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Abstract

Fibroblast growth factor 23 (FGF23), one of the endocrine fibroblast growth factors, is a principal 

regulator in the maintenance of serum phosphorus concentration. Binding to its cofactor αKlotho 

and a fibroblast growth factor receptor is essential for its activity. Its regulation and interaction 

with other factors in the bone-parathyroid-kidney axis is complex. FGF23 reduces serum 

phosphorus concentration through decreased reabsorption of phosphorus in the kidney and by 

decreasing 1,25 dihydroxyvitamin D (1,25(OH)2D) concentrations. Various FGF23-mediated 

disorders of renal phosphate wasting share similar clinical and biochemical features. The most 

common of these is X-linked hypophosphatemia (XLH). Additional disorders of FGF23 excess 

include autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemic 

rickets, fibrous dysplasia, and tumor-induced osteomalacia. Treatment is challenging, requiring 

careful monitoring and titration of dosages to optimize effectiveness and to balance side effects. 

Conventional therapy for XLH and other disorders of FGF23-mediated hypophosphatemia 

involves multiple daily doses of oral phosphate salts and active vitamin D analogs, such as 

calcitriol or alfacalcidol. Additional treatments may be used to help address side effects of 

conventional therapy such as thiazides to address hypercalciuria or nephrocalcinosis, and 

calcimimetics to manage hyperparathyroidism. The recent development and approval of an anti-

FGF23 antibody, burosumab, for use in XLH provides a novel treatment option.
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Introduction

Fibroblast growth factor 23 (FGF23) is part of a family of fibroblast growth factors (FGFs) 

which are secreted signaling proteins (1). Found in several tissues, they serve essential 

functions in development and metabolism through all stages of life, beginning in the embryo 

and continuing through adulthood (2). There are three types of FGFs, categorized based on 
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their mechanism of action: autocrine, paracrine, and endocrine (1). FGFs require heparin 

sulfate for receptor binding and signaling, enabling autocrine and paracrine functions (3). 

However, the endocrine FGFs are distinguished by their poor affinity for heparin sulfate, 

allowing release from the local extracellular matrix to circulate as endocrine hormones and 

bind receptors on distant cells (4). The endocrine FGFs play an important part in bile acid 

(FGF19), carbohydrate (FGF21), lipid (FGF21), and phosphate metabolism (FGF23) (2).

The FGF23 gene is located on human chromosome 12 (5). FGF23 is primarily produced in 

bone by osteocytes and is a 32 kDa protein containing 251 amino acids (5). The N-terminus 

contains a FGF homology region which binds to the FGF receptor and the C-terminus binds 

to the co-receptor αKlotho, ultimately creating a FGF receptor complex necessary for 

signaling at the FGF receptor (6).

In 1989, Meyer et al. suggested the presence of a phosphaturic factor (referred to as a 

“phosphatonin”) in Hyp mice, a mouse model of X-linked hypophosphatemic rickets (XLH) 

(7). Hyp mice produced this phosphaturic factor which could be transferred to normal mice 

through parabiosis experiments, resulting in an XLH phenotype (7). FGF23 was discovered 

in 2000 due to mutations in the FGF23 gene found in a kindred with autosomal dominant 

hypophosphatemic rickets (ADHR) (8), and was later identified as elevated in XLH and 

several other renal phosphate wasting disorders as the responsible phosphaturic factor. In our 

review, we explore the biological function and regulation of FGF23 and discuss 

hypophosphatemic disorders resulting from a state of FGF23 excess.

Cofactor and Receptors

The endocrine FGFs require a cofactor, αKlotho or βKlotho, in order to bind their respective 

receptors and provide tissue specificity (1). αKlotho or βKlotho are structurally related 

proteins consisting of approximately 1000 amino acids (2). FGF19 and FGF21 activate their 

receptor via βKlotho (1), while FGF23 activates its receptor via αKlotho (9). αKlotho binds 

to multiple fibroblast growth factor receptors (FGFR), forming a complex with greater 

affinity for FGF23 than αKlotho or the FGF receptor alone (10). Since many tissues express 

FGFR, the presence of klotho determines the target organs for the endocrine FGFs (11,12). 

The primary tissues expressing αklotho are the kidney’s proximal and distal tubules, the 

parathyroid glands, and the brain’s choroid plexus (13).

FGFRs are tyrosine kinases (2). Four of them are considered to be high-affinity receptors: 

FGFR1, FGFR2, FGFR3, and FGFR4. However, αKlotho does not bind strongly to FGFR2 

(9,10). Alternative splicing creates different ‘b’ and ‘c’ isoforms of FGFR and αKlotho 

binds best to the ‘c’ isoform leading to signaling of FGF23 through FGFR1c, FGFR3c, or 

FGFR4c (9,10). FGF23 has the highest affinity for FGFR1c (9).

Regulation of FGF23

The regulation of FGF23 is complex, involving multiple components in the bone-

parathyroid-kidney axis, including phosphorus, 1,25(OH)2D, parathyroid hormone (PTH), 

and calcium. FGF23 concentrations are increased by 1,25(OH)2D in humans and in animal 

models (14–20). In cell culture studies, 1,25(OH)2D increased FGF23 gene expression (17). 
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Even in XLH, therapeutic treatment with phosphate and calcitriol led to a further significant 

increase in already elevated FGF23 levels despite persistent hypophosphatemia (19). In 30 

adult dialysis patients with baseline elevated levels of FGF23 and secondary 

hyperparathyroidisim, FGF23 levels increased further after intravenous calcitriol (15). While 

phosphorus and 1,25(OH)2D both independently regulate FGF23 (17,18), phosphate binders 

may be able to block 1,25(OH)2D-induced FGF23 increases (16).

