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Abstract

Interleukin 9 (IL-9) is an important mediator of allergic disease that is critical for mast cell driven 

diseases. IL-9 is produced by many cell types including T cells, basophils, and mast cells. Yet, 

how IL-9 is regulated in mast cells or basophils is not well characterized. In this report we tested 

the effects of deficiency of a mouse Il9 gene regulatory element (Il9 CNS-25) in these cells in vivo 

and in vitro. In mast cells stimulated with IL-3 and IL-33, the Il9 CNS-25 enhancer is a potent 

regulator of mast cell Il9 gene transcription and epigenetic modification at the Il9 locus. Our data 

show preferential binding of STAT5 and GATA1 to CNS-25 over the Il9 promoter in mast cells, 

and that T cells and mast cells have differing requirements for the induction of IL-9 production. Il9 
CNS-25 is required for IL-9 production from T cells, basophils, and mast cells in a food allergy 

model, and deficiency in IL-9 expression results in decreased mast cell expansion. In a 

Nippostrongylus brasiliensis infection model we observed a similar decrease in mast cell 

accumulation. Although decreased mast cells correlated with higher parasite egg burden and 

delayed clearance in vivo, T cell-deficiency in IL-9 also likely contributes to the phenotype. Thus, 

our data demonstrate IL-9 production in mast cells and basophils in vivo requires Il9 CNS-25, and 

that Il9 CNS-25-dependent IL-9 production is required for mast cell expansion during allergic 

intestinal inflammation.
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Introduction

Interleukin-9 (IL-9) is a pleiotropic cytokine that impacts allergic inflammation, and mast 

cell expansion and function (1, 2, 3). IL-9 is produced by several cell types including a 

specialized subset of T helper cells termed Th9 cells, innate lymphoid cells, and mast cells 

themselves (1, 2, 4). Much of our current understanding of IL-9 regulation comes from 

analysis of T cells (5, 6). IL-9 regulation in mast cells or basophils has not been studied in 

detail.

Mast cells are tissue resident cells of the innate immune system. They are one of the primary 

components of IgE-mediated inflammation in diseases such as food allergy, asthma, and 

helminth infections (7, 4, 8). Mast cells can be found in virtually all tissues, especially those 

in contact with the environment like skin and mucosa. Basal mast cell numbers in vivo are 

limited, but during disease development, mast cells accumulate in vivo (8). The process of 

mast cell expansion during disease is not well understood but there is evidence that IL-9 is 

responsible in mouse models of asthma and food allergy (1, 2). In the house dust mice 

(HDM) asthma model, mast cell numbers increase in response to increased IL-9 levels in the 

lung (1, 3). Recent work by Chen et al. (2), showed that in an OVA food allergy model, the 

induction of mucosal mast cells producing high concentrations of IL-9 (MMC9), plays an 

important role in susceptibility to IgE-mediated food allergy. Although some work has been 

done examining IL-9 production in mast cells, much of this was done in vitro (9, 10, 11).

Like mast cells, basophils are innate immune cells that circulate and are predominantly 

found in the blood (12). Basophils also contribute to allergic responses and have some 

functional overlap with mast cells, including IgE-mediated degranulation responses (12). 

Although IL-9 production in basophils has been observed, regulation in these cells has not 

been studied.

We recently described the importance of a DNA regulatory region (CNS-25) in the Il9 gene 

locus (5). We have demonstrated that this region regulated IL-9 production in T cells, and 

that animals lacking CNS-25 have reduced mast cell numbers and airway reactivity in the A. 
fumigatus-induced asthma model (5). We further observed mast cells and basophil IL-9 

production was affected by Il9 CNS-25-deficiency using acute stimulation models, and in 

vitro derived mast cells and basophils. The effects of Il9 CNS-25-deficiency on IL-9 

production from mast cells and basophils in vivo, and particularly in models where intestine 

is the target organ of inflammation, are lacking.

In this study we demonstrate that Il9 CNS-25 is required for appropriate IL-9 production in a 

food allergy model in basophils, and in the two major IL-9-secreting populations in the 

intestine, T cells and MMC9 cells. In a detailed analysis of the Il9 gene in cultured mast 

cells, we find that the locus is more activated in mast cells than in T cells, that activity is 

dependent on Il9 CNS-25, and that the locus is poised to be activated in response to the 

cytokine environment. We observed that the effects of Il9 CNS-25-deficiency on MC 

precursors is genetic background-dependent. Importantly, we observed that intestinal 

mastocytosis in both food allergy and N. brasiliensis infection model is dependent on Il9 
CNS-25. Together, these data indicated that Il9 CNS-25-deficiency has as profound an effect 
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on IL-9-producing mast cells and basophils as on T cells, and that Il9 CNS-25-dependent 

IL-9 production is required for mast cell expansion in allergic intestinal inflammation.

Materials and Methods

Mice

CNS-25-deleted mice (Il9ΔCNS-25) were generated as previously described (5) and used 

either on a C57BL/6 background or were backcrossed five generations to the BALB/c 

genetic background, and were maintained under specific pathogen-free conditions. C57BL/6 

and BALB/cJ female and male mice were purchased from the Jackson Laboratory and used 

at the age of 6–12 weeks old. All experiments were performed with the approval of the 

Indiana University Institutional Animal Care and Use Committee.

