brain’s nodes.  

Connectivity 

Edges of connectivity quantify the notion of a material linkage or contact, supporting flow, 

spread, or communication. Depending on data modality, connectivity can be resolved from the 

micro- (White, Southgate et al. 1986) to the macroscale (Hagmann, Cammoun et al. 2008), 

providing varying levels of evidence of a true connection at each scale. At the microscale, edges 
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represent biophysically effective connections such as a synapse or gap junction, resolved with 

techniques such as electron microscopy or through light-microscopic labeling and imaging (Motta, 

Berning et al. 2019). At increasing scales, neural data can document coarser patterns of 

connectivity, which traverse the brain’s white matter. For example, tract tracing can resolve distant 

interregional synaptic connectivity (Markov, Ercsey-Ravasz et al. 2014, Gamanut, Kennedy et al. 

2018). By informatically collating the literature of tract tracing experiments, ordinal edges of 

connection evidence can be formed (Kotter 2004, Bota, Sporns et al. 2015). At the scale of 

millimeters, bundles of topographically organized axonal paths through the white matter, 

commonly referred to as tracts, can be estimated via tractography (Jbabdi, Sotiropoulos et al. 2015) 

and can serve to quantify connectivity (Sotiropoulos and Zalesky 2019, Yeh, Jones et al. 2020). 

Common to these edge definitions is a notion of anatomical substrate enabling between-node 

communication. Using functional data, the effective connectivity can be estimated, via methods 

that establish statistical or model-based causality between the dynamic nodal signals (Valdes-Sosa, 

Roebroeck et al. 2011, Reid, Headley et al. 2019). Ultimately, edges of connectivity document the 

potential for one node to influence another, made possible by estimated anatomical linkage. 

Similarity 

Edges of similarity quantify the association between features relating to nodes. Computing 

the statistical similarity (or distance) between each pair of nodal feature sets forms a dense 

similarity matrix, which may be interpreted as a network. Notably, the feature sets at each node 

can reflect datapoints collected across space or time, which modulates the interpretation of such 

edges. Using imaging or histological observations, neuroanatomical features can be sampled at 

each node, including for example cortical thickness (Carmon, Heege et al. 2020), layer intensity 

profile (Paquola, Vos De Wael et al. 2019), or a collection of morphometric features (Seidlitz, 
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Vasa et al. 2018). These features can then be statistically compared to create edges that represent 

the similarity of feature sets. The strength of such anatomical similarity edges could point to shared 

developmental or genetic influence (Alexander-Bloch, Giedd et al. 2013). Structural similarity 

between regions, which can reflect cytoarchitectonic similarity, is thought to relate to underlying 

connectivity (Goulas, Majka et al. 2019). Another similarity-based approach quantifies the 

correlated gene expression between areas of cortex (Richiardi, Altmann et al. 2015), made possible 

by extensive brain atlases documenting genetic profiles in stereotaxic space (Ng, Bernard et al. 

2009, Hawrylycz, Lein et al. 2012). Edges based on correlated gene expression from a set of genes 

known to be enriched in supra-granular cortex align with canonical system organization (Krienen, 

Yeo et al. 2016) and show an increased association with edges of structural covariance (Romero-

Garcia, Whitaker et al. 2018). The informatic collation of functional activation experiments 

provides across-study evidence that certain region pairs co-activate more readily than others, 

forming meta-analytic co-activation edges (Crossley, Mechelli et al. 2013). 

Extracting timeseries at neural elements and comparing the similarity of these sequential 

feature sets is a widely employed approach to interrogate brain organization. Neural activity can 

be recorded across a range of resolutions and frequencies, and in turn, can serve as the basis of 

many types of bivariate similarity calculations (Smith, Miller et al. 2011, see also Basti, Nili et al. 

2020). Neural recordings with high temporal precision, such as electrical potentials or magnetic 

fields (Hari and Puce 2017), provide data allowing the resolution of directed, non-linear, and/or 

information theoretic edge weights (Astolfi, Cincotti et al. 2007, Ince, Giordano et al. 2017). Brain 

signals recorded a lower temporal resolution, such as the bold oxygen level dependent (BOLD) 

signal or Ca2+ recordings, can be compared using Pearson correlation or wavelet coherence. Such 

edges have been referred to as functional connectivity, but this nomenclature has recently become 
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controversial given the lack of causal evidence that correlation provides (c.f. Reid, Headley et al. 

2019). A looming question in the realm of time series comparison is that of the dynamics of such 

relationships, and if these edges represent stationary relationships (Lurie, Kessler et al. 2020). 

Relatedly, the similarity of dynamics could be influenced by cognitive state, raising the question 

whether the recorded edge represents a trait or state measurement (Geerligs, Rubinov et al. 2015). 

Dynamics at each node can also be used to collect large feature sets of time series properties 

(Fulcher and Jones 2017), which can be used to compare temporal profile similarity (Shafiei, 

Markello et al. 2020); an edge measure that is distinct from correlation and well-suited to study 

dynamical hierarchies (Ito, Hearne et al. 2020).  

Measurements of attributes that annotate existing edges can also be taken between neural 

elements. Whereas edges of similarity and connectivity provide a quantification of the relationship 

between two nodes, already-existing edges can be associated with metrics representing additional 

features, possibly from another modality. This approach allows for network edges to carry 

annotated layers of data derived from sources not directly related to the network construction 

process. Attributes such as Euclidean distance (Cherniak 1994), connection cost (Kaiser and 

Hilgetag 2006), or indices of myelination status (Mancini, Giulietti et al. 2018, Boshkovski, 

Kocarev et al. 2020) are all examples of attributes that can be ascribed to already existing edges.  

Edgy network analysis 

Once a brain network is constructed, common practice is to use the tools of network science 

and graph theory to describe the organizational patterns of the data (Rubinov and Sporns 2010). 

In many instances, network analyses are used to obtain information per node, asking questions 

like: Which nodes are highly connected? Or how can these nodes be meaningfully grouped? Such 

approaches use information rendered at the node level to differentiate parts of the network.  
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Often underappreciated are network analyses that result in information at the edge level. 

Paths that are taken on the network, such as a shortest path or random walk, can be analyzed based 

on the sequence of edges the path traverses. For example, the edge betweenness centrality 

describes the percentage of shortest paths that take a specific node. Paths can also be classified 

based on the type of edges traversed, such as edges within the putative rich-club, to form path 

motifs (van den Heuvel, Kahn et al. 2012). Other types of network paths, such as random walks or 

biased random walks, can be used to estimate the potential for communication between nodes, 

annotating each edge with a valuation of this potential (Goni, van den Heuvel et al. 2014, Seguin, 

Tian et al. 2020). Edge measures can also be obtained by removing select edges and measuring the 

effect on global network statistics (de Reus, Saenger et al. 2014, Ardesch, Scholtens et al. 2019). 

This “edge-lesioning” approach can be applied to a range of common network measures, even if 

they produce measurements per node like clustering coefficient, since the global effect of edge 

removal is assessed.  

Network science also offers approaches to represent a network of edges, to focus on how 

the edges relate to each other. One approach is to construct a line graph which documents how 

edges share nodes. Whereas a traditional network documents adjacency, or how nodes are linked 

via edges, a line graph documents incidence, or how edges are linked via common nodes (Evans 

and Lambiotte 2009). For the line graph network representation, the nodes consist of edges from 

the original network. In practice, the line graph has matrix dimensions of E-by-E, where E is the 

number of unique edges of the original network. A notable property of line graphs is that high 

degree nodes in the original network become dense cliques in the line graph. Apart from line 

graphs, the similarity of edge connection patterns can be obtained using a Jaccard index applied to 

edge connection patterns (Ahn, Bagrow et al. 2010). This also results in a E-by-E matrix. 
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Clustering link similarity matrices, or any E-by-E matrix, results in overlapping community 

structure at the level of nodes, where each node is affiliated with the communities assigned to its 

emanating edges. Clustering an E-by-E line graph of the brain reveals bilateral spatially coherent 

link communities, with differential connectivity scores per community, and community overlap 

that converged on nodes that are traditionally considered hubs (de Reus, Saenger et al. 2014).  