Phosphate intake increases FGF23 levels in studies of healthy adults and animal models 

(17,21–24). Dietary phosphate was shown to be a key regulator of serum FGF23 in healthy 

men and women (21,24). Oral phosphate loading significantly increased FGF23, while 

phosphate restriction led to a significant decrease (21,24). In healthy adult subjects, a diet 

high in both phosphate and calcium also significantly increased FGF23 levels (23).

The effect of PTH on FGF23 is not entirely clear. Animal models and cell culture studies 

indicate that PTH directly stimulates FGF23 production via the PTH/PTHrP receptor (25–

29). However, human studies are conflicting. One study in healthy adults indicated after 

PTH (1–34) infusion, that FGF23 and phosphorus levels significantly decreased over 6 hours 

(30). In contrast, another study in healthy adult men receiving a PTH (1–34) infusion, found 

FGF23 increased significantly during an 18 hour period (31). In both studies, PTH (1–34) 

infusion increased 1,25(OH)2D.

Low serum calcium may act as a “brake” on FGF23 production, which may be an adaptive 

response to prevent further hypocalcemia. Low calcium levels have been shown to decrease 

FGF23 levels, which subsequently removes FGF23 suppression of 1,25(OH)2D (32,33). 

Using mutant mouse models, PTH and 1,25(OH)2D were unable to stimulate FGF23 in the 

setting of hypocalcemia (33). This may also explain why it is often difficult to normalize 

serum phosphorus in hypoparathyroidism, despite elevated FGF23 (34). In adult patients 

with hypoparathyroidism, treatment with 1,25(OH)2D increased serum calcium and FGF23 

levels (20).

Additional regulation of FGF23 occurs through post-translational mechanisms. Proprotein 

convertases cleave FGF23 at the C-terminus between amino acids 179 and 180 (35). 

Mutations affecting this cleavage site result in excess FGF23 (36). FGF23 also requires O-

glycosylation within the proprotein convertase cleavage site in order to secrete biologically 

active intact FGF23 (37). O-glycosylation is directed by the polypeptide N-

acetylgalactosaminyltransferase 3 (GALNT3) (37). Deficiency of GALNT3 activity prevents 

O-glycosylation, leading to increased cleavage and inactivation of FGF23 (37). Loss-of-

function mutations in GALNT3 result in a deficiency of intact FGF23, and the resulting 

phenotype of hyperphosphatemic familial tumoral calcinosis (38). A kinase from the family 

with sequence similarity 20, member C (FAM20C) phosphorylates FGF23, preventing O-

glycosylation, allowing for cleavage by proprotein convertases, such as furin (39). 

Deficiency of FAM20C leads to FGF23 excess and hypophosphatemia. FGF23 cleavage 

may be regulated specifically to maintain appropriate concentrations and 

normophosphatemia. Gene expression increases in the setting of iron deficiency (40), but 

generally intact FGF23 concentrations remain normal unless a mutation specifically impairs 

FGF23 cleavage (41). Phosphate regulating endopeptidase homolog X-linked (PHEX) and 
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dentin matrix protein 1 (DMP1) are genes whose deficiency results in upregulation of 

FGF23 (42, 43). FGFR signaling pathways also regulate FGF23 through Ras-mitogen-

activated protein kinase (MAPK), extracellular signal related kinase (ERK), and tyrosine 

kinase activity (44). Figure 1 lists positive and negative regulators of FGF23.

FGF23 Regulation of 1,25(OH)2D, Phosphorus and PTH

FGF23 is the principal regulator in the maintenance of serum phosphorus levels (figure 2). 

Administration of FGF23 in animal models decreases serum phosphorus due to a 

combination of effects on renal phosphate transport and vitamin D metabolism (45–48). 

Phosphorus is filtered by the glomerulus, but the vast majority is reabsorbed in the proximal 

convoluted tubule by renal sodium phosphate cotransporters type IIa (NaPi-IIa) and type IIc 

(NaPi-IIc) (49). FGF23 administration results in reduced brush border expression of the 

NaPi-IIa and NaPi-IIc (50,51). NaPi-IIa and NaPi-IIc are also down-regulated by PTH (52).

FGF23 decreases serum 1,25(OH)2D levels via suppressed expression of CYP27B1, 

limiting protein expression of 1α-hydroxylase (45,53), an enzyme necessary to convert 25-

hydroxyvitamin D (25(OH)D) to its active form 1,25(OH)2D (53). FGF23 also increases 

expression of CYP24A1, increasing vitamin D 24-hydroxylase (45), which catabolizes 

25(OH)D and 1,25(OH)2D into inactive metabolites (53). Since 1,25(OH)2D upregulates 

intestinal phosphate transport, decreasing 1,25(OH)2D also contributes to FGF23-mediated 

hypophosphatemia (50,51).

Conditions of FGF23 excess or deficiencies have expected effects on phosphorus and 

vitamin D metabolism. Transgenic mice expressing human FGF23 have reduced expression 

of NaPi-IIa, phosphaturia, and decreased serum 1,25(OH)2D with resultant 

hypophosphatemia and rachitic bone (50). FGF23 null mice had the opposite biochemical 

findings with elevated serum phosphorus levels, elevated serum 1,25(OH)2D, and increased 

renal phosphorus reabsorption (54). These phenotypes are recapitulated in the human 

diseases of XLH and hyperphosphatemic tumoral calcinosis, respectively.

The effect of FGF23 on PTH is not well understood. Evidence in vitro and from animal 

models suggests that FGF23 has an inhibitory effect on PTH, at least during short-term 

studies (11,55). FGF23 suppressed PTH in rats, but in the setting of hypocalcemia, the 

inhibition of PTH is lost (56). However, in human diseases or animal models of chronic 

FGF23 excess, hyperparathyroidism is common (51,57).