In vitro cell differentiation

Naive CD4+CD62L+ T cells (purified using MACS (Miltenyi Biotec)) were activated with 

plate-bound anti-CD3 (2 μg ml−1 145–2C11; BioXCell) and soluble anti-CD28 (0.5 μg ml−1; 

BD Pharmingen) in complete culture media (RPMI 1640, ThermoFisher Scientific) 

containing 10% Fetal bovine serum (FBS, Atlanta Biologicals), 1% antibiotics (penicillin 

and streptomycin / stock; Pen 5000 μ ml−1, Strep 5000 μg ml−1 ), 1 mM sodium pyruvate, 1 

mM L-Glutamine, 2.5 ml of Non-essential amino acids (Stock; 100 X), 5mM HEPES (all 

from LONZA) and 57.2 μM 2-Mercapoethanol (Sigma-Aldrich) with additional cytokines 

(all from PeproTech) and antibodies (all from BioXCell) to generate Th2 cells (20 ng ml−1 

IL-4; and 10 μg ml−1 anti-IFNγ XMG) or Th9 cells (20 ng ml−1 IL-4, 2 ng ml−1 hTGF-β1, 

10 μg ml−1 anti-IFNγ XMG). Cells were grown at 37°C under 5% CO2 and were expanded 

after 3 days with original concentration of cytokines in fresh medium. To generate mast 

cells, basophils, and eosinophils; bone marrow cells were isolated and RBCs were lysed 

using ACK Lysis Buffer (Thermo Fisher Scientific). Cells were cultured in RPMI 1640 

medium (Invitrogen Life Technologies, Carlsbad, CA) containing 10% FBS, 2 mM l-

glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, 1 mM sodium pyruvate, and 1 mM 

HEPES. Media was supplemented with IL-3 (10ng/ml) and SCF (30ng/ml) for mast cells 

and 20 ng of IL-3 for basophils. After 7 days of culture, Basophils were isolated using anti-

PE CD49b microbeads with a purity of more than 80% as determined by flow cytometry. 

Mast cells were allowed to mature for 21 days with purity of more than 90% determined by 

the co-expression of FcϵR1 and c-kit via flow cytometry. Unless specified, mature mast 

cells, basophils were set to 1×106 cells per ml in 10ng/ml of both IL-3 and SCF and 

stimulated with 50ng/ml of IL-33 for 4 hours (mRNA) or 16 hours (ELISA). Eosinophil 

culture was adopted from (13). Briefly, bone marrow cells were isolated and RBCs were 

lysed using ACK lysis buffer. Cells were cultured in RPMI 1640 medium (Invitrogen Life 

Technologies, Carlsbad, CA) containing 10% FBS, 2 mM l-glutamine, 100 U/ml penicillin, 

100 μg/ml streptomycin, 1 mM sodium pyruvate, 1 mM HEPES, and 50 μM 2-

Mercapoethanol. Cells were cultured at 1×106/ml in 100ng/ml of SCF and FLT3-Ligand 

(Biolegend) for 5 days. On day 5, cells were washed and cultured in cRPMI plus 10ng/ml of 

IL-5 (Biolegend) thereafter. Eosinophils used on day 14 of culture were 95% Siglec F+.
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In vitro cell stimulation

Cultured basophils, mast cells, and eosinophils were set to a concentration of 1×106/mL in 

complete RPMI. For stimulation, cells were treated with the following factors IL-3 (10ng/

ml), IL-33 (50ng/ml), LPS (1μg/ml), TGF-beta (25ng/ml), TSLP (25ng/ml ), IL-25 (25ng/

ml), and GMCSF (25ng/ml) for 4 hours for qRT-PCR, 16 hours for ELISA, and 24 hours for 

ChIP assay. For antigen stimulation cells were primed with DNP specific IgE (0.5ug/ml 

clone C38–2) for 16 hours, unbound IgE was washed out and cells were stimulated with 

DNP-HSA (50ng/ml) for 4 hours for qRT-PCR. Eosinophils were stimulated with IL-1-beta 

(20ng/ml), LPS (50ng/ml), and IL-33 (50ng/ml) for four hours for qRT-PCR.

Basophil and mast cell frequencies

Bone marrow cells were isolated as described above. The frequencies of basophils and mast 

cells and their progenitors were gated as follows. Mature mast cells in bone marrow and 

peritoneum were gated as FcϵR1 and c-kit double positive. Mature basophils in blood and 

peritoneum were gated as FcϵR1 and CD49b double positive. Bone marrow mast cell 

progenitors (MCp) were gated as lineage negative (CD5, B220, CD11b, CD27, anti-

Gr-1(Ly6G/C), Ly6C, Sca-1, Ter119, CD19, NK1.1), FcϵR1lowc-Kit+ST2+β7+. Basophil 

mast cell progenitor (BMCp) in the spleen was gated as lineage negative (B220, CD3, 

Ly6C/G, NK1.1, GR1, Ter119, CD5) c-Kit+FcγRII/IIIhiβ7hiST2+.

OVA induced food allergy model

Mice, either Il9ΔCNS-25 or Il9WT on BALBc background (except for Supplement Figure 1E 

which were on C57BL/6 background), were interperitoneally (i.p.) injected with 100μg of 

chicken ovalbumin, “OVA,” (Sigma-Aldrich) and 1mg of imject-alum (Thermo Fisher 

Scientific) in a total volume of 200μl Q.S. with PBS. After immunization as shown in Figure 

1A, mice were gavaged with 50mg of OVA in 200μl of water 6 times before sacrifice on day 

29. Mice were starved of food and water for 1 hour before and 30 minutes after each gavage. 

Naive animals were gavaged with 50mg of OVA in 200μl water on day 28. Incidence of 

diarrhea was measured by observing mice for 1 hour after gavage on day 28. Lamina propria 

cells were isolated using Lamina Propria Disassociation Kit, mouse (Ref: 130–097-410) 

from Miltenyi Biotech. Techniques were performed according to manufacturer’s 

instructions. Blood was isolated via cardiac puncture on day 29 and stimulated with PMA 

(5ng/ml, Sigma Aldrich) and ionomycin (500ng/ml, EMD Millipore) for 2 hours followed 

by monensin (2μM, BioLegend) for a total of 6 hours.

Histology

Small intestines were flushed with PBS and 1 cm of jejunum was cut, fixed in formalin for 

at least 24 hours. Full length colons were flushed with PBS, cut open to rectangle and rolled 

onto toothpicks and placed in histology cassettes that were submerged in formalin for at 

least 24 hours. Tissues were stained using standard H&E, PAS, CAE protocols.