Some edgy brain network considerations  

Not all edges in the brain are alike. Accordingly, information about how an edge was 

constructed and the underlying relationship that the edge is intended to represent affects how the 

network should be analyzed. Take for example path-based measurements applied to brain 

networks. Paths over structural edges are intuitive, given that the path could represent hypothetical 

signal propagation over a physical substrate (Misic, Betzel et al. 2015, Avena-Koenigsberger, 

Mišić et al. 2017). For each path, its constituent edges and edge weights should reflect the cost of 

communication between nodes, such as distance, capacity, volume, or bandwidth. Often this is not 

the case, with structural edges commonly representing the magnitude of connectivity (i.e., large 

values are more connected). Therefore, prior to path analysis, such edge weights, like those 

estimated from tract-tracing or tractography, should be transformed with a logarithmic or inverse 

function to convert large weights into short distances.  

Paths over functional edges that denote the statistical similarity of time series are less 

intuitive than paths over edges of connectivity. What does a path over functional similarity 

measurements mean? One interpretation is that structural and functional edge weights are indeed 

positively associated (Honey, Sporns et al. 2009), so that paths over functional similarities are 

likely associated with underlying connectivity. However, given that measures such as Pearson’s 

correlation can be confounded by direct and indirect sources of variance in a networked setting 
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(Zalesky, Fornito et al. 2012, Sanchez-Romero and Cole 2021), this interpretation could be 

considered too charitable. Another approach for using functional edges to construct paths is to 

study the transient routes that appear along the underlying structural graph (Griffa, Ricaud et al. 

2017). Network paths and their derived measures should be interpreted differently based on edge 

type, as they likely capture different organizational features of a brain network.  

Another instance in which the edge definition influences network analysis is the case of 

surrogate data modeling, when an empirical network measurement needs to be compared to 

hypothetical, yet plausible, network topologies. Null or generative models should be able to create 

surrogate data that recapitulates certain network characteristics, but with a different pattern of 

edges (Vertes, Alexander-Bloch et al. 2012, Betzel, Avena-Koenigsberger et al. 2016, Faskowitz 

and Sporns 2020). Such null models are important, for example, for community detection. Within 

the modularity maximization formulation is a term for the expected number of connections under 

a null model. Commonly, the default option operates with the assumption that edges can be 

swapped, preserving the node degree (Maslov and Sneppen 2002, Betzel 2020). However, for brain 

networks constructed from statistical comparisons, there exist more suitable null models that 

account for signed edges (Rubinov and Sporns 2011, Almog, Buijink et al. 2019), or additionally, 

spatial information (Esfahlani, Bertolero et al. 2020). Even for structural networks, the degree-

preserving null model will alter the distribution of edges distances (Betzel, Medaglia et al. 2017). 

In applications of community detection and beyond, null models that account for the physical 

distance distribution of edges are a more accurate model of the brain, which is a spatially embedded 

network (Bassett, Greenfield et al. 2010, Roberts, Perry et al. 2016, Gollo, Roberts et al. 2018). 

Surrogate data that does not account for the distance distribution of edges will be less efficiently 

embedded, with longer connections than expected. Network science offers a range of null and 



 

146 

 

generative models which neuroscientists can choose from or modify, to better align with edge 

definition.   

Many observable real-world networks are sparse, in that relatively few edges exist out of 

all the possible pairwise node combinations (Barabási 2016). Estimates of connectivity between 

nodes is also observed to be sparse, a likely evolutionary outcome of wiring constraints (Bullmore 

and Sporns 2012, Bassett and Bullmore 2017). However, similarity assessments can be made 

between each pair of nodes, resulting in fully dense networks that are often also signed. Fully dense 

(and signed) networks present practical and conceptual challenges for network tools like 

community detection or shortest path estimation. Some practitioners may opt to selectively remove 

edges below a certain threshold to achieve a certain sparsity (Garrison, Scheinost et al. 2015, 

Fallani, Latora et al. 2017), across-group consensus (van den Heuvel, de Lange et al. 2017, Betzel, 

Griffa et al. 2019) or to retain a network feature such as a connected component or minimum 

spanning tree (Tewarie, van Dellen et al. 2015, Nicolini, Forcellini et al. 2020). Thresholding can 

induce biases and confounds (Zalesky, Fornito et al. 2012, Cantwell, Liu et al. 2020) in the overall 

network topology and therefore must be performed with justification. Applying a thresholding 

reflects a practitioner’s determination that certain edges should not be part of a network’s topology. 

Minimally, if a threshold is employed, the effect of thresholds with similar magnitude on the main 

findings should be understood. Given that methods to estimate connectivity or similarity are 

subject to noise (Yamashita, Yahata et al. 2019, Rheault, Poulin et al. 2020), the removal of some 

edges is within reason. Alternatively, a network model that incorporates noisy edges or imperfect 

graph observation could a fruitful future direction for network neuroscientists (Newman 2018, 

Young, Cantwell et al. 2020).  
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Networks are a universal phenomenon, and generally, the algorithms we apply to networks 

to uncover clustered, community, or scale-free organization are data agnostic. This means that 

network measures like the clustering coefficient are easy to compute on a power grid, a brain 

network, or any other sort of network in hand with a minimal set of assumptions (fulfilling the 

requirements of a simple graph, a network without self-loops and hyperedges). However, while it 

is possible to run the gambit of network tools on brain data, doing so without considering the neural 

data source and its relationship to the edges is unwise. As covered here, there are many ways to 

define interrelationships in the brain, and these different edge definitions possibly necessitate 

different analytic approaches. Therefore, incorporation of domain-specific neuroscience 

expertise—knowledge about the neural data source, and an understanding of how a network 

measure relates to the brain organization being modeled—is a key factor for studying brain 

networks. 

Edgy Constructs: From Motifs to Higher-Order Relations 

Edges on their own report a straightforward relational quantity. These quantities can be 

treated as independent features, to be associated with traits and behaviors through mass univariate 

testing, in what is sometimes referred to as a bag-of-edges approach or brain-wide association 

(Marek, Tervo-Clemmens et al. 2020, Chung, Bridgeford et al. 2021). However, edges may also 

be grouped together to form richer constructs that capture distributed patterns of brain 

organization. Small groups of edges form constructs that can be analyzed as building blocks or 

primitives of the complete network (Navlakha, Bar-Joseph et al. 2018). Mass univariate methods 

could fail to uncover these higher-order relationships, and even prove to be underpowered 

(Zalesky, Fornito et al. 2010), because they focus on edges as independent entities. Here we 
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describe edge-based constructs moving from more localized patterns such as motifs or connectivity 

fingerprints to more global patterns of brain network topology.  

Motifs 

Network motifs are subgraphs with a fixed number of nodes and differentiated by the 

pattern of edges falling between these nodes. For example, between three connected nodes, there 

are 13 topologically unique ways that edges (directed and unweighted) can be placed, forming 13 

motifs. The frequency of that each motif’s expression tells us about the network’s local building 

blocks (Song, Sjostrom et al. 2005, Sporns, Honey et al. 2007, Dechery and MacLean 2018). Motif 

frequencies are assessed using surrogate networks, to gauge the under- or over-expression of 

certain motifs (Horvat, Gamanut et al. 2016) or can be related to principal dimensions of network 

organization (Morgan, Achard et al. 2018). The edge configurations of specific motifs logically 

constrain the possibility for dynamics (Sporns and Kotter 2004). For example, motif configurations 

containing bi-directional connections, termed resonance pairs, can induce zero-lag synchrony in a 

variety of neuronal spiking models (Gollo, Mirasso et al. 2014). Taken together, we see that even 

a pattern of just three edges can be informative for investigating how the wider network might 

support functional activity.   

Fingerprints 

In most brain networks, the pattern of edges attached to each node is unique to individual 

brain regions. These edge patterns, known as connectional fingerprints, were proposed as 

fundamental structural profiles that shape the functional specialization of a given region 

(Passingham, Stephan et al. 2002, Mars, Passingham et al. 2018). This concept was originally 

illustrated with radial plots of connectivity magnitudes with various regions, making it clear that 
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brain areas, even in the same circuit, can be differentially connected to the rest of the brain. The 

fingerprinting approach can help to clarify the functional roles regions might play, based on their 

differential weights to other areas (Tang, Jbabdi et al. 2019, Voets, Jones et al. 2019) or even be 

used to predict functional activation patterns (Osher, Saxe et al. 2016, Saygin, Osher et al. 2016). 

A key concept of the fingerprinting approach is the embedding of areas within an abstract 

connectivity space, as opposed to a geometric space, through which to understand where brain 

activity occurs (Mars, Passingham et al. 2018). The connectivity space can be used, in conjunction 

with common structures, to help identify homologies between species (Mars, Sotiropoulos et al. 