Effect of Age and Gender on FGF23

Multiple enzyme linked immunosorbent assays are available for measuring FGF23 in serum 

or plasma. An assay targeting the C-terminal end of FGF23 (cFGF23) will detect both C-

terminal fragments and full length FGF23 (58). However only the intact form is biologically 

active. Intact FGF23 assays measure only the full-length intact FGF23 (iFGF23) (59). The 

cFGF23 is best measured in plasma, as serum values will be systematically lower (60). 

However, the Kainos iFGF23 assay provides similar results in plasma and serum (60).
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Table 1 describes reported ranges of FGF23 in healthy populations. In general studies 

indicate higher values of cFGF23 in newborns and young children than in adults (58,61–67). 

However, reported iFGF23 ranges are generally similar across studies at different ages in 

healthy children and adults, though one study suggested lower iFGF23 in cord blood (59,61–

63,65–67). While cFGF23 were mostly similar between boys and girls, some studies 

suggested higher iFGF23 in girls (62,63).

In a study of 180 healthy adults, cFGF23 had lower intra-individual variability, but higher 

inter-individual variability (66). Since iFGF23 had less inter-individual variability, it may be 

more clinically useful for diagnostic purposes (66), though currently the cFGF23 assay is 

more clinically available. Intact FGF23 levels >30 pg/mL using the Kainos intact assay 

(approximately the normal mean with this assay in some studies) during hypophosphatemia 

have been proposed as a cutoff for identifying FGF23-mediated hypophosphatemia (68). 

However, an analogous threshold with cFGF23 has not been determined.

FGF23-Mediated Disorders of Phosphate Wasting

The differential diagnosis for hypophosphatemia is quite broad, but etiologies largely 

include increased renal excretion (both FGF23-mediated and non-FGF23-mediated), 

impaired intake or intestinal absorption of phosphate, and transcellular shifts of phosphorus 

(69). This review concentrates on the FGF23-mediated causes, which include autosomal 

dominant hypophosphatemic rickets (ADHR), X-linked hypophosphatemic rickets (XLH), 

autosomal recessive hypophosphatemic rickets (ARHR), fibrous dysplasia (FD), and tumor-

induced osteomalacia (TIO) (table 2). These FGF23-mediated hypophosphatemic disorders 

share common features which may include rickets or osteomalacia, bony deformities, short 

stature, and bone pain (8). Biochemically these conditions are characterized by low serum 

phosphorus, increased urinary phosphorus excretion [or decreased ratio of the maximum rate 

of tubular phosphate reabsorption to glomerular filtration rate (TmP/GFR)], normal serum 

and urine calcium, high alkaline phosphatase (ALP), normal PTH, normal 25(OH)D, 

decreased or inappropriately normal 1,25(OH)2D, and increased FGF23 (69).

FGF23 Effect on Bone

FGF23 has both direct and indirect effects (through hypophosphatemia) on bone. 

Hypophosphatemia, secondary to excess FGF23, causes rickets due to arrested apoptosis of 

the hypertrophic chondrocytes of the growth plate and osteomalacia due to delayed mineral 

apposition rate of osteoid (70). In growing youth, prior to epiphyseal fusion, rickets and 

osteomalacia both occur, while in the adult, only osteomalacia occurs (70).

In mouse models, Murali et al. has recently shown that increased FGF23 also has direct 

autocrine and paracrine effects on the osteocyte, which occur independently of klotho and 

lead to suppression of osteocyte tissue nonspecific alkaline phosphatase (TNAP), 

contributing to impaired bone mineralization (71,72). Bone specific alkaline phosphatase 

hydrolyzes inorganic pyrophosphate (an inhibitor of mineralization) releasing inorganic 

phosphate, subsequently allowing for synthesis of hydroxyapatite (73). Its deficiency leads 

to impaired mineralization as seen in hypophosphatasia, while conversely, insufficient 
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inorganic phosphate at the mineralization surface tends to increase alkaline phosphatase 

activity. In the Hyp mouse model of XLH, while the TNAP activity in the Hyp osteocyte is 

impaired secondary to increased FGF23 secretion, osteoblast TNAP is increased sufficient to 

lead to elevated serum ALP (72). ALP activity is also increased within growth plate cartilage 

during chondrocyte differentiation (74). Increased serum ALP activity is generally seen in 

human disease states of FGF23-mediated hypophosphatemia (69).

Autosomal Dominant Hypophosphatemic Rickets (ADHR)

In the year 2000, FGF23 was discovered due to the presence of missense mutations in 

kindreds with ADHR (8). These missense mutations decrease FGF23’s susceptibility to 

proteolytic cleavage, preventing its degradation, hence resulting in elevated circulating levels 

and hypophosphatemia (75). ADHR is a rare hypophosphatemic disorder with autosomal 

dominant inheritance pattern, but incomplete penetrance (76).

In fact, disease activity fluctuates according to FGF23 levels in this condition, and there is 

waxing and waning of the biochemical and symptomatic phenotypes (36). Those with an 

onset in childhood develop hypophosphatemia, phosphate wasting, rickets, and lower 

extremity deformities. However, a large subgroup of patients has documented normal 

phosphate values for age in childhood, grows normally without rickets or leg deformities, 

and only later as adolescents or adults develops elevated iFGF23 and hypophosphatemia 

(36,41,76,77).

Those with late-onset of disease in adolescence or adulthood developed significant bone 

pain, weakness, and insufficiency fractures. Some of those with childhood-onset disease 

achieve spontaneous resolution of their renal phosphate-wasting defect. Similarly some with 

late-onset hypophosphatemia also spontaneously normalize their FGF23 and serum 

phosphorus concentrations, with associated resolution of symptoms (36,41).