Helminth Infection

The life cycle of N. brasiliensis was maintained as previously described (14). Infective 

larvae (L3) were prepared from mouse fecal cultures. 650 N. brasiliensis L3 were injected 
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sub-cutaneously into either Il9ΔCNS-25 or Il9WT mice on C57BL/6 background. Mice were 

monitored for eggs per gram of feces (EPG) by collecting feces by weight and resuspending 

in flotation solution (Saturated NaCl solution) based on 1 gram feces to 60mL of flotation 

solution, followed by counting two chambers in a McMaster Counting Slide, taking the 

average, and multiplying by 400 to obtain EPG (15),

Flow Cytometry

For flow cytometry analysis, cells were surface stained, fixed in 4% paraformaldehyde for 

15 minutes. For intracellular staining, cells were subsequently fixed and stained using BD 

Bioscience Fixation/Permeabilization Solution Kits according to manufacturer’s protocol. 

Eosinophils in lamina propria were gated as viability dye negative, CD45+, Gr-1- CD11b+ 

Siglec-F+. Lineage markers cocktail for lamina propria cells contained antibodies for 

CD11b, CD11c, B220, Gr-1, CD335. Mature basophils were gated as FcεR1 and CD49b 

double-positive. Bone marrow MC progenitors (MCp) were gated as lineage-negative (CD5, 

B220, CD11b, CD27, Gr-1, Ly6C, Sca1, Ter119, CD19, and NK1.1) FcεR1 low c-Kit

+ST2+β7+. Basophil MCp in the spleen was gated as lineage-negative (B220, CD3, 

Ly6C/G, NK1.1, Gr-1, Ter119, and CD5) c-Kit+FcγRII/IIIhiβ7hiST2+.

For cytokine staining, homogenized tissue was stimulated with PMA (5ng/ml) and 

ionomycin (500ng/ml) for 2 hours followed by monensin (2μM) for a total of 6 hours. Cells 

were surface stained for 30 minutes in FACS buffer. After fixation with 4% formaldehyde 

for 10 min at room temperature (RT), cells were washed two times with FACS buffer (PBS 

with 0.5% BSA). Fixed cells were permeabilized with permeabilization buffer 

(eBioscience), and stained for cytokines fluorochrome-conjugated antibodies (1:200 

dilution) at 4 °C in dark for 30 minutes. Stained cells were washed two times with FACS 

buffer and resuspended with 500 μl of FACS buffer for flow analysis. Fluorescent antibodies 

for flow cytometric analysis are listed in Supplemental Table 1.

For in-vitro surface staining, cells were surface stained for 30 minutes in FACS buffer and 

fixed in 4% formaldehyde.

Enzyme-linked immunosorbent assay (ELISA)

IL-9 (Biolegend), IL-6 (Biolegend), Mast cell protease −2 (MCPT-1 eBiosciences) were all 

used according to manufacturer’s instructions. Total IgE from N. brasiliensis infected 

animals was measured as follows: plates were coated with rat-anti mouse IgE (B1E3) (16), 

in borate buffered saline, blocked (PBS with 0.02% Tween20 and 2% FBS), detected with 

biotin rat anti-mouse IgE (R1E4) and Streptavidin-Alkaline phosphatase (Southern Biotech). 

Plates were developed with phosphate tablets 2 (Sigma-Aldrich) dissolved in substrate buffer 

(0.1g MgCl2.6H2O, 0.2 NaN3, 50mL diethanolamine, pH to 9.8 per 500mL). Absorbance 

was measured at 405nm - 650nm (17). IgE standard was purified mouse IgE anti-DNP 

antibody(16).

Quantitative real-time PCR

Total RNA was extracted from cells or tissues using TRIzole reagents (Thermo Fisher 

Scientific) and reverse transcribed using qScript cDNA Synthesis Mix (QuantaBio) 
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according to manufacturer’s instructions. For qPCR, Taqman real time PCR assay 

(ThermoFisher Scientific) or SYBR green master mix (Applied Biosystems) was used for 

gene expression analysis. Gene expression was normalized to housekeeping gene expression 

(β2-microglobulin). Relative gene expression was calculated by the change-in-threshold 

(2−ΔCT) method. All experiments were performed in duplicate in two independent 

experiments and results are presented as standard error of means of biological replicates. 

Taqman probes listed in Supplemental Table 1 and eRNA sequences were used as previously 

described (7).

Lentivirus production and infection

Human embryonic kidney (HEK) 293T cells were grown with 10 ml of DMEM with 10% 

FBS and 1% antibiotics in a 100 mm tissue culture dish. When confluency reached 95~99%, 

cells were transfected with lentiviral vectors expressing dCas9-VP64 (Addgene 61422) or 

gRNAs (5) to activate CNS-25, shGATA1 to knockdown GATA1 (Origene #TL500772), 

PAX2 and PMDG.2 using lipofectamine 3000. After 6 hours, media was changed to the 

lentivirus packaging media; Opti-MEM®I-GlutaMAX (ThermoFisher Scientific) with 5% 

FBS and 0.2 mM sodium pyruvate, and incubated another 16 hours. After collecting first and 

second batch of virus containing media, virus titer was concentrated by Lenti-X-

concentrator (Takara Bio).

Sterile non-tissue-culture treated 24 well plates were coated with 50 μg/ml of Retronectin 

(Takara Bio) and incubate at 4°C overnight. Plate were washed with PBS and blocked with 

PBS with 2% bovine serum albumin (BSA) at RT for 30 minutes. Blocking buffer was 

removed, lentivirus stock (100 μl) and 500 μl of culture media was added to the plate. 