2018, Balsters, Zerbi et al. 2020). Furthermore, this connectivity space can be used to demarcate 

distinct areas, in a procedure known as connectivity-based parcellation (Behrens, Johansen-Berg 

et al. 2003).  

From a network perspective, a connectivity fingerprint is a row or column of the adjacency 

matrix which records a vector of edge weights attached to each node. Relatedly, this row of edge 

weights is a discrete analogue of traditional seed-based connectivity. Whereas seed-based 

approaches focus on maps, connectivity fingerprinting utilizes sets of edges. The similarity of edge 

patterns can be measured using the normalized matching index (Zamora-Lopez, Zhou et al. 2010, 

Fornito, Zalesky et al. 2016) or cosine similarity (Song, Kennedy et al. 2014, Betzel and Bassett 

2018), to gauge connectional homophily between nodes, which is a critical ingredient for 

generative models of brain networks (Betzel, Avena-Koenigsberger et al. 2016, Goulas, Betzel et 

al. 2019). Ultimately, the pattern of edges emanating from each node describe the context of the 

node given the larger network architecture. The connectivity fingerprinting approach demonstrates 

the utility at assessing a pattern of connections to each node, rather than looking at one or two 

eminent connections.  
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Community structure 

Although network communities are often interpreted from a node-perspective—defined as 

coherent groupings of nodes—it is the edges that inform which nodes should be grouped together, 

whether by strength of connection (Sporns and Betzel 2016) or by similarity of edge connectivity 

patterns (Moyer, Gutman et al. 2015, Betzel, Medaglia et al. 2018, Faskowitz, Yan et al. 2018). 

Given an established or inferred community structure, the edges that fall between communities are 

used to characterize the integrative hub-like roles of select nodes. For example, edge information 

is used to identify nodes whose edges are highly dispersed amongst functional areas (Bertolero, 

Yeo et al. 2015) or to classify hub areas associated with different cognitive domains (Gordon, 

Lynch et al. 2018). Furthermore, the community structure can be used to reduce the network to its 

block structure, by recording the summed or averaged edge strength between communities. This 

block structure can be used to characterize meso-scale between-community connection patterns, 

such as modular, core-periphery, or disassortative configurations (Betzel, Medaglia et al. 2018, 

Faskowitz and Sporns 2020).  

Higher-order relationships  

Thus far, we have reviewed the ways groups of edges form constructs that can be used to 

probe the organization of a brain network. Groups of edges can capture patterns beyond the 

pairwise relationship reported by a single edge. Another avenue for uncovering such patterns is to 

employ the tools of algebraic topology (Patania, Vaccarino et al. 2017, Battiston, Cencetti et al. 

2020), which provides a formal mathematical framework for analyzing the higher-order relational 

content of a network using concepts such as cliques and cavities (Sizemore, Phillips-Cremins et 

al. 2019). Applied to brain data, such tools can show how all-to-all components of a network can 
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serve to localize hub-like roles that some brain areas might play (Sizemore, Giusti et al. 2018) or 

help to elucidate spiking activity progression in large neuronal microcircuit simulations (Reimann, 

Nolte et al. 2017, Nolte, Gal et al. 2020). An advantage of these approaches is the ability to describe 

how components of the ordinary network of pairwise relationships take part in higher-order 

mesoscale organization, observable by applying mathematical reformulations like filtrations. Such 

exercises can highlight the increase in integrative organization under psilocybin by identifying 

edges that support topological cycles (Petri, Expert et al. 2014). Algebraic topology also offers 

new ways to draw relationships between nodes based on clustering in a low-dimensional 

embedding space (Patania, Selvaggi et al. 2019).  

Networks can capture organizational information at many scales. In particular, we see that 

the relational content of a network extends beyond simple edge relationships. That is not to say 

that the study of a single relationship in isolation is invalid. Whereas a single edge is merely a 

single datum, there are ways to extract rich information describing the relationships between neural 

elements outside of a network context. For example, psychophysiological interaction analysis 

(O'Reilly, Woolrich et al. 2012) allows for the functional coactivation of regions to assessed during 

specific tasks and the structural relationships between areas can be annotated with sequential 

measurements of white matter integrity (Chandio, Risacher et al. 2020).  

From a network perspective, edges are the raw datapoints of the topology. Without edges, 

a network would merely be a set of nodes with no relational content. All network assessments, 

even the ones that produce node-wise measurements like clustering coefficient, need edge data. 

Evidently, edges are trivially important for network analysis. Here, we have highlighted the further 

utility of edge grouping to understand levels or organization in brain networks. The features that 

form from groups of edges, from motifs to fingerprints to cliques can capture local relationships 
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that implicate certain functional capabilities or can place nodes within a global connectivity 

context. 

Edges in Communication and Brain Dynamics 

The history of neuroscience provides us with vast cumulative knowledge about the 

localization of structural and functional features across the cortex and subcortex, from the micro 

to the macro scale, resulting in comprehensive maps of the brain (Amunts and Zilles 2015, 

Poldrack and Yarkoni 2016, Eickhoff, Constable et al. 2018). Through extensive brain mapping 

studies, specific areas can be associated with specialized function, tuned to a behavior or cognitive 

processes. Such maps document the spatial layout of areas, but not necessarily how these areas 

interact. The addition of edges to a map provides information about how the elements of a map 

collectively form an integrative system, supportive of both local and distributed activity (Friston 

2002, Sporns, Tononi et al. 2005). Edges are key ingredients for documenting brain 

communication. They can represent the structural scaffold on which community unfolds or 

document the ongoing dynamic activity between neural elements (Zamora-Lopez, Zhou et al. 

2009, Wang, Chen et al. 2013, Avena-Koenigsberger, Misic et al. 2018). Here we examine the role 

that edges, and information at the edges, for understanding how the brain forms an integrative 

communicating system.  

Structure-function relationships 

A profitable starting point for investigating brain communication is to assess the 

relationship between structural and functional network organization (Bansal, Nakuci et al. 2018, 

Suarez, Markello et al. 2020), to observe the extent to which structural edge weights estimated in 

vivo possibly constrain the resultant functional topology. Focusing on edge weights, we can find a 
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moderate positive association between structure and function at the group level (Honey, Sporns et 

al. 2009), across node sets (Messe 2020), and even at the individual level (Zimmermann, Griffiths 

et al. 2018). However, the structure function relationship is more complex than this bivariate 

comparison, which can also be confounded by transitive correlation issues (Zalesky, Fornito et al. 

2012) and biased by distance (Honey, Sporns et al. 2009). Notably, the communication that takes 

place between regions likely is a mix between direct and indirect routes (Avena-Koenigsberger, 

Mišić et al. 2017). The implication is that the observed co-activation activity of any one edge is a 

result of communication from direct connections and a mix of intermediate and global contexts. 

Thus, it is conceivable that evaluating structure function relationships could be better modeled 

with by utilizing information beyond the pairwise connectivity. Take for example, the comparison 

of structural and functional connectivity fingerprint coupling at each node (Vazquez-Rodriguez, 

Suarez et al. 2019, Baum, Cui et al. 2020), which follow an established hierarchical cortical 

gradient topography (Margulies, Ghosh et al. 2016). Other sorts of higher order contexts, such as 

embedding vectors generated from biased random walks of the network (Rosenthal, Váša et al. 

2018, Levakov, Faskowitz et al. 2021), can predict the functional topology with greater accuracy 

and can even make out-of-sample predictions about intelligence and age, based on the information 

from these embeddings.  

As we understand that the structural edges provide a scaffold on which communication 

takes place, it makes sense that network communication modeling has been taken up by 

neuroscientists to explain structural function relationships. Many communication models are based 

on network paths over a topology that is assumed to be efficiently wired, based on metabolic and 

volumetric constraints (Bullmore and Sporns 2012). Communication models based on paths taken 

over the structural topology produce edgewise information about the ease of communication 
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between nodes, e.g., diffusion (Abdelnour, Voss et al. 2014), search information (Goni, van den 

Heuvel et al. 2014), communicability (Seguin, van den Heuvel et al. 2018, Vezquez-Rodriguez, 

Liu et al. 2020). These values, or combinations thereof, are used to predict (or correlate with) the 

functional topology. The incorporation of higher order information, or poly-synaptic signaling, not 

only improves alignment with the empirical functional topology, but also can increase the 

predictive utility of structural connectivity, allowing for better prediction of broad behavioral 

dimensions (Seguin, Tian et al. 2020).  