Interestingly the FGF23 phenotype of ADHR appears to be driven by the consequences of 

iron deficiency. In the setting of iron deficiency, FGF23 gene expression increases (40). In 

healthy controls or wild type mice, this leads to elevated circulating concentrations of 

fragments (cFGF23), but biologically active iFGF23 remains normal, with 

normophosphatemia (40,41). However, in the setting of ADHR mutations, iFGF23 

concentrations also become elevated during iron deficiency due to the effect of impaired 

FGF23 cleavage, and hypophosphatemia results (40,41). The observed waxing and waning 

of the ADHR biochemical phenotype corresponded to changes in iron status (41). We would 

propose that if a patient never became iron deficient, clinical features of ADHR might never 

manifest. In contrast, in XLH patients, iFGF23 is not related to serum iron (78).

The iron story is made somewhat more complicated by adverse effects of intravenous iron 

administration. In the setting of iron deficiency, patients without ADHR can sometimes be 

triggered by certain forms of intravenous iron to undergo sudden acute increases in iFGF23, 

even while their cFGF23 is normalizing (79, 80). This phenomenon can be severe enough to 

cause hypophosphatemia, and if repeated doses are necessary due to persistent iron 

deficiency, osteomalacia and insufficiency fractures may result. The mechanism is not 
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certain but appears to involve a transient inability to effectively cleave iFGF23, even in 

patients without ADHR. This has been mainly reported with intravenous iron 

carboxymaltose and iron polymaltose (79–81). Thus, patients undergoing iron infusions 

should have serum phosphorus monitored.

X-Linked Hypophosphatemic Rickets (XLH)

The most common heritable form of rickets is XLH, with an estimated prevalence of 1 in 

20,000 and accounting for about 80% of familial cases of hypophosphatemia (57). The 

inheritance pattern is X-linked dominant, indicating that a single allele will cause phenotypic 

expression in both males and females. Careful family history should identify the inheritance 

pattern and guide assessment of a genetic cause, as there are autosomal dominant and 

recessive disorders that clinically mimic XLH. A mutation in the PHEX gene causes XLH in 

humans (82), and in the Hyp mouse model as well (83). The PHEX gene is expressed in 

bone (osteocyte) and teeth (odontoblasts) (57). PHEX deficiency results in increased 

expression of FGF23, and consequent hypophosphatemia.

XLH has high penetrance, but clinical findings and severity vary widely among individuals, 

even within a kindred. Clinical features include short stature, lower-extremity deformities, 

osteomalacia, rickets, and bone pain (57). Features typically manifest around the time of 

walking, after age 1 to 2 years, when short stature and limb deformities become apparent 

(57). Frequent limb deformities include genu varum or valgum, tibial torsion, bowing of the 

tibia and femur, or windswept deformity (84). While rickets is a classic and common feature, 

its location and presence are variable among individuals (85). A distinctive histologic feature 

is hypomineralized periosteocytic lesions in cortical bone (86). In XLH, FGF23 is generally 

elevated. However, some patients may have high-normal levels which are still indicative of 

an FGF23-mediated cause of their hypophosphatemia (58,59,68).

Dental disease is very common including dental abscesses, caries, periodontal disease, and 

tooth loss (87–89). Phex and FGF23 are expressed in teeth, and patients with XLH have 

impaired mineralization of dentin and cementum layers (90–93). Osteopontin is involved in 

the intrinsic dental abnormalities(91), however hypophosphatemia likely plays a role as well, 

since treatment with calcitriol and phosphate is associated with fewer tooth abscesses, 

though they remain common despite treatment (88,89,92).

Osteoarthritis, enthesopathies, and residual lower-extremity long bone curvature are 

common in adults with XLH (94). Enthesopathies occur in several locations and are 

commonly found in the hands, feet, spine, hips, and sacroiliac joints and can become quite 

severe (95,96). These features greatly limit mobility and quality of life. Adults with PHEX 

mutations often need orthopedic procedures including joint replacement and spinal surgeries 

(87). With a mean age of 50 at the time of surgery, total knee and hip arthroplasties may 

benefit adult XLH patients with degenerative osteoarthritis (97). Up to half of adult patients 

may have pseudofractures (98–100), which are also a source of pain and decreased mobility, 

which often result in orthopedic procedures for stabilization.
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Monitoring for neurologic symptoms is necessary throughout life as patients with XLH can 

develop neurologic complications due to several disease features. Skull malformations are 

common in patients with rickets which may sometimes be associated with neurologic 

consequences. In a study of 44 children with XLH, craniosynostosis, especially sagittal 

suture fusion, occurred in 59%, and Chiari type 1 malformation was found in 25%, 2 of 

which had neurological symptoms, and 4 required neurosurgical intervention (101). Hearing 

loss has been reported in 28.6% of XLH patients compared to 9.8% of unaffected family 

members (102), in 9% of children and in 48–82% of adults (103,104). Hearing loss is often 

sensorineural (104). The etiology may involve osteomalacia of the otic capsule bone, but in 

the Phex mutant mouse model, treatment with calcitriol and phosphate improved 

mineralization of the capsule bone, but did not prevent sensorineural hearing loss (105).

One study indicated that 12% of adults experience spinal complications including spinal 

stenosis, cord compression, and myelopathy (87), although lifetime rates may be higher, 

given the prominent involvement of the spine in enthesopathy, both at the anterior and 

posterior longitudinal ligament. Decompressive laminectomy may be needed. These features 

can contribute to disability. It is important to note that none of the medical treatments 

discussed below have ever been shown to alter the course of enthesopathy.