Lentivirus was loaded to the plate using centrifugation with 2000 x g at 32°C for 2 hours, 

BMMCs were added to the plate and incubated for 6 days. Cells were harvested on day 7 for 

sorting by fluorescence activated cell sorter (FACS; BD FACSAria) based on EGFP and 

tRFP and activated with IL-3 and IL-33 overnight for gene expression analysis.

Chromatin immunoprecipitation

In vitro-differentiated Th9 cells or bone marrow derived mast cells were crosslinked for 15 

min with 1% formaldehyde at RT with rotation. The reaction was quenched by adding 0.125 

M glycine and incubated at RT for 5 min. Cells were lysed with cell lysis buffer, followed by 

nuclear lysis buffer. Nuclei were degraded and chromosomal DNA were fragmented to a size 

range of 200–500 bp through ultrasonic processor (Vibra-cell). Post sonication, supernatant 

was diluted 10-fold with ChIP dilution buffer. After pre-clearing, the supernatant was 

incubated with the ChIP antibodies at 4 °C overnight with rotation. Immunocomplexes were 

precipitated with Protein Agarose A or G beads at 4 °C for 2–4 hours. Immunocomplexes 

were washed with low salt, high salt, LiCl and two times with TE buffer. After elution 

followed by reverse crosslinks, DNA was purified and analyzed by qPCR. Once normalized 

to Input DNA, the amount of output DNA of each target protein was calculated by 

subtracting that of the IgG control. ChIP antibodies are listed in Supplemental Table 1. 

Primers used are previously defined (5).
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Statistical analysis

Two-tailed Student’s t test or one-way analysis of variance was used to generate p-value data 

for all data. Post hoc Tukey test was used for multiple comparisons.

Results

IL-9 production in mast cells

We recently identified Il9 CNS-25 as an enhancer of the Il9 gene locus important for the 

regulation of IL-9 production in T cells and mast cells (5). However, our previous work 

examined mast cell IL-9 production in vitro or following acute in vivo stimulation, and not 

during an active allergen sensitization in vivo. Given the importance of IL-9-producing 

mucosal mast cells (MMC9s) in a food allergy (2), we first examined IL-9-producing cells in 

this model. We subjected wild type BALB/c mice to an OVA induced food allergy model. 

Mice were immunized twice with OVA and Alum and then orally challenged with OVA six 

times (Fig 1A). Using flow cytometry, we gated IL-9-positive cells (both SSC-low and SSC-

high) in the lamina propria following stimulation with PMA (5ng/ml) and ionomycin 

(500ng/ml) for 6 hours. We further gated on c-Kit and FcεR1 in the SSC-high population to 

identify mature mast cells (mMC) (Fig. 1B–C). The SSC-low population predominantly 

expressed CD3 and were negative for CD8 (Fig. 1B, D, E) or were FcεR1-positive and co-

expressed c-Kit and ST2 but not integrin β7, the phenotype of MMC9 cells (Fig. 1B, D, F). 

We then compared IL-9 production in these gated populations and observed MMC9 had the 

highest IL-9 content, with IL-9 production in T cells slight lower, and minimal IL-9 detected 

in mMC (Fig. 1G). These results demonstrate that the two major IL-9+ populations in this 

model are MMC9s and T cells.

To further analyze these differences, we compared the conditions that generate IL-9-

producing mast cells and T cells in vitro, using in vitro derived cells because it was not 

feasible to purify sufficient in vivo populations for the subsequent detailed analyses. 

Compared to Th9 cells (naïve CD4 T cells differentiated with TGFβ and IL-4; representative 

cultures in Supplemental Fig. 1A) that expressed Il9 following antigen receptor stimulation, 

bone marrow-derived mast cells (BMMC; representative cultures in Supplemental Fig. 1B) 

did not express Il9 following antigen crosslinking of receptor bound IgE (Fig 1H). IL-33 was 

a potent stimulator of Il9 expression in mast cells, but not Th9 cells, and this was consistent 

with a lack of IL-33 receptor expression in Th9 cells (Fig 1H–I). However, in contrast to the 

MMC9 cells that produced more IL-9 than T cells, IL-33-stimulated BMMC secreted less 

IL-9 than Th9 cells (Fig 1J). Overall these results indicate that there are distinct pathways 

leading to IL-9 production in T cells and mast cells.

Mast cell transcription factor binding at Il9 CNS-25

To begin to define mechanisms of IL-9 production by mast cells we cultured BMMCs in 

IL-3 and SCF and stimulated them with various factors. As shown in Figure 2A, LPS and 

IL-33 induced Il9 expression when cell cultures had IL-3 present. We found that in the 

absence of IL-3, IL-33 was unable to induce Il9 but could induce other cytokines such as Il6 
(Fig 2B). We observed parallel cytokine dependence for the induction of Il9 and Il6 in 

C57BL/6 and BALB/c BMMC (Fig. 2B and Supplemental Fig. 1C). This suggested that 
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STAT5 activation by IL-3 (18) was needed to induce Il9 expression in mast cells. Indeed, 

BMMC cultured with IL-3 alone, but not IL-33 alone, induced STAT5 phosphorylation (Fig 

2C), and STAT5 was significantly bound to the Il9 locus at the promoter and the CNS-25 

element (Fig 2D). Notably, addition of IL-33, that was required for IL-9 production, did not 

alter STAT5 binding (Fig 2D). Although GM-CSF and IgE cross linking can activate STAT5 

in mast cells (18)(19), GM-CSF, but not antigen induced IgE cross linking, was able to 

substitute for IL-3 in this assay (Fig 2A).

In T cells, GATA3 binds to the Il9 locus at enhancer elements including CNS-25 (5). In mast 

cells, GATA1, but not GATA3 is expressed at significant levels and was suggested to 

regulate IL-9 (20, 9). To determine if GATA1 bound Il9 in mast cells in a similar pattern, we 

performed ChIP assays. We observed GATA1 predominantly bound to the Il9 CNS-25 

region, but not to other regulatory elements (Fig 2E). Additionally, knockdown of GATA1 

lowered IL-33+IL-3 induced Il9 but not Il6 levels, suggesting that GATA1 is critical for IL-9 

production in mast cells (Fig 2F).