Understanding the mapping from structure to function has been scrutinized using 

frameworks ranging from communication modeling (Avena-Koenigsberger, Misic et al. 2018) to 

deep learning (Sarwar, Tian et al. 2021) to neural mass modeling (Sanz-Leon, Knock et al. 2015). 

In this pursuit, we concede that the target goal of mapping to the functional topology, commonly 

defined by a collection of pairwise correlation or coherence measures, is made more difficult by 

the fact these pairwise estimates are averaged over time. Time-averaged estimates of functional 

similarity could be insensitive to important dynamics at the edge level that reflect communication 

processes. Therein lies a motivation for observing time-resolved functional activity.  

Dynamic functional connectivity  

We expect that communication between brain regions would ebb and flow over short time 

scales, reflected in a sequence of correlation or coupling values at each edge. These dynamics 

could be in response to varying cognitive demands and environmental cues or simply reflect a 

dynamic repertoire of intrinsic functionality. Recent emphasis has been placed on tracking and 

quantifying how functional coactivation changes moment-by-moment between nodes, termed 

dynamic or time-varying functional connectivity (Preti, Bolton et al. 2017, Heitmann and 

Breakspear 2018, Lurie, Kessler et al. 2020). In practice, time-varying connectivity resolves the 
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transient relationships between regions, which can signal different internal states that the brain is 

occupying or passing through (Fukushima, Betzel et al. 2018, Fong, Yoo et al. 2019). These 

dynamics can even be synchronized by external stimuli (Simony, Honey et al. 2016) or associated 

with clinical grouping or outcome (Douw, van Dellen et al. 2019, Fiorenzato, Strafella et al. 2019). 

Circling back to structure-function relationships, it is the case that the structural topology also 

influences the range of observable dynamic fluctuations that arise (Shen, Hutchison et al. 2015, 

Zamora-Lopez, Chen et al. 2016, Fukushima and Sporns 2020).  

There are two main approaches for studying the time-varying connectivity, using either 

model-based dynamical systems that simulate the activity of neural populations, or data-driven 

statistical evaluations that operate on the observed timeseries (Lurie, Kessler et al. 2020). A 

common data-driven method for rendering dynamic correlation values is by subdividing the 

empirical timeseries into T overlapping windows. For each window, a correlation matrix is 

calculated, rendering T values at each edge representing changing co-activity from window to 

window. Such an approach is subject to key parameter choices, like window length and offset 

(Shakil, Lee et al. 2016) that can affect the detection of potentially blur sharp or instantaneous 

periods of synchrony.  

Time series at the edges 

Recently, a new approach has been proposed that obviates the need for sliding windows, 

while still recovering a frame-by-frame account of an edge’s activity (Faskowitz, Esfahlani et al. 

2020, Zamani Esfahlani, Jo et al. 2020). An edge time series is constructed by multiplying the z-

scored signals of two nodes, which also happens to be an intermediate step of calculating Pearson’s 

correlation (van Oort, Mennes et al. 2018). These time series track each edge’s functional 

fluctuations at the same temporal resolution as the original signal. Applying this construct to fMRI 
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time series, we can observe high magnitude “events” of fluctuation activity that can account for a 

large portion of the time-averaged functional similarity. This finding implies that the time-

averaged correlation, which can be thought of as the summary of communication processes over 

time, could be driven by brief “event”-like activity (Tagliazucchi, Balenzuela et al. 2012, Liu and 

Duyn 2013, Betzel, Fukushima et al. 2016, Thompson and Fransson 2016). Interestingly, high 

amplitude frames map to a shared functional organization, and yet, also exhibit deviations to 

reliably distinguish subjects from each other (Betzel, Cutts et al. 2021). A mathematical necessity 

of edge time series also shows that at any given frame, the instantaneous co-fluctuation pattern can 

be broken into two communities (Sporns, Faskowitz et al. 2021). This decomposition has 

implications for dynamic interplay between stable functional systems, suggesting transient 

communication patterns overlay across time to form the canonical node-based systems as we know 

them (Yeo, Krienen et al. 2011).  

By recovering temporally resolved time series for each edge, the communication dynamics 

can be studied with high precision. The simple Pearson correlation “unwrapping” procedures can 

easily be extended to domains beyond fMRI such as electrophysiological recordings. Such 

recordings with higher sampling rates could be analyzed with a variant of the edge time series that 

adds lag terms that could possibly establish directionality of the edge dynamics. In a further 

extension, at the neuronal level models of spike transmission at the edge (synapse) level can be 

built (McKenzie, Huszar et al. 2021). Additionally, mutual information can be “unwrapped” into 

pointwise mutual information (Lizier 2014) that can also record time-resolved edge fluctuations 

(Martínez-Cancino, Heng et al. 2019). Findings based on edge time series compliments previous 

map-based approaches (Liu and Duyn 2013), which also focus on the co-fluctuating activity at 

single frames. There remains much to be explored regarding the networked edge dynamics, 
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including the ongoing topology these dynamics form (Betzel, Cutts et al. 2021), the cascading 

dynamics observable at the edge level (Rabuffo, Fousek et al. 2020), as well as the co-fluctuation 

patterns that might evolve in response to external stimuli (Rosenthal, Sporns et al. 2017).   

Future directions 

Relationships between edges 

The common conceptualization of brain networks follows a familiar formula, which we 

have reviewed here, with N nodes describing the physical neural elements and the E edges 

describing the web of various types of interrelationships between these elements. In this approach, 

we take the neural elements to be the fundamental units, to be compared in a pairwise manner. An 

alternative approach would be to take the edges as the units to be compared (Ahn, Bagrow et al. 

2010), to construct edge-edge matrices that index the similarity between edge information, 

particularly over time (Bassett, Wymbs et al. 2014, Davison, Schlesinger et al. 2015, see also Iraji, 

Calhoun et al. 2016, Faskowitz, Esfahlani et al. 2020, Uddin 2020).  

Comparing the pairwise temporal co-fluctuation profiles of edges enables the creation of 

hyperedges, to reveal temporally similar edge bundles that evolved in a task-specific manner 

(Davison, Schlesinger et al. 2015). These profiles can also serve as the basis of inter-subject 

dynamic similarity evaluated during a movie watching task, which can flow between integrated 

and segregated topologies related to stimulus properties (Betzel, Byrge et al. 2020) or serve as the 

basis to investigate higher-order correlations related to narrative content (Owen, Chang et al. 

2019). Comparing edge time series in a pairwise fashion results in an edge functional connectivity 

(eFC) matrix (Faskowitz, Esfahlani et al. 2020). Clustering this matrix exposes a pervasively 

overlapping community structure at the node level that not only bridges canonical systems, but 
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also reveals nested edge-level structure for diverse canonical systems like the control and default 

mode network (Jo, Esfahlani et al. 2020). Comparing the edges—taking the edges as the 

fundamental units to interrelate—provides a new perspective through which to interrogate brain 

organization.  

White matter matters 

The white matter is the anatomical tissue that, by volume, comprises over half of the human 

brain. In terms of inter-areal connectivity, the white matter matters (Fields 2008). The dogma that 

the white matter is ‘passive wiring’ is being challenged by evidence that the myelin plays a role in 

how action potentials are propagated through the brain, which in turn could affect oscillatory 

activity in the cortex (Fields, Woo et al. 2015). At a macroscopic level, lesions in the white matter 

have been linked to specific object-naming deficits, suggesting a role for white matter tracts in 

semantic knowledge (Fang, Wang et al. 2018, Pestilli 2018). New methods are emerging to 

uncover functional activation of white matter tracts (Nozais, Forkel et al. 2021), which could serve 

to further map cognitive phenomena to information flow in these tracts. Furthermore, indices of 

white matter integrity have long been linked with clinical deficits, suggesting a possible role for 

white matter in disease models (Karlsgodt 2020, Kochunov, Zavaliangos-Petropulu et al. 2021). 

Ultimately, the white matter has the potential to shape dynamics and affect cognitive processing. 

The brain network model is in part useful because it abstracts the complex physical biology 

of the brain into a simple mathematical representation. When visualizing networks, often edges 

are represented as straight lines through space, with thicknesses or transparency that denotes edge 

strength. However, we should not lose sight that this representation is divergent from the 

anatomical reality of the brain, which is embedded in space (Bassett, Greenfield et al. 2010), has 

contains topographically organized white matter connections (Jbabdi, Sotiropoulos et al. 2015). 
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The relationships indexed by edges could be shaped by physical paths taken through the white 

matter—paths of a physical substrate occupying space and demanding metabolic resources. 