Autosomal Recessive Hypophosphatemic Rickets (ARHR)

Autosomal recessive hypophosphatemic rickets (ARHR) is another rare FGF23-mediated 

condition of renal phosphate wasting with multiple genetic causes. DMP1 mutations cause 

ARHR type 1 and FGF23 levels are elevated in these individuals and in the DMP1 null 

mouse (106,107), resulting in hypophosphatemia, severe rickets, and diffuse osteomalacia 

(43). Mutations in ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) cause 

ARHR type 2 (108). ENPP1 mutations are also known to cause generalized arterial 

calcification of infancy (GACI) which causes calcification and stenosis of medium and 

large-sized arteries (109,110) and is frequently lethal (111). In some individuals with GACI, 

hypophosphatemia due to renal phosphate wasting developed and was associated with 

survival past infancy (111), suggesting hypophosphatemia as a protective mechanism seen in 

milder phenotypes (109). However, in three individuals in a family with ARHR, ENPP1 

mutations may also cause ARHR, without GACI (112). Rafaelsen et al. identified a 

nonlethal variant of Raine syndrome caused by a FAM20C mutation in 2 siblings with 

elevated FGF23 levels and hypophosphatemia, representing a third genetic form of ARHR 

(113).

Case reports of individuals with ARHR caused by DMP1 or ENPP1 mutations show a 

clinical phenotype of short stature, and skeletal deformities starting in early childhood, 

dental abnormalities such as hypoplasia, caries, and early tooth loss, bone and joint pain, 

contractures, ligamental calcification, enthesopathies, rickets, and osteomalacia similar to 

XLH (112,114–118). The siblings with a FAM20C mutation developed tooth decay, 

osteosclerosis of the long bones, ectopic brain calcifications, and mild facial and acral 

dysmorphic features (113).
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Fibrous Dysplasia (FD)/McCune-Albright Syndrome (MAS)

Fibrous dysplasia (FD) of bone is characterized by replacement of normal bone and bone 

marrow by abnormal fibro-osseous tissue (119,120). Its occurrence is seen in individuals 

with McCune-Albright Syndrome (MAS), classically defined as the triad of fibrous 

dysplasia, café-au-lait macules, and precocious puberty, but can include other 

endocrinopathies such as hyperthyroidism, growth hormone excess, and Cushing syndrome 

(121). MAS is rare with an estimated prevalence between 1 in 100,000 and 1 in 1,000,000 

(121). It is caused by a post-zygotic mutation in the guanine nucleotide binding protein, 

alpha stimulating (GNAS) gene, resulting in constitutive activation of the adenylyl cyclase 

system in affected cells (121,122). FD may also occur in individuals without other features 

of MAS.

Approximately 50% of individuals with MAS and FD have renal phosphate wasting 

(120,123), which correlates significantly with the degree of bone involvement (120). 

However, hypophosphatemic rickets is not common (124). FD lesions locally produce 

FGF23 and blood cFGF23 levels are increased in FD/MAS compared to normal controls and 

are significantly higher in FD/MAS with renal phosphate wasting compared to FD/MAS 

without renal phosphate wasting (123,125). Bone marrow stromal cells with the GNAS 

mutation have lower GALNT3, but higher furin activity, which ultimately leads to increased 

FGF23 cleavage causing a larger proportion of the increased FGF23 level being cFGF23, the 

non-biologically active form, which may explain why classic hypophosphatemic rickets may 

be less common in FD (126).

Tumor Induced Osteomalacia (TIO)

Tumor induced osteomalacia (TIO) is a rare, sporadic disorder that occurs in children and 

adults. The tumors are often small and slow growing, of mesenchymal origin, and located in 

the bone or soft tissue (127). They abundantly express FGF23 (48,128) resulting in elevated 

blood levels (58,59). Other factors, such as secreted frizzled-related-protein-4 (sFRP-4), 

fibroblast growth factor 7 (FGF7), and matrix extracellular phosphoglycoprotein (MEPE) 

are also produced by TIO-associated tumors (129–131), but have not clearly been linked to 

phosphate pathology. An FN1-FGFR1 fusion gene appears to cause some of these tumors 

(132). However, as ADHR can also cause late-onset hypophosphatemia, it should be 

considered in the differential diagnosis of TIO.

Patients often present with vague and long-standing symptoms of bone pain, muscle 

weakness, fractures, and fatigue (133). Localization of the tumor can be quite difficult, and 

multiple imaging modalities may need to be employed including ultrasound, computed 

tomography (CT), magnetic resonance imaging (MRI) (133), 111In-octreotide scan, and 

fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography 

(CT) (134). More recently, Dotatate PET/CT has been used. Selective venous sampling can 

sometimes detect local elevations in serum FGF-23 levels, allowing for localization of the 

responsible tumor (135–138). Complete tumor resection is the most effective approach (139) 

resulting in resolution of hypophosphatemia and a good prognosis in most (140). Post-
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operative recurrence can occur even many years later, especially when complete resection is 

not possible, so ongoing surveillance is necessary (139,140).

Other FGF23-Mediated Disorders of Phosphate Wasting

Other extremely rare causes of FGF23-mediated phosphate wasting include linear nevus 

sebaceous syndrome (or epidermal nevus syndrome), Jansen’s metaphyseal 

chondrodysplasia, and osteoglophonic dysplasia. Linear nevus sebaceous syndrome (LNSS) 

is a neurocutaneous disorder affecting multiple organ systems, but mainly the skeletal and 

central nervous systems (141,142). Postzygotic somatic mutations in HRAS, KRAS, and 

NRAS are described in LNSS (143,144). Hypophosphatemic rickets may occur with 

elevated FGF23 levels (145,146). Although some early reports suggested that excision of the 

nevus corrected the hypophosphatemia (145,147), there is growing evidence that the source 

is actually the skeleton and that excising these lesions is not beneficial (148,149).

Jansen’s metaphyseal chondrodysplasia is a rare form of short limbed dwarfism due to 

severe growth plate abnormalities with biochemical features similar to primary 

hyperparathyroidism with hypercalcemia and hypophosphatemia, however PTH is low or 

undetectable (150). This dysplasia occurs secondary to an activating mutation in the receptor 

for PTH and PTH-related peptide (PTHrP) (151). Elevated serum FGF23 levels were 

described in a case report of Jansen’s metaphyseal dysplasia and osteocyte expression of this 

mutation causes elevating FGF23 levels (29,152).