Il9 CNS-25-dependent regulation in mast cells and basophils

IL-9 production in cultured mast cells is dependent on Il9 CNS-25 (5). We also found that 

BM-derived basophils can produce IL-9 in response to IL-33+IL-3 and Il9ΔCNS-25 basophils 

have diminished IL-9 production with no change in antigen induced degranulation 

(Supplemental Fig. 2A–B). Eosinophils are also able to express Il9 in some conditions (22), 

but we were unable to detect intracellular IL-9 in the eosinophil population in the OVA 

allergy model (data not shown). Minimal Il9 mRNA can be detected in eosinophil cultures 

(Supplemental Fig. 2C) and this level was very low compared to Th9 cells, mast cells, and 

basophil cultures (Supplemental Fig. 2D).

To further examine the Il9 locus in mast cells we analyzed RNA polymerase II and enhancer 

RNA (eRNA, short non-coding RNA transcribed near enhancers) at the CNS-25 element 

(Fig 3A–C). RNA pol II was enriched at the Il9 CNS-25 region (Fig 3B) and this correlated 

with eRNA, particularly distal to CNS-25 that was higher in mast cells than T cells (Fig 3C). 

RNA pol II binding at the Il9 promoter was enhanced by IL-33 treatment (Fig 3B).

We then compared histone modifications at the Il9 locus in mast cells and Th9 cells. The 

enrichment of active histone modifications (mono- and tri-methyl H3K4, acetylated H3K27) 

detected at the Il9 gene locus in BMMCs was generally higher than that detected in Th9 

cells. This was particularly true for the CNS-25 region (Fig 3D). This was surprising 

considering Il9 transcription and production were higher in Th9 than in BMMC (Fig 1). In 

the absence of CNS-25, active histone modification markers are reduced at the Il9 gene 

promoter (CNS1) and enhancer (CNS0) region (Fig 3E). The effects of Il9 CNS-25-

deficiency are specific because BMMCs from Il9ΔCNS-25 animals show reduced Il9 
transcription, but transcription levels of Tnf, Il13, Il1b, Il6 and Mcpt2 that were comparable 

to BMMCs from Il9WT animals (Fig 3F). Moreover, antigen-induced degranulation in 

BMMCs from the Il9ΔCNS-25 animals was comparable to that of BMMCs from Il9WT 

animals (Supplemental Fig. 2E). These results suggest that Il9 CNS-25-deficiency does not 

impact mast cell development or the capacity to produce cytokines, either directly or 

indirectly.
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We then used an approach to directly test the ability of activators bound to Il9 CNS-25 in 

mast cells to induce Il9 expression (23, 24). Retrovirus expressing a dCas9-VP64 fusion 

protein (24) was co-transduced with gRNAs that directed dCas9 binding to Il9 CNS-25 or a 

control gene (Fig 3G). Il9 transcription was significantly induced with the addition of guide 

RNAs targeting CNS-25, while Il6 transcription was not affected (Fig 3G). Thus, targeting 

of a transcriptional activator to Il9 CNS-25 in mast cells can increase transcription from the 

locus. Together, these results suggest that the Il9 locus in mast cells is in a more active 

configuration than in T cells and is poised to be induced by activators including cytokines 

and transcriptional activators recruited to the locus.

Il9 CNS-25 regulates IL-9 production in mast cells and basophils in a food allergy model

We next defined the requirement for Il9 CNS-25 in the development of IL-9-producing mast 

cells in vivo. We subjected Il9ΔCNS-25 and Il9WT BALB/c littermate control mice to the OVA 

induced food allergy model as shown in Figure 1A. We found that Il9ΔCNS-25 animals 

develop diarrhea and OVA specific IgE at levels comparable to Il9WT animals (Fig 4A and 

Supplemental Fig. 3A). As shown in representative hematoxylin and eosin (H&E) and 

Periodic Acid-Schiff (PAS) staining of the jejunum, there is no difference in cell infiltrate, 

percentage of eosinophils, and goblet cell hyperplasia between Il9ΔCNS-25 and Il9WT animals 

(Fig 4B). Chloroacetate esterase (CAE) staining to detect mast cells showed a significant 

decrease in the number of cells in the jejunum of Il9ΔCNS-25 animals compared to Il9WT 

animals although there was no difference in percent of the mast cells present in the tissue 

that had degranulated (Fig 4C), suggesting that although there are fewer mast cells in the 

Il9ΔCNS-25 mice, they are capable to activation in response to stimuli. Of note, mast cell 

expansion in the immunized control animals was seen in the small intestine but not the colon 

(Fig 4B and Supplemental Fig. 3B).

We then tested how IL-9 production was affected by the absence of Il9 CNS-25 in this 

model. Il9ΔCNS-25 MMC9 isolated from the lamina propria of immunized animals (gated as 

in Fig. 1) showed reduced IL-9 expression compared to Il9WT (Fig 5A). This is similar to the 

effect of Il9ΔCNS-25 deficiency on IL-9 production from BMMC (Supplemental Fig. 1A) (5). 

Additionally, the lamina propria of the Il9ΔCNS-25 animals had reduced CD3+CD4+IL-9+ 

Th9 cells (Fig 5A). Il9 but not Il4 gene expression was reduced in intestinal tissue of 

Il9ΔCNS-25 animals (Fig 5B). Interestingly, although the percentages of IL-9-positive T cells 

are decreased in Il9ΔCNS-25 mutant mice, the percentages of MMC9 cells are not altered by 

Il9ΔCNS-25 deficiency (Fig. 5A). Rather, the amount of IL-9 per cell (IL-9 MFI) is reduced in 

the MMC9 population. This further supports distinct effects of Il9ΔCNS-25 deficiency in mast 

cells and T cells.