Similarity of functional activity could be influenced by activity-dependent myelination (Fields, 

Woo et al. 2015), or possible ephaptic coupling of sheets of axons within white matter tracts 

(Sheheitli and Jirsa 2020). Thus, future work along these lines could focus on better understanding 

how the white matter plays a role in differentially shaping the relational content of brain networks.   

Subject-specific edge information 

Recent emphasis has been placed on extracting information from fMRI functional 

connectivity data, to characterize organizational features that robustly associate with a specific 

trait, like intelligence or attention (Finn, Shen et al. 2015, Rosenberg, Finn et al. 2016, Shen, Finn 

et al. 2017, Scheinost, Noble et al. 2019). This connectome predictive modeling approach involves 

filtering edges based on statistical criteria (such as correlation with a phenotype) and summing the 

edge weights for each subject. These sums are then used to create a statistical prediction model, in 

left-out subject data. The resultant cross-validated model outlines a set of edges important for 

predicting a desired phenotype. Notably, the networked characteristics of these edges can be 

analyzed to reveal system-level organization, such as the number of between system edges that 

participate in a high-attention predictive model (Rosenberg, Finn et al. 2016). This approach 

demonstrates the potential for mapping brain-behavior correlations at the level of brain edges. It 

remains to be seen how these predictive models could be extended to utilize edge constructs that 

capture higher-order relationships, which could be a productive future direction in tandem with 

the growing interest in applications of algebraic topology to brain network data.  
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Conclusion 

In contrast to brain network nodes, whose definition and differentiation have been the focus 

of brain mapping studies for years, issues and concepts relating to brain network edges have been 

underappreciated to date. Here we have reviewed ways in which the edges matter, in terms of 

construction approaches that influence network analysis or in settings where groups of edges form 

higher-order relational information available for analysis. Furthermore, edges are a prime 

candidate through which to explore how communication processes unfold within the brain. 

Regardless of data modality, across neural data that spans spatial and time scales, we advocate for 

careful consideration of the information at the edge level. Brain network analyses conducted with 

regard for edge information not only makes our science better, but also enhance our exploration of 

the brain’s distributed organization.  

A greater focus on the information contained at the edges, otherwise known as an edge-

centric perspective (de Reus, Saenger et al. 2014, de Reus 2015, Faskowitz, Esfahlani et al. 2020), 

can potentially stimulate novel exploration of brain organization. However, it is worth mentioning 

that a focus on edge information does not preclude exploration of networked information as it 

pertains to nodes. It is not a one or the other choice between what is important. Nodes are an 

equally important half of the brain network model, and analyses of how the distributed 

organization converges on certain nodes will remain a fruitful endeavor going forward. 

Furthermore, both nodes and edges are fundamentally intertwined as the basic ingredients of a 

network model. Network neuroscience explorations can evidently benefit from both edge-centric 

and node-centric perspectives.  
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DISCUSSION 

Summary 

The four chapters of this thesis highlight the importance of edges for understanding and 

analyzing brain network organization, particularly in the setting of community detection. The three 

empirical studies presented (Chapters 1-3) demonstrate how edge information can be used to 

uncover unconventional community structure—mesoscale organization that deviates from the 

common modular view of brain network communities. The scholarly review (Chapter 4) covers 

the many ways in which edges can represent relational information, and how edges, and edge 

groupings, can be used to uncover different aspects of brain organization. Although this review 

does not directly address the application of community detection, it does examine the importance 

of finely considering edge information. To this end, the review provides motivation for why edges 

should be clustered via community detection methods, especially in an edge-edge relationship 

framework. Here, we will summarize key takeaways from these chapters and build up to the next 

section which will provide a definition of the edge-centric approach.  

Block models across the lifespan 

The study provided in Chapter 1 demonstrates potential advantages of using a block 

modeling framework to analyze the structure of a network. Unlike modularity maximization, 

which can only find communities that are densely connected, the stochastic block model can find 

other sorts of communities, due to an alternative definition of community structure. The main 

contributions of the chapter are as follows: 
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• Development of a methodological framework for fitting the WSBM, at the group and 

individual level; the WSBM consensus community structure generalizes to the cross-

sectional data, including the characterization of bilateral organization.  

• We demonstrate ways in which the consensus WSBM community structure provides 

an alternate reference frame for evaluating cross-sectional lifespan regression trends. 

In this chapter, we devised a method for fitting the WSBM in a consensus manner, which 

is illustrated in Figure 2. This method addresses two complications when fitting the block model: 

that the number of communities must be prespecified; and that community structures are variable 

across runs. Based on recommendations from the WSBM authors (Aicher, Jacobs et al. 2013, 

Aicher, Jacobs et al. 2015), the Bayes Factor was used to select the k number of communities on a 

young-adult consensus matrix. Then, the partitions across multiple fits were integrated using a 

novel iterative method (Chapter 1, Figure 2d). As a result of these steps, we could identify a 

consensus WSBM community structure to be used to probe the network structure across the life 

span. Additionally, the inferred parameters of the WSBM were shown to better generate synthetic 

data (Chapter 1, Figure 4) (using a framework from Betzel, Avena-Koenigsberger et al. (2016)) 

and the resultant community structure better captured topological bilaterality (Chapter 1, Figure 

5).  

A key impetus for this project was to understand how our view of lifespan brain changes 

would differ if using an alternative approach for characterizing brain network communities. 

Modularity has become the de facto standard for brain network community detection, including 

applications measuring brain changes in human samples (Lim, Han et al. 2015, Baum, Ciric et al. 

2017). This approach is not inherently wrong, as modularity is a plausible organizational regime 

for all sorts of networks, including brain networks (Sporns and Betzel 2016). However, it is a 
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limited approach with a narrow definition of communities. Using the non-modular community 

structure of the WSBM inferred on young adults as a reference frame, we measured between-

community edge strengths over time (Chapter 1, Figure 6 and 7). The regressions using the WSBM 

communities consistently resulted in higher cross validated R2, indicating the creation of 

communities that are possibly better suited to capture lifespan (development, adulthood, and 

senescence) processes. It remains to be seen if the WSBM’s specific consideration of off-diagonal 

edge patterns is the reason for these better fitting cross-sectional trends.  

The chapter demonstrates that a block model community structure can be used to evaluate 

cross-sectional structural changes in edge density, as measured by diffusion tractography. 

Interestingly, the WSBM model, which is sensitive to a range of community structure topologies, 

identified non-modular as well as modular communities. The study overall offers a demonstration 

of an alternative community detection approach and shows how the resultant community structure 

consolidates edge weights in a manner that is slightly different than the analogous modular 

structure.  

Block models of the rat cortex 

The study provided in Chapter 2 demonstrates a block modeling approach used to probe 

for organizational features of a singular canonical matrix. Here, we fit the WSBM to the 

informatically-collated rat brain, representing connectivity information gathered from hundreds of 

tract-tracing experiments, and follows a line of studies examining these data (Bota, Sporns et al. 

2015, Swanson, Hahn et al. 2017, Swanson, Sporns et al. 2019, Swanson, Hahn et al. 2020). A 

challenge that this family of studies addresses is the quantification of network organization in one 

canonical network. Any distributed organization identified on this network cannot be reassessed 

using a resampling procedure (de Reus, Saenger et al. 2014) nor validated using a held-out sample. 
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Here, given the context of community detection, we illustrated ways to fit communities repeatedly 

to show consensus WSBM community structure. The main contributions of the chapter are as 

follows: 

• Using a block modeling framework, we demonstrate that various nodes and edges of a 

single network can participate in different community motif topologies.   

As noted previously, the WSBM has the unique capability of identifying non-modular 

community configurations, such as core-periphery or disassortative structure. In any one run of 

community detection, each between-community interaction can be sorted following an analysis 

proposed in Betzel, Medaglia et al. (2018) (Chapter 2, Figure 5a). Information from each run can 

then be mapped to the edges that participate in configuration. By averaging across many repetitions 

of either WSBM inference or modularity maximization, we can get an idea of how likely edges 

are to engage in different configurations (Chapter 2, Figure 5b). This analysis was taken a step 

further, by converting these multiple probability values into an entropy at each edge, demonstrating 

the propensity for edges to participate in many or few configurations (Chapter 2, Figure 6). This 

analysis shows how the WSBM can be used to uncover a range of topologies, across algorithmic 

iterations. In one realized community structure, a large-magnitude edge might be contained within 

an on-diagonal block, whereas in another iteration, this same edge could be off the diagonal, 

connecting blocks in a core-periphery manner. This finding is only possible due to the flexibility 

of the WSBM, as the modular model does not show any evidence of non-modular organization 

(which it is not designed to find). Collectively, this analysis demonstrates that no one community 

structure is sufficient for describing the mesoscale organization of a brain network. Methods that 

analyze the structural variability from iteration to iteration, or even across a parameter sweep (Jeub, 
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Sporns et al. 2018, Betzel, Bertolero et al. 2019), capture a more complete view mesoscale 

organization.  