Osteoglophonic dysplasia (OD) is a rare skeletal dysplasia with findings of disproportionate 

dwarfism, craniofacial defects, and non-ossifying bone lesions caused by an activating 

mutation in the FGFR1 receptor (153–155). Hypophosphatemia can be seen associated with 

an elevated FGF23 level, perhaps from local production within bone lesions (155).

Treatment

Conventional therapy for XLH involves multiple daily dosing of oral phosphate 

supplementation and active vitamin D analogs, such as calcitriol or alfacalcidol (156). 

Phosphate salts should never be given without an active form of Vitamin D in XLH both 

because of a lack of effectiveness as monotherapy and due to the effect of phosphate to 

induce development of secondary and tertiary hyperparathyroidism (157). Conversely some 

patients can be managed with calcitriol alone (158).

There is no consensus on the optimal doses, and given the extreme variability between 

patients with XLH, doses need to be individualized (159). Typically published dose 

recommendations range from 20–60 mg/kg/day of oral phosphate divided into three to five 

doses per day, and either calcitriol 20–30 ng/kg/day divided into two to three doses per day 

or alfacalcidol 40–60 ng/kg/day (57,156,160,161). Doses up to 80 mg/kg/day of phosphate 

and 60 ng/kg/day of calcitriol or higher have also been described in various studies (57,160–

162). To our knowledge no systematic study has compared different doses to define an 

optimal dose level, and most trials typically just report the doses that were administered and 

are underpowered to compare magnitude of effectiveness of different dose regimens. 
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However, given variability in response, with some patients responding well to lower doses, 

while others requiring higher doses to achieve effect, it is important to individualize therapy.

Laboratory monitoring, especially of calcium, phosphorus, creatinine, alkaline phosphatase 

and PTH, as well as of urine calcium and urine creatinine, should be conducted every 3–6 

months. Overall, doses should be carefully titrated to achieve a decrease in serum ALP 

activity while paying careful attention to serum and urine calcium concentrations and serum 

PTH (160). It is important to know that the primary goal of conventional therapy is not to 

normalize the serum phosphorus, but rather to improve skeletal outcomes including growth 

and deformity. In this regard, normalizing the alkaline phosphatase as a marker of 

osteomalacia is an important goal of therapy and failure to normalize alkaline phosphatase 

indicates a need to modify therapy and confirm compliance.

However, careful monitoring is also necessary to avoid or manage the clinically important 

complications of therapy. Gastrointestinal symptoms from the laxative effects of phosphate 

can often be managed by titrating the dose slowly, but these can be limiting for some 

patients and complicate adherence. Other clinical complications of conventional therapy 

include hypercalciuria, nephrocalcinosis, and secondary (or often tertiary) 

hyperparathyroidism (57,163), which may be related to higher doses (164–166). 

Consequently, limiting doses or adding adjunctive therapies may be required in some 

individuals to minimize risk or address occurrence of complications. In particular high doses 

of phosphate >100 mg/kg/day are associated with higher risk for tertiary 

hyperparathyroidism (164), though this also is observed with lower doses, especially if 

accompanied by insufficient dosing of active form of vitamin D.

PTH should be monitored every 3–6 months in children and every 6 months in adults 

receiving therapy for XLH (57,159). Increasing doses of the active form of vitamin D can 

ameliorate or normalize the PTH in secondary hyperparathyroidism, though lowering 

phosphate doses can sometimes be necessary (57,159). Secondary hyperparathyroidism is 

common, occurring in 83.3% of patients with XLH, leading to tertiary hyperparathyroidism 

in 16.7%, including some adolescents (167). There is little data on the outcomes of treatment 

for tertiary hyperparathyroidism in XLH, which is mostly based on case reports and series. 

In a recent case series, 75% of XLH patients having parathyroidectomy had recurrence or 

persistence of tertiary hyperparathyroidism (167).

In a well done study in children with XLH, short term treatment with cinacalcet increased 

TmP/GFR and serum phosphate, while decreasing PTH levels (168). In an interesting case 

report, a single patient with XLH was managed with cinacalcet, calcitriol, and 

hydrochlorothiazide without phosphate salts, demonstrating improvement of rickets (169). 

Of note cinacalcet use in children is off-label. Several authors have reported success 

managing the secondary or tertiary hyperparathyroidism of XLH patients with the 

calcimimetic, cinacalcet (167,170–172). However the responses are variable and patients 

often still require parathyroidectomy (167).

Nephrocalcinosis is very common on conventional therapy. At baseline, prior to 

randomization, nephrocalcinosis was present in 23% of the children and 54% of the adults 
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recruited into the recent burosumab clinical trials (98,162). Some studies have found 

associations of nephrocalcinosis with higher doses of conventional therapy (165,166), while 

others did not (173). However, these studies also indicated that episodes of hypercalciuria 

may be associated with nephrocalcinosis risk in XLH. Thus, monitoring urine calcium 

excretion is important. The long-term consequences of nephrocalcinosis in XLH are 

uncertain regarding renal function, though CKD is reported in about 8–9 % of patients with 

XLH (167,174), and end stage renal disease has been reported (167). Renal ultrasounds are 

recommended every 1–2 years during treatment of XLH with either conventional therapy or 

burosumab (159).

Thiazides have been used to decrease urinary calcium excretion in XLH patients with 

hypercalciuria or nephrocalcinosis. In 11 children with XLH on therapy with calcitriol and 

phosphate, adding the thiazide diuretic, hydrochlorothiazide decreased urinary calcium 

excretion and while nephrocalcinosis did not resolve, further progression was prevented 

(175). In another series, the use of thiazides resulted in resolution of nephrocalcinosis in two 

patients with XLH (176).