In addition to mast cells, we found that basophils also produce IL-9 during the food allergy 

response (Supplemental Fig. 3C). Accordingly, blood basophils of immunized Il9ΔCNS-25 

animals showed reduced IL-9 levels (indicated as MFI) compared to Il9WT (Supplemental 

Fig. 3C). Additionally, immunized Il9ΔCNS-25 animals had lower IL-9+ T helper cells in the 

blood and in the mesenteric lymph nodes (Supplemental Fig. 3C–D).

Our previous report using mice on the C57BL/6 genetic background demonstrated that 

Il9ΔCNS-25 mice have reduced mast cell and basophils progenitors (5). Although C57BL/6 
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mice do not develop the MMC9 population in this model (2), when Il9ΔCNS-25 animals from 

C57BL/6 background were subjected to the OVA food allergy model we found that, 

compared to Il9WT counterparts, they have reduced IL-9+ blood basophils (with similar 

levels of total basophils), reduced intestinal mast cells, and diminished Il9 expression in 

intestinal tissues (Supplemental Fig. 3E), all consistent with observations in the BALB/c 

background mice. The intestinal mast cell numbers in animals on the C57BL/6 background 

were much lower than detected in BALB/c background animals. BALB/c Il9ΔCNS-25 animals 

had comparable mast cell progenitors (MCp) in the bone marrow and similar blood and mast 

cell basophil shared progenitor (MC/Bp) in the spleen (Supplemental Fig. 3F), indicating 

that the effect of Il9 CNS-25-deficiency on progenitor populations varied with the genetic 

background of the mice, possibly because the mast cell niche is not saturated in C57BL/6 

mice and can more easily expand during a pathological response.

Il9 CNS-25-dependent N. brasiliensis immunity

To demonstrate the effects of Il9 CNS-25 deficiency in a mast cell-dependent model of 

immunity (4, 7), we infected C57BL/6 Il9ΔCNS-25 animals with L3 larvae of 

Nippostrongylus brasiliensis (Fig 6A). Il9ΔCNS-25 animals had higher worm burden, 

indicated by eggs recovered per gram of feces (EPG), on day 6 and 7 (Fig 6B). Eight days 

after infection, mesenteric lymph node cells from Il9ΔCNS-25 animals produced significantly 

lower amounts of Il4 and Il9, compared to cells from wild type mice (Fig 6C). Cytokine 

mRNA levels in stimulated spleen cells were comparable (Fig 6C). Mcpt1 levels in small 

intestine were significantly reduced in Il9ΔCNS-25 animals with no significant change in 

Mcpt2 and Rnase2 (Eosinophil-derived neurotoxin) levels (Fig 6D). Protease levels in the 

lung on day 8 post infection were unchanged and showed an overall lower expression 

compared to small intestine (Fig 6D). Intracellular IL-9, but not IL-4, was significantly 

reduced in CD3+CD4+T cells from mesenteric lymph nodes on day 8 post infection (Fig 

6E). Total Serum IgE levels were enhanced in Il9ΔCNS-25 animals compared to Il9WT (Fig 

6F) and this might be linked to delayed clearance of the worms and antigen persistence, 

rather than a repressive effect of IL-9 on IgE production. ELISA performed on mucus from 

Il9ΔCNS-25 animals showed reduced MCPT1 levels in the jejunum (Fig 6G). PAS staining of 

small intestine showed no change in number of goblet cells (Fig 6H). CAE staining of small 

intestine showed significantly diminished mast cell numbers with no change in mast cell 

degranulation in Il9ΔCNS-25 (Fig 6I). Thus, although the phenotypes in vivo are likely the 

result of diminished IL-9 production from multiple cells types including T cells and mast 

cells, these data demonstrate that CNS-25 deletion in mice reduces mastocytosis in the 

intestine during helminth infection, leading to impaired worm clearance.

Discussion

Increasing evidence shows that IL-9 plays a critical role in the development and 

maintenance of allergic diseases. In particular, studies of allergic asthma and food allergies 

show that IL-9 regulates mast cell hyperplasia during disease development (1, 25, 26). In the 

HDM model of allergic disease, blockade of IL-9 causes a reduction in mast cell numbers in 

the lung (1). Recent studies have found that IL-9 production regulates an important step in 

the development of food allergies (2). The precise source of IL-9 in this context is still not 
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clear. Based on our recent description of an Il9 enhancer we have characterized the 

requirement for Il9 CNS-25 for in vivo and in vitro IL-9 production from mast cells and 

basophils and defined the requirement for Il9 CNS-25 in allergic intestinal inflammation.

The signals that activate IL-9 production appear to be distinct in T cells and mast cells. 

Whereas antigen receptor stimulation is the primary activator in T cells, cytokines, 

specifically IL-3 and IL-33, and TLR ligands, activate IL-9 in mast cells and basophils. This 

is also true of MMC9 cells studied ex vivo (2). The signaling pathways leading to IL-9 

induction in mast cells are still unclear but likely involve STAT5 downstream of IL-3 and 

NF-κB downstream of IL-33 or TLR. STAT5 possibly establishes competence at the locus 

and allows the IL-33 signal to increase RNA pol II occupancy and transcription. This is 

interesting because other cytokine genes, like IL-6, did not require the STAT5-activating 

signal for induction by IL-33. The inability of IgE receptor crosslinking to mediate either of 

these signals suggests that mast cells respond with IL-9 production to a restricted set of 

stimuli.