Overlapping functional organization 

The study provided in Chapter 3 provides a new method for analyzing functional 

connectivity through a simple mathematical reframing that exposes time-resolved information. In 

this study, we show how classic Pearson’s correlation can be ‘unwrapped’ (van Oort, Mennes et 

al. 2018) by not completing the final summation and division steps of the formula (i.e., the 

averaging), thus exposing a time series of co-fluctuation magnitudes. We call these sequences of 

magnitudes edge time series. These sequences can then be compared in a pairwise manner, creating 

a second-order functional connectivity matrix of co-fluctuation similarity, which we call the edge 

functional connectivity matrix (eFC). We then go on to perform analyses on eFC matrices, which 

reveal overlapping community structure for functional brain networks. The main contributions of 

the chapter are as follows: 

• Demonstrating how dynamic information can be resolved at a framewise level, using 

the edge time series approach. These time series can then be compared to form eFC.  

• Clustering of the eFC, which indexes the similarity of edges, results in overlapping 

community structure at the level of nodes. The level of community overlap at the node 

level can be measured as an entropy, creating a cortex-wide map of overlap extent.  

Using edge time series, we can produce a matrix of size edge-by-edge, that can be 

submitted to analyses, such as community detection. We first demonstrated that the eFC matrix is 

not merely the same as an analogous FC×FC multiplication (Chapter 3, Figure 2c). We also 

showed that eFC values generally align with system-level information at the nodes (Chapter 3, 

Figure 2f). We clustered a group average eFC matrix using simple k-means clustering to obtain 
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communities of edges with similar co-fluctuation patterns. Therefore, at the level of edge-edge 

relationships, we intended to find modular communities. However, when the resultant edge 

communities are mapped into node space, they create an unconventional overlapping structure 

(Chapter 3, Figure 4d-e) in which a node can belong to many communities. The entropy of 

community affiliations at each node creates a map that indicates high overlap at dorsal attention, 

somatomotor, and visual nodes (Chapter 3, Figure 5c). We further discovered that high entropy 

can be explained by a ‘banding’ pattern evident when the edge communities are mapped to node-

by-node space (Chapter 3, Figure 6a; Supplementary Figure 16d-e); indicating how stub edges of 

high entropy nodes tend to be assigned to many communities, but in a non-diverse manner (Chapter 

3, Figure 6b). Finally, these entropy patterns were shown to be modulated by movie data, 

indicating that overlap is sensitive to the different mesoscale patterns presents between rest and a 

passive task.  

This study lays out a new way in which to recover temporal information at the edges. The 

first application of this new approach was community detection, which resulted in clusters of 

edges, as opposed to clusters of nodes. Like previous methods that cluster edges (Ahn, Bagrow et 

al. 2010, de Reus, Saenger et al. 2014), the edge community structure naturally results in overlap 

at the node level. Although neuroscientists likely believe that brain regions can be associated with 

multiple systems (i.e., polyfunctionality), community detection applied to traditional node-by-

node functional connectivity rarely captures such overlap (but see Najafi, McMenamin et al. 2016). 

Collectively, this study shows how new edge information can be used to obtain a non-traditional 

community structure.  
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Edges are important 

The final chapter of this thesis consists of a scholarly review of brain network edges. Even 

though nodes and edges are the two fundamental ingredients of a network, in network 

neuroscience, most attention is paid to the nodes. We surmise this from the type of questions we 

ask, the network tools we employ, and the papers we write (e.g. Zalesky, Fornito et al. 2010). 

Therefore, with this review we aim to fill a literature gap by explaining how different edges can 

be constructed, what types of higher order relationships edges can form, and how edges are 

important for studying brain communication. In the context of the present thesis, this review 

establishes the importance of focusing on the edges. Also, this review could stimulate further 

exploration of edges and the organization they form.  

Synthesis of the edge-centric perspective 

Edge-centric-ism 

What ties the chapters of this thesis together? In the previous section, we have summarized 

the key contributions of these chapters and quickly covered ways in which the edges proved useful 

for investigating brain organization. Here we will further explain what we call the edge-centric 

perspective. All brain network studies implicitly employ nodes and edges as part of the standard 

network model. Therefore, we pose the question: What makes a network neuroscience study 

specifically edge-centric—more so than a normally conducted study? Here, we contend that an 

edge-centric approach is an investigation into brain network organization that either reads in or 

writes out information at the edge level. Edge-centric approaches are not employed merely in 

service of differentiating nodes. Rather, such approaches also promote the exploration of 

organization of the edges.  
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What makes the SBM approach edge-centric? With the SBM (and WSBM), the 

interpretation of a community is a group of nodes that have statistically the same connectivity 

patterns, which is documented by the affinity matrix (Chapter 1, Figure 1). In contrast, for 

modularity maximization, the interpretation of a community is a group of nodes that is densely 

intra-connected and sparsely inter-connected. Interestingly, it can be shown that modularity 

maximization is a special form of the SBM model, but with reduced consideration for the off-

diagonal connectivity patterns (Newman 2016). In this special ‘modular’ SBM, called the planted 

partition model, the probabilities for on-diagonal and off-diagonal connectivity are described by 

two values, rather than the k-by-k matrix of values for an SBM. These extra parameters endow the 

SBM with the ability to capture a variety of mesoscopic patterns (i.e., modular, core-periphery, 

and disassortative structure) (Young, St-Onge et al. 2018).  

As a community detection method, the SBM does indeed parse the nodes into groupings; 

but the way it does so, which is based on between-community edge probabilities, makes it a more 

edge-centric approach than modularity maximization. An empirical example of how the SBM 

detects edge patterns is evidenced by the bilaterality of the WSBM consensus community 

structure. Notably, tractography has a difficult time rendering inter-hemispheric tracts, due to the 

compression of directional information at the corpus callosum (Jbabdi and Johansen-Berg 2011), 

making stronger inter-hemispheric edges rare. The WSBM community structure contains 

exclusively bilateral communities, whereas the modular partition does not. This is likely because 

the SBM assigns homotopic regions with similar edge connectivity patterns to the same 

community. 

When commencing the study described in Chapter 1, an initial goal was to see if the WSBM 

would model between-community patterns that would result in interesting life span trends missed 
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by the commonly used modular approach. None of the top significant trends identified (Chapter 1, 

Figure 6) were noted as being non-modular. In fact, our data show that the most significant trend 

(inverted u-shape) in our structural data is within a modular community (3-3). Thus, even with a 

model that is flexible to find non-modular organization, we still find modular structure. This was 

also the case when we applied the WSBM to the rat cortex, as we found evidence that many edges 

did indeed participate in on-diagonal or assortative configurations (Chapter 2, Figure 5b). Even 

with methods that use edge information to flexibly model a range of community topologies, 

evidence for modularity community structure is still widespread.  

In Chapter 3, we shift gears to functional data, and outline a method for shifting the analytic 

focus to the edges. Normally, we gather time series information from discrete nodes from 

implanted arrays, electrodes on the scalp, or computationally defined volumetric regions of cortex 

or subcortex. In this chapter, we show how nodal time series can be used to additionally make edge 

time series, which exposes more information at the edge level. This led to a series of findings, 

including the overlapping community structure at the node level (Chapter 3, Figure 4d-e), and the 

characterization of node-level overlap entropy (Chapter 3, Figure 5a). This new community 

structure challenges aspects of the traditional modular view of brain network communities. For 

example, in Figure 4 and 5, we show how visual regions, which are commonly partitioned as highly 

modular communities (Moussa, Steen et al. 2012), are linked with other systems, such as the 

somatomotor system, via edge community structure. The constructs of edge time series and eFC 

present many possibilities to characterize edge-centric brain organization, which we will describe 

in upcoming sections of this thesis.  
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Both-centric analyses 

Overall, through these three empirical studies we show how information at the edges can 

be read in, or written out, in pursuit of discovering new aspects of brain network organization. This 

contrasts with the node-centric network analysis, where the main analytic outcome is to 

differentiate the nodes through maps of network measures such as participation coefficient or 

clustering coefficient. However, as we see in Chapter 3, in the pursuit of an edge-centric analysis 

we can also glean information at the node level. In this case, the edge community structure serves 

as the basis for node-level entropy measures.  