Treatment of XLH is required in children to allow for growth and adequate bone 

mineralization (156), and outcomes are improved when initiated in infancy as opposed to 

later in childhood (177). However, despite treatment, and even with good adherence, many 

children have suboptimal growth, and persistent leg deformities with need for surgical 

correction (177). In particular, Zivicnjak et al. highlight the growth deficits that worsen 

during puberty even during conventional therapy (178). Therapy has often been stopped at 

the end of growth in an attempt to balance risks versus benefits of ongoing therapy. During 

this time period many XLH patients are lost to follow-up until a time when symptoms lead 

to seeking additional care. However, in adult patients, therapy is typically restarted or 

continued in symptomatic adults having bone pain or fractures due to osteomalacia. ADHR 

and ARHR, like XLH, are also treated with oral phosphate and active vitamin D analogs. 

However, emerging evidence suggests ADHR could be treated with oral iron (41,179) 

instead of with phosphate and vitamin D, though this approach would be ineffective for 

XLH (78).

Several studies have evaluated the use of recombinant human growth hormone (GH) in 

XLH. Uncontrolled studies noted improvement in linear growth in children with short 

stature and XLH (180–182). Two years of treatment with growth hormone (GH) improved 

height SDS, with a better response in prepubertal compared to pubertal children (181). GH 

monotherapy also improved the serum phosphate and 1,25(OH)2D while normalizing PTH 

in a study of 10 children with XLH (180). A randomized controlled trial in children with 

XLH and short stature suggested benefit of adding GH to conventional therapy as linear 

growth significantly improved, although mean height SDS did not differ compared to 

controls at 3 years (183). However, when these same subjects were followed to final adult 

height, there was no difference in height between GH-treated patients and controls with 

XLH, although the sample size was small (184). Another important finding of the controlled 

study was that GH did not appear to worsen the body disproportion that is seen in XLH.
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Recent advances in XLH therapy include regulatory approval of burosumab, an anti-FGF23 

antibody, as monotherapy by the Food and Drug Administration and European Medicines 

Agency. Anti-FGF23 antibodies corrected hypophosphatemia and improved rickets and bone 

length in Hyp mice (185). Burosumab (previously termed KRN23) is a human anti-FGF23 

monoclonal antibody and has been shown to significantly increase serum phosphorus, TmP/

GFR, and 1,25(OH)2D in adults and children (186–189). The biochemical pattern after 

injections results in peak and trough effects over a 4-week dosing cycle in adults, with peak 

1,25(OH)2D about 3–7 days after injection and peak phosphorus about 7 days after injection 

(186). In an adult randomized controlled trial, 134 adults randomized to burosumab every 4 

weeks for 24 weeks, demonstrated clear improvements in serum phosphorus versus placebo 

(98). In this trial the burosumab group demonstrated greater healing of fractures/

pseudofractures (43.1% vs 7.7%) during this time period, and improved stiffness scores.

Open label dose-finding phase 2 clinical trials also demonstrated improvements in 

phosphorus, alkaline phosphatase and rickets severity in 52 children ages 5–12 years (188) 

and in 13 children ages 1–4 years (189). Children age 5–12 years demonstrated 

improvements in physical function as well (188). Modest improvements in height Z-score 

(+0.15 ± 0.04) were noted (188).

Only one randomized controlled trial has directly compared conventional therapy to 

burosumab. This phase 3 open-label randomized controlled trial was conducted in 61 

children ages 1–12 years with XLH (162). Children who had persistent rickets despite a 

mean of 3.3–4.3 years of prior conventional therapy were randomized to switch to 

burosumab (0.8 mg/kg every 2 weeks) or continue conventional therapy (oral phosphate 20–

60 mg/kg/day, and calcitriol 20–30 ng/kg/day or alfacalcidiol 40–60 ng/kg/day, titrated 

based on clinical parameters). By the end of the study most burosumab patients were still 

receiving 0.8 mg/kg burosumab, though some increased to 1.2 mg/kg, while the control 

group’s mean phosphate dose was 46 mg/kg/day, calcitriol 27 mg/kg/day and alfacalcidiol 

86.5 ng/kg/day (162) Clinical improvements in rickets were seen in both groups as rated by 

radiologists blinded to treatment group using a radiographic global impression of change 

scale (190), where negative scores indicated worsening, 0 indicated no change +1 minimal 

healing +2 substantial healing and + 3 complete healing. This study demonstrated superior 

improvements with burosumab. At the primary outcome of 40 weeks (72.4% of those in the 

burosumab group achieved substantial healing of rickets by RGI-C of ≥+2 versus only 6.3% 

in the conventional therapy group). At 64 weeks the mean RGI-C score after burosumab was 

+2.1 compared to a compared to +1 in the conventional therapy arm. Other statistically 

significant improvements were seen in serum phosphorus, TmP/GFR, alkaline phosphatase, 

linear growth, and mobility in the burosumab group compared to the conventional therapy 

group.

These trials also show a favorable safety profile, with the most common side effects being 

transient injection site reactions (186–188). There were no signals of increased risk for 

nephrocalcinosis. However, some subjects in the adult burosumab trial did require dose 

reductions due to hyperphosphatemia. Consequently, monitoring serum phosphorus remains 

important to avoid hyperphosphatemia, which could carry a risk of nephrocalcinosis or other 

ectopic calcifications. Tooth abscesses were numerically higher in the burosumab group for 

Gohil and Imel Page 13

Pediatr Endocrinol Rev. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the controlled trials. It is not clear what the long-term impact of burosumab on tooth 

abscesses, nephrocalcinosis or hyperparathyroidism will be.