There are a number of significant differences in how the Il9 locus is regulated in T cells and 

mast cells. Although Il9 CNS-25 is clearly required for IL-9 production by T cells and mast 

cells, both in vivo and in vitro, activating chromatin modifications (H3K27ac) and enhancer 

modifications (H3K4me1) were quantitatively higher in bone marrow derived mast cells 

than Th9 cells, despite transcription being higher in Th9 cells. We also observed high 

H3K4me3 modifications, usually associated with promoters, at CNS-25 in BMMC, 

contrasting basal amounts in Th9 cells. This correlated with increased eRNA adjacent to 

CNS-25 in mast cells compared to Th9 cells. It was also interesting that while GATA3 is 

bound to CNS-25 and CNS-6 in Th9 cells (5), GATA1 is predominantly bound only to 

CNS-25 in mast cells. The Il9 locus in mast cells was induced by cytokine treatment and by 

Cas9-mediated gene activation. These distinctions suggest that the Il9 locus is at a different 

activation state in mast cells and may be more poised for activation than the locus is in Th9 

cells.

Another interesting feature highlighted in this work is how CNS-25-deficiency affects the 

IL-9-producing population. In Th9 cells, deletion of CNS-25 results in a smaller of 

percentage of cells becoming IL-9 secretors (5) (Fig. 5). This suggests that in Th9 cells, the 

CNS-25 element increases the number of cells acquiring an IL-9-secreting phenotype and is 

thus a competence factor for expression. In mast cells and basophils however, deletion of 

CNS-25 results in less IL-9 per cell (reflected in IL-9 staining MFI) but not a decrease in the 

percentage of IL-9-secreting cells. This suggests that in mast cells and basophils, CNS-25 is 

not a competence factor but rather an efficiency factor, determining how much IL-9 is made 

per cell. This might be a result of a more active locus in mast cells, particularly reflecting the 

distinct chromatin modifications at the locus between mast cells and T cells.

Although we clearly defined CNS-25-dependent mast cell IL-9 production in the food 

allergy model, there was no change in the incidence of diarrhea between wild type and 

mutant mice and we did not detect any differences in core body temperature (Fig 4B). 

Previous reports of food allergy responses have utilized IL-9/IL-9R deficient animals where 

there is a complete loss of IL-9 signaling, and diminished diarrhea response (2, 25, 26). The 
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Il9ΔCNS-25 animals have a partial reduction of IL-9 levels and therefore it likely has enough 

IL-9 signaling to reach the threshold required for a diarrhea response comparable to Il9WT 

mice (5). In agreement with this is the comparable cell infiltrate and goblet cell hyperplasia 

seen in the jejunum of Il9ΔCNS-25 compared to Il9WT animals. Although eosinophils were 

difficult to identify on H&E stained slides, we show by flow cytometry that Il9ΔCNS-25 and 

Il9WT have the same proportions of eosinophils in the lamina propria (Fig 4C). The 

Il9ΔCNS-25 animals did have a significantly diminished number of mast cell numbers in the 

jejunum. Previous reports suggest that IL-9 regulates the MMC9 population in an autocrine 

manner (2). We speculate that the reduction of jejunum mast cells in Il9ΔCNS-25 animals is 

due to reduced IL-9 levels in mast cells and not T cells, though discriminating the function 

of these two populations will require additional study. We observed that rate of 

degranulation as detected by histological staining was similar in our studies, although we did 

not measure degranulation products directly. Clearly, aspects of inflammation in this model 

require IL-9, and diminished amounts might still be sufficient to generate some responses.

In helminth infections, mast cells play a critical effector role by causing expulsion of adult 

worms (4, 7). Reitz et al. recently demonstrated that BALB/c and C57BL/6 background 

IL-9R-deficient mice have higher worm burden during helminth infections. Additionally, 

Il9−/− mice also show higher worm burden and reduced mast cell numbers (4), suggesting 

that IL-9 is required for the mast cell-dependent worm expulsion. We found that Il9ΔCNS-25 

have delayed N. brasiliensis clearance compared to Il9WT. The mucosal phenotype in mast 

cells is defined by the high expression of MCPT-1 and MCPT-2. Consequently, MCPT-1 and 

MCPT-2 are the primary mast cell proteases present in small intestine tissue during 

inflammation (27). Il9ΔCNS-25 animals have reduced Mcpt1 expression in small intestine and 

reduced MCPT-1 concentrations in mucus recovered from small intestines (Fig. 6D and G). 

Similar to the phenotype seen in OVA food allergy response, in the N. brasiliensis helminth 

model, ll9ΔCNS-25 animals had reduced mast cell accumulation. These results indicate that 

CNS-25 deletion has a functional effect on worm clearance during helminth infection where 

mast cells are critical effector cells, although it is still likely that T cells contribute to the 

IL-9-dependent pathology in this model.

In this report we demonstrate the requirement for the Il9 CNS-25 regulatory element in mast 

cells and basophil IL-9 production. We show distinct regulatory features of Il9 in mast cells 

and T cells and show that the Il9 CNS-25 element is required for MMC9, IL-33-stimulated 

mast cell, and basophil IL-9 production in vivo and in cultured cells. Additionally, we report 

that CNS-25-dependent IL-9 regulates mast cell numbers in food allergy and helminth 

infection where mast cells are important mediators of disease. Thus, Il9 CNS-25-dependent 

IL-9 production contributes to pathology in type 2 intestinal inflammation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

1. The Il9 CNS-25 is required for IL-9 production in mast cells and basophils

2. There is differential control of the Il9 gene between mast cells and T cells

3. Intestinal mast cell expansion requires Il9 CNS-25-dependent IL-9

Qayum et al. Page 15

J Immunol. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Mast cells and T cells are the main IL-9 producing cells in lamina propria during OVA 
food allergy model
A, Schematic of OVA food allergy model using BALB/c mice. Lamina propria cells were 

isolated on day 29 and stimulated with PMA (5ng/ml) and ionomycin (500ng/ml) for 6 

hours to analyze IL-9+ populations. B, Gating strategy for analysis of IL-9+ SSC-low and 