An edge centric approach does not exclude nodes, or node-level organization. In fact, node-

centric and edge-centric analyses can be conducted concurrently. For example, Betzel and Bassett 

(2018) investigate the length distributions of weighted edges, to assess the impact of long 

connections on the shortest-path statistics. They use edge information—the edges’ distances and 

weights—to better understand the connectivity profiles of specific nodes. By removing certain 

edges and simulating functional covariance on the lesioned matrix, they could show through 

changes in the participation coefficient, that distant edges are important for functional diversity. 

Here, we see an example of edge organizational information (the distance “fingerprints”) being 

used to characterize node-level organization (the functional covariance structure). Another brief 

example of the integration of edge and node-level organization is the analysis of path motifs (van 

den Heuvel, Kahn et al. 2012), in which nodes are differentiated based on hub-like properties, and 

the sequences of shortest paths on the network are differentiated based on contact with the 

specialized nodes along each route. A suggestion for incorporating more edge-centric analyses into 

traditional network neuroscience studies would be to ‘utilize’ the edges as a conduit for simulated 

processes like network paths. Overall, we take the position that network neuroscience has plenty 
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to gain by expanding the traditional set of analysis tools, which mostly focus on differentiating 

nodes. In the next section, we will further detail an edge-centric approach that fundamentally ‘flips’ 

our perspective on brain networks.  

Edges as fundamental units 

One of the fundamental tenets of neuroscience is the ‘neuron doctrine’ (Swanson and 

Lichtman 2016), simply stated as the notion that individual neurons are the basic anatomical and 

functional units of the nervous system. The primacy of neurons has left an imprint, pervasive and 

yet not often made explicit, on most extant studies of brain networks. Most network approaches 

treat neural elements—neurons, neural populations, or brain regions —as the fundamental units 

from which brain networks are constructed. The primacy of nodes reflects long-standing research 

agendas in brain mapping, for example efforts to parcel cortex into cytoarchitectonic or 

functionally specialized areas (Amunts and Zilles 2015, Glasser, Coalson et al. 2016), as well as 

fundamental assumptions about brain function as computation carried out primarily in ensembles 

of neurons or neuronal populations (Mountcastle 1997). Under this view, edges simply relay the 

outputs of the local computations. From a theoretical perspective, nothing dictates that nodes must 

be taken as the fundamental units, through which to understand brain organization.  

Here, we explore the idea of taking the edges as the fundamental units of a brain, to create 

a new representation where edges are compared in a pairwise manner. By creating an edge-edge 

representation, we can probe a network of second-order similarities for signs of non-random 

organization. In Chapter 3 of this thesis, we introduced edge functional connectivity (eFC), which 

is an edge-by-edge representation of co-fluctuation similarity. In Chapter 4 of this thesis, we 

briefly covered eFC and related concepts that compare edges in a pairwise manner. Here, we will 
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further explore the implications of framing the edges as the fundamental units of brain 

organization.  

Overlap and diversity 

The eFC construct introduced in Chapter 3 records the similarity of edge activity and takes 

the form of a square matrix of size edge-by-edge. Our first exploration of eFC organization focused 

on the mesoscale organization of the eFC matrix, via k-means community detection (Chapter 3, 

Figure 4), to uncover dense clusters that contain similarly co-fluctuating edges. The relationship 

between these clusters and canonical system-level organization is multifaceted. Edge-edge 

comparisons within a system are consistently above zero (Chapter 3, Figure 2e-f), providing 

evidence that eFC conforms to canonical functional systems. However, this finding merely reflects 

a special case of edge-edge comparisons for edge pairs that fall entirely within a system. We can 

further ask how the edge community pattern, or profile, of any one node compares to other profiles. 

Grouping nodal profile similarities by system reveals the heterogeneity of edge-community 

mixtures within each system (Chapter 3, Figure 6c). What we find is that some canonical systems 

are more diverse than others, which could be related to the polyfunctionality of higher-order 

systems, or even an indicator that some systems can be further partitioned into specialized 

subcomponents (Andrews-Hanna, Reidler et al. 2010, Braga and Buckner 2017, Gordon, Laumann 

et al. 2020). It remains to be seen how this diversity could also relate to the hierarchical maps that 

document gradients from unimodal to multimodal cortex (Margulies, Ghosh et al. 2016). Further, 

we can ask if edge communities emerge from the links between specific systems, or do they span 

many systems? Initial evidence in both recent work (Jo, Esfahlani et al. 2020) and from Chapter 3 

suggests that edge communities create pervasive overlap (Ahn, Bagrow et al. 2010), where each 

node is associated with many communities. Only in rare instances, such as the edges involving 
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unimodal processing systems (like somatomotor cortex), do we see evidence that nodes of a 

canonical functional system correspond to less than half of the k edge communities.  

Identifiability 

An emerging trend for neuroimaging analysis is the discovery of individual-specific 

features or feature sets, that differentiate one brain from another (Finn, Shen et al. 2015, Byrge 

and Kennedy 2019). In this line of work, frontoparietal nodes have been recognized as nodes with 

connectivity patterns that are unique to individual datasets (Finn, Shen et al. 2015, Pena-Gomez, 

Avena-Koenigsberger et al. 2018). Further work has focused on using dimension reduction 

techniques to amplify the individual uniqueness, or identifiability, of each dataset (Amico and 

Goni 2018). So far, these approaches have focused on the organization between the nodes. It could 

be the case that edge-edge relationships contain identifiable information (Jo, Faskowitz et al. 

2020). One argument for using eFC as a substrate for studying identifiability is that the eFC matrix 

exposes more datapoints per subject (but note, eFC is built from the same input as traditional FC). 

Thus, with the larger eFC matrix, there could be a greater opportunity for subject-specific features 

(or features groupings) to be exposed and extracted. An initial study supports the idea that eFC 

can potentially increase identifiability of fMRI data, and similarly points to frontoparietal (i.e., 

control network) nodes as areas for unique subject information (Jo, Faskowitz et al. 2020). It 

remains to be seen if this increase in identifiability is due in part to the increased dimensionality 

of eFC. 

Alternative edge-edge comparisons 

The eFC construction as laid out in Chapter 3 compares the similarity of co-fluctuation 

patterns across time. As reviewed in Chapter 4, time series are merely one type of feature set that 
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can be compared in a pairwise manner. Different types of edge-by-edge matrices can be 

constructed if multiple features at each edge can be gathered and compared (Seidlitz, Vasa et al. 

2018). One such idea is to collect multiple values per edge, from variable task contexts or 

differently parameterized tractography algorithms (Zhan, Jahanshad et al. 2015, Petrov, Ivanov et 

al. 2017, Faskowitz, Tanner et al. 2021). Using multi-task fMRI data (Van Essen, Smith et al. 

2013, Salehi, Greene et al. 2020), we can compute the Pearson correlation in different tasks to 

create a feature set at each edge. Edge-edge comparisons then assess how pairs of edges covary 

when measured across contexts. Doing this creates an edge-edge measure somewhat analogous to 

general FC at the node level (Elliott, Knodt et al. 2019). The edge-by-edge representation formed 

by this approach contains mesoscale organization that share properties with the eFC communities 

of Chapter 3, such as a single community largely consisting of somatomotor edges and pervasive 

overlap at the node level. Notably, from this data we can compute the loading of each task onto 

each community, to observe how some communities appear to consolidate edge magnitudes for 

specific tasks. Using a more constrained set of tasks (i.e., more nuanced than the HCP task battery), 

the edge covariance method could help to identify cognitively relevant edge communities.  