Burosumab was approved as monotherapy with dosing in adults of 1 mg/kg every 4 weeks 

subcutaneously and in children 0.8 to 1.2 mg/kg every 2 weeks, with a maximum dose of 90 

mg. Serum phosphorus is targeted within the low-normal range at trough, and we would 

recommend avoiding high or high-normal values anywhere in the dose cycle. However, 

clinical monitoring for safety remains important, including monitoring phosphorus, calcium, 

creatinine, PTH, urine calcium excretion, and renal ultrasounds. Monitoring for efficacy 

includes measures of ALP and radiographic imaging to monitor rachitic changes and lower 

limb deformities, or to monitor healing of pseudofractures. It is as yet unknown what the 

impact of burosumab will be on the need for corrective leg surgeries, final adult height, 

enthesopathy, or other long-term XLH complications.

Children in the randomized controlled trial were those that had persistent evidence of 

significant rickets despite prior conventional therapy. Out of 122 screened, 55 (45%) were 

ineligible due to lesser rickets severity, consistent with the known benefits of conventional 

therapy. Persistent rickets in these patients could be due to prior compliance or dosing or 

inherent underlying resistance of their disease to therapy (191,192). Compliance is 

challenging for patients with multiple daily dosing of medications and patients often find 

conventional therapy burdensome (192). Furthermore, compliant patients are highly variable 

in the response to conventional therapy, with some recovering completely and some 

persisting with severe deformities. These concerns also highlight the difficulties and 

challenges managing patients with conventional therapy (191). Thus, patients who are 

responding well to conventional therapy may continue to do well on conventional therapy, 

while patients with persistent rickets clearly benefited from switching to burosumab.

One commentary raised a concern that patients on higher doses of conventional therapy 

might have responded better, acknowledging that higher doses of phosphate might also lead 

to elevated PTH levels which can also contribute to phosphaturia (191). The recent guideline 

has recommended a somewhat higher dose range for conventional therapy, as cited above 

(159). A subanalysis of the responses by either pre-trial or on-trial dose range has not been 

conducted, but patients in the upper quartile of dosing during the trial were within ranges 

similar to these new guidelines, and in some individuals much higher. However, it is not 

clear that the very large magnitude of differences in rickets responses in this randomized 

controlled trial can be explained solely by differences in the conventional therapy dose (at 

week 40: 72% burosumab vs 6 % conventional therapy having substantial healing or greater 

with RGI-C of ≥+2; and at week 64: 87% vs 19%).

While a Hyp mouse study comparing a different FGF23 antibody to enormous doses of 

calcitriol monotherapy found greater improvements in bone parameters with calcitriol 

(193,194), we would recommend caution in this comparison. That mouse study used doses 

of calcitriol that were several fold higher than the highest doses recommended in humans 

even from recent guidelines (159), raising concern for risks of hypercalciuria and 

nephrocalcinosis. However, a clinical trial is underway (ClinicalTrials.gov Identifier: ) which 
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will provide useful information on calcitriol monotherapy but does not include comparison 

with other treatment regimens.

One proposed approach, given the expense of burosumab is to initiate patients on 

conventional therapy and advance to burosumab if inadequate skeletal outcomes are seen 

(191,192). However, there may also be benefit to initiating burosumab early in severely 

affected patients (191), while the randomized controlled trial would indicate that patients 

who have been on conventional therapy for years with insufficient improvement are less 

likely to improve further remaining on conventional therapy (162). Those with 

pseudofractures, especially while on conventional therapy are also likely to benefit from 

burosumab (98). As with conventional therapy, decisions regarding burosumab treatment for 

children and adults should be individualized, taking into account the risks and benefits of 

therapy, and both approaches require careful monitoring.

Corrective Surgery

Conventional therapy improves limb deformities in most patients, though not necessarily 

with complete correction. The benefits of therapy on skeletal deformities are likely greatest 

when therapy is started early (177). Children do frequently still require orthopedic surgery to 

correct long bone deformities to straighten the lower limbs. Such procedures include 

osteotomies with internal fixation or external fixation to address bowing and torsional 

abnormalities, and guided growth procedures using plate across the medial or lateral physis 

(of the distal femur for example) to limit growth on that side of the physis, while allowing 

the opposite side to grow, to straighten the deformity (159,195). The timing of surgery is 

variable. One retrospective study found that patients having initial surgery at younger ages 

had more total surgeries than those having their first surgery later (195). Though this may 

have been confounded by severity of the initial deformity, it remains an important 

consideration and supports that osteotomies may be better performed at later ages when 

growth is complete or near complete. However, guided growth procedures must be 

completed while the patient still has at least 2 years of growth remaining in order for the 

desired effect (159). The optimal timing of surgery must be individualized based on several 

factors including the severity of the deformity and its functional impact on the developing 

child, which may indicate earlier surgery. Prior to elective skeletal surgery, medical therapy 

should be optimized. There is also a risk of overcorrection of a deformity after surgery, or of 

recurrence of the original deformity, thus patients require continued monitoring. Continued 

medical therapy is important to promote bone healing after surgery and with a goal of 

decreasing risk for new additional deformities and optimizing growth. It should be noted that 

whether burosumab will alter the need for corrective surgery or not has not yet been 

established in clinical trials.

Conclusion

FGF23 functions as an endocrine factor with its cofactor αKlotho and is a principal 

regulator in phosphorus homeostasis, its primary action being reduction of phosphorus levels 

and regulation of vitamin D metabolism. It is one of multiple factors involved in the bone-

parathyroid-kidney axis and its interaction with these factors is quite complex. FGF23-
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mediated disorders of phosphate wasting share similar clinical and biochemical features. 

Conventional treatment involves multiple daily doses of oral phosphate salts and active 

vitamin D analogs. Recent development of an anti-FGF23 antibody, burosumab, for use in 

XLH has shown promising results, but more research is needed, especially regarding long-

term outcomes.
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Figure 1. 
List of positive and negative regulators of FGF23
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Figure 2. 
Schematic representation of the regulation of serum phosphorus by FGF23
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