SSC-high populations of lamina propria cells. C, The IL-9-low SSC-high population was 

gated for expression of c-Kit and FcεR1 (mature mast cells, mMC). D, The IL-9-high SSC-

low population was gated for CD3 and FcεR1 expression. E, CD8 expression on the CD3+ 

population in (D). F, The FcεR1+ population in (D) was further analyzed for expression of 
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c-Kit, ST2, and integrin β7, characteristics of the MMC9 population. G, Comparative IL-9 

staining in MMC9, T cells, and mMC gated from (B-D). H, Il9 induction from in vitro-

generated Th9 cells (cultured with IL-4 and TGF-beta and stimulated with anti-CD3 and/or 

IL-33) and in bone marrow derived mast cells (BMMC; cultured with IL-3 and SCF and 

stimulated with Antigen and/or IL-33) was measured via qPCR. p value indicates 

comparison of treatment group with NT in the same cell culture (*, p value < 0.05). I, 

Percent ST2 expression on bone marrow-derived MCs compared to in vitro culture-

generated Th2, and Th9 cells was measured via flow cytometry. J, ELISA was used to 

measure IL-9 release in Th9 cultures stimulated with anti-CD3 compared to mast cell 

cultures stimulated with IL-33. Data are presented as the mean ± SEM of three independent 

experiments (n=3/group).
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Figure 2. Stat5 and Gata1 bind to Il9 gene locus in BMMCs
Real-time PCR analysis of Il9 expression in BMMCs stimulated with various factors (A) or 

with and without IL-3 and/or IL-33 (B) for 4 hours. C, Stat5 phosphorylation in BMMCs 

stimulate with and without IL-3 and/or IL-33 for 15 minutes (flow cytometry). ChIP analysis 

of Stat5 (D) and Gata1 (E) binding to Il9 gene locus in BMMCs stimulated with IL-3 ± 

IL-33. F, shRNA was used to knockdown Gata1 in BMMCs. Cells were then stimulated with 

IL-3 + IL-33 and Gata1, Il9, and Il6 levels were measured via qPCR. Each bar is normalized 

to beta microglobulin 2 (β2m) what is set to 1. * p value < 0.05 (A, C-F), **** p value 

<0.0001 (B). Data are presented as the mean ± SEM of three (A-B) and two (C-F) 

independent experiments (n=4/group).
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Figure 3. CNS-25 regulates histone modification at distal sites in the Il9 gene locus in BMMCs
A, Schematic of the Il9 gene locus. Zoomed boxed region shows regions against which 

eRNA primers were designed. ChIP analysis of RNA Polymerase II binding to Il9 gene 

locus in BMMC stimulated with IL-3 + IL-33 (B) (* p value < 0.05). Real-time PCR 

analysis of eRNA levels (C) in stimulated BMMCs and Th9 cells (* p value < 0.05). D, 

Histone modification markers in BMMCs and Th9 cells (ChIP). E, Histone modification 

markers in BMMCs from Il9WT and Il9ΔCNS-25 at CNS0 and CNS1. F, inflammatory gene 

expression in Il9WT and Il9ΔCNS-25 BMMCs stimulated with IL-33. G, Il9 and Il6 mRNA 
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levels in BMMC transduced with dCas9-VP64 and gRNA for hMYOD or CNS-25. Cytokine 

mRNA levels normalized to Beta-2M (qPCR). D – G: *p < 0.05, ** p < 0.01, *** p < 0.001 

**** p <0.0001. Data are presented as the mean ± SEM of two (B-E) and three (F-G) 

independent experiments (n=4/group).
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Figure 4. Il9ΔCNS-25 animals have reduced mast cell number in OVA food allergy model.
Il9WT and Il9ΔCNS-25 animals were subjected to OVA food allergy model as shown in Figure 

1A. Incidence of diarrhea (A) was measured and small intestine tissue (B) was stained as 

follows: H&E (eosinophils), PAS (goblet cells) and CAE (mast cells) (*** p < 0.001). 

Representative images of Il9WT and Il9ΔCNS-25 animals. Quantification of eosinophils 

derived from flow cytometry staining. C, Representative image of CAE stained granulated 

(arrow) and degranulated (boxed) mast cells and percent degranulated mast cells in small 
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intestine. Data are presented as the mean ± SEM of three independent experiments (n=4/

group).
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Figure 5. Il9ΔCNS-25 animals have reduced IL-9 expression in T cells, mast cell, and basophils.
A, lamina propria cells from food allergic Il9WT and Il9ΔCNS-25 animals were isolated and 

stimulated for 6 hours. IL-9 expression in mast cells (expressed as MFI) and CD4+ T cells 

(expressed as % Th9 cells) are shown (*p < 0.05, ** p < 0.01). B, Il9 and Il4 mRNA 

expression in small intestinal tissue (*p < 0.05). Data are presented as the mean ± SEM of 

three independent experiments (n=4/group).
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Figure 6. Il9ΔCNS-25 animals have reduced parasite clearance, mast cell numbers, and Il9 
expression in Nippostrongylus brasiliensis infected animals.
Il9WT and Il9ΔCNS-25 animals were subjected to mouse helminth infection model (A) and 

eggs per gram (EPG) was counted on days 6, 7, and 8 (B). C -D, Spleen, mesenchymal 

lymph nodes, small intestine, and lungs from Il9WT and Il9ΔCNS-25 animals isolated on day 8 

and stimulated for 4 hours and gene expression was measured via qRT-PCR. Intracellular 

IL-9 and IL-4 levels in CD3+CD4+ cells from stimulated MLN (E) were measured via flow 

cytometery and plasma IgE levels (F) were measured by ELISA. G, MCPT-1 levels in mucus 

from jejunum of Il9WT and Il9ΔCNS-25 animals measured by ELISA. H, small intestine was 
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stained with PAS for goblet cell count. I, CAE staining of jejunum was used to measure mast 

cells and percent degranulated mast cells in Il9WT and Il9ΔCNS-25 animals. (*p < 0.05, ** p 

< 0.01). Data are presented as the mean ± SEM of two independent experiments (n=5/

group).
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