A considerable next step in the development of analyzing edge-edge organization would 

be to ascertain the cognitive or behavioral relevance of edge communities. In Chapter 3, we 

demonstrated how the constitution of edge communities, and in turn, nodal entropy, was 

modulated during a passive movie watching task (Chapter 3, Figure 7). Although this provides 

evidence of a changing mesoscale organization, we cannot finely resolve the task relevance of the 

changes as we averaged over a complex stimulus (Raiders of the Lost Ark, Lucasfilm) that could 

have induced a range of cognitive processes. To uncover edge communities with 

cognitive/behavioral relevance, we could turn to metanalytic neuroimaging data. In Crossley, 
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Mechelli et al. (2013), the authors devised a way to create a node-by-node network of metanalytic 

co-activation from the BrainMap database (Laird, Lancaster et al. 2005). The key to their 

methodology was to treat peak-activation information as “frames” in a “time series” of 

experiments (Smith, Fox et al. 2009). The metanalytic network structure was similar to FC in terms 

of degree distribution and community structure. Furthermore, these communities were 

differentiated based on edge loadings related to the behavioral domain associated with certain 

experiments.  

Here, we envision the construction of metanalytic eFC and in turn, metanalytic edge 

communities, using the BrainMap database. In the original Crossley paper, edges were drawn 

between co-activating nodes via the Jaccard index, marking the propensity for two nodes to be 

considered peak coordinates within the same experiment. To compare the binary co-fluctuation 

patterns of co-activating pairs of nodes, we can turn to pointwise mutual information (Lizier 2014), 

which is an ‘unwrapping’ of mutual information. Comparing pointwise mutual information time 

series in a pairwise manner would create an edge-by-edge representation of the metanalytic data 

(meta-eFC). As a first assessment of this new representation, community detection should be 

applied to this meta-eFC matrix. Doing so would assess whether groups of co-fluctuating edges 

over a short timescale (the course of an fMRI session) would also co-fluctuate across experiments 

performed by the collective neuroimaging community. Furthermore, we can breakdown 

experiments (frames) based on BrainMap’s annotation of behavioral domain for each experiment 

(action, cognition, emotion, perception, and introspection). Behavioral domain subsets of the data 

could be used to form behavioral specific edge communities or could be used to compute a loading 

onto already existing edge communities computed with eFC or meta-eFC (as in Faskowitz, Tanner 

et al. (2021)). Establishing the task-relevance of edge communities is imperative. As soon as edge 
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communities can be linked with task-relevance, opportunities will arise to study their modulation 

in different contexts.  

More edgy time series 

The edge time series introduced in Chapter 3 provide the material for the edge-edge 

comparisons that constitute eFC. However, edge time series on their own also hold vast potential 

for future edge-centric studies. The key feature of edge time series is that they represent sequences 

of co-fluctuation values at each edge, at the same sampling rate of the collected data. This is unlike 

sliding window FC, which also recovers sequences of correlation values at each edge, but must be 

parameterized in multiple ways, including window size, taper, and offset (Shakil, Lee et al. 2016). 

The collection of edge time series from a single functional session exhibits interesting properties 

that underly traditional FC (which falls out of the time-collapsed average of edge time series).  

For example, the topographic pattern of FC can be recapitulated with a select few frames 

of high co-fluctuation amplitude, suggesting that the traditional FC network topography is driven 

by transient co-fluctuation “events” (Zamani Esfahlani, Jo et al. 2020). Furthermore, based on the 

construction of edge time series, any one frame of the scan can be exactly partitioned into two 

communities (Sporns, Faskowitz et al. 2020). One implication of these bipartitions is that 

mesoscale organization is the result of transient bipartitions that overlay across time. The 

bipartitions at the single frame level also bring into question how the presence of imbalanced 

triangles emerges in the final FC topology (Teixeira, Santos et al. 2017). An open question remains 

about how the variability at the edge time series level could relate to the dynamic range of the 

neural system (Uddin 2020). Edge time series are appealing because they open the door to many 

new dynamic analyses of synchronization and co-fluctuation, without having to compromise 

temporal resolution of the input signal.  
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Here we have covered applications primarily involving fMRI. However, the edge time 

series methodology can be applied or adapted to many other contexts. For example, the mutual 

information-based edge time series could be applied to spiking data (Varley, Sporns et al. 2020), 

to characterize neuronal cascading processes (Rabuffo, Fousek et al. 2020). Based on the large and 

instantaneous nature of cascades, the advantage of employing edge time series might not rely on 

precise temporal timing; rather, co-fluctuation cascades could be used define a network topology 

of these events, using the methods of Zamani Esfahlani, Jo et al. (2020). The edge time series 

construction could also be adapted for application to signals with much higher temporal resolution, 

like EEG or MEG, and could involve the addition of a lag parameter. Finally, based on the 

mathematical simplicity of this approach makes it applicable to non-neural contexts, and could be 

employed with general time series data. 

Opportunities for edgy work 

It is out hope that the edge-centric ideas expressed in this thesis will be adopted to new 

context and new data. A key motivation for pursuing the edge-centric perspective and developing 

methods to assess edge information is that there is potentially more organization at the edge level 

to uncover. Previously, we briefly reviewed new ways to perform edge-edge comparisons using 

edge covariance and metanalytic analyses. Here, we briefly highlight a couple more contexts where 

edge-centric analyses could be fruitful.  

Recent focus has been paid to recording brain activity during the presentation of complex 

stimuli, such as movies or other narrative-based content (Betzel, Byrge et al. 2020, van der Meer, 

Breakspear et al. 2020, Willems, Nastase et al. 2020, Finn and Bandettini 2021). One motivation 

for this line of work is the increased ecological validity of the stimulus presentation. However, 

complex stimuli unfolding over time are also challenging to analyze with traditional neuroimaging 
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analysis methods. Over the course of a movie, it could be difficult to isolate a block or event that 

corresponding to a precise feature of interest to the experimenter. This challenge has led to new 

analytical methods such as inter-subject correlation, which can model subject signal and noise, as 

well as the shared response across subjects (Nastase, Gazzola et al. 2019). This paradigm has been 

employed show that the default-mode network connectivity tracks with intact narrative content, 

revealing an active pattern of co-fluctuation for a group of areas typically associated with task 

deactivation (Simony, Honey et al. 2016). We believe edge time series could have increased 

sensitivity to capture brief moments of inter-subject synchronization at the edge level, without the 

need for windows. This feature alone could help to differentiate rapid cognitive processes that 

might unfold in stimuli not necessarily designed for scientific inquiry (e.g., blockbuster movies). 

Also, the higher sampling rate of edge time series could potentially be better suited for the 

incorporation of data from additional modalities, such as eye-tracking or heart-rate monitoring. By 

probing which edges transiently co-fluctuate, we could potentially build a better understanding of 

brain network communication in response to varied cognitive processes.  

To this point, applications of edge-centric approaches have been discussed here implicitly 

in terms of understanding healthy or normative functioning. A large focus of neuroimaging 

research is on the extraction of features that pertain to pathology or maladaptive functioning. We 

think that the edge-centric methodologies describe in this thesis could also be employed in clinical 

research settings. To begin, modularity has been employed as an organizational regime that is 

disrupted in diseases such as schizophrenia (Bordier, Nicolini et al. 2018, Gollo, Roberts et al. 

2018). We have shown in this thesis that the SBM approach captures both modular and non-

modular topological organization. If a consensus WSBM were to be applied to data from 

schizophrenia patients, would the off-diagonal community interactions recapitulate the modular 
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disruption evidenced previously? Additionally, would a block models inferred from control brains 

make for better generative models than analogously trained models from clinical cohort brains 

(Zhang, Braun et al. 2021)? The dynamics of disease brains could also be an area of interest for 

differentiating clinical from control cohorts. Using edge time series, dynamic features of diseased 

brains can be assessed. However, in its current state, the dynamic functional connectivity literature 

is crowded with findings of differences in dynamic features (e.g., states, transition times) under 

task-free conditions. Perhaps a more profitable approach would be to employ edge time series to 

trace instantaneous changes in the presence of rich, complex stimuli, as mentioned in the previous 

paragraph.  

Conclusion 

The current thesis has reviewed the importance of edges for understanding the distributed 

organization of the brain—what we call the edge-centric perspective. Additionally, this perspective 

has allowed for the characterization of novel mesoscale organization, revealed through alternative 

community detection techniques. Brain networks are inherently constructed of nodes and edges. 

Yet the edges figure less prominently than the nodes when analyzing and assessing brain 

organization. Perhaps this is because the edges are sometimes harder to mentally grasp and 

visualize. Edges represent the physical connections tangled up within white matter topography. 

Edges also represent mathematical notions of co-activation or co-fluctuation or co-variance. Edges 

can take many forms and can form complex higher order relationships. In this way, it can be hard 

to grasp what an edge is, particularly because edges can be so many things. However, we see this 

as an opportunity. Edges provide abundant fodder for sustained exploration of brain network 

organization, and beyond.  
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