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Samuel Joseph Thomas

MODERN MONTE CARLO METHODS AND THEIR APPLICATION IN

SEMIPARAMETRIC REGRESSION

The essence of Bayesian data analysis is to ascertain posterior distributions. Posteriors

generally do not have closed-form expressions for direct computation in practical applications.

Analysts, therefore, resort to Markov Chain Monte Carlo (MCMC) methods for the generation

of sample observations that approximate the desired posterior distribution. Standard MCMC

methods simulate sample values from the desired posterior distribution via random proposals.

As a result, the mechanism used to generate the proposals inevitably determines the

efficiency of the algorithm. One of the modern MCMC techniques designed to explore

the high-dimensional space more efficiently is Hamiltonian Monte Carlo (HMC), based on

the Hamiltonian differential equations. Inspired by classical mechanics, these equations

incorporate a latent variable to generate MCMC proposals that are likely to be accepted.

This dissertation discusses how such a powerful computational approach can be used for

implementing statistical models. Along this line, I created a unified computational procedure

for using HMC to fit various types of statistical models. The procedure that I proposed can

be applied to a broad class of models, including linear models, generalized linear models,

mixed-effects models, and various types of semiparametric regression models. To facilitate

the fitting of a diverse set of models, I incorporated new parameterization and decomposition

schemes to ensure the numerical performance of Bayesian model fitting without sacrificing

the procedure’s general applicability. As a concrete application, I demonstrate how to use the

proposed procedure to fit a multivariate generalized additive model (GAM), a nonstandard

statistical model with a complex covariance structure and numerous parameters. Byproducts
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of the research include two software packages that all practical data analysts to use the

proposed computational method to fit their own models. The research’s main methodological

contribution is the unified computational approach that it presents for Bayesian model

fitting that can be used for standard and nonstandard statistical models. Availability of

such a procedure has greatly enhanced statistical modelers’ toolbox for implementing new

and nonstandard statistical models.

Wanzhu Tu, Ph.D., Chair
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CHAPTER 1

A Review of MCMC Methods

1.1 Introduction

Markov Chain Monte Carlo (MCMC) methods simulate sample values from the desired

posterior distribution via random proposals. The computational efficiency of such algorithms

depends on the construction of the proposal generating process. For example, Metropolis-

Hastings proposals are generated by random walks. While the proposals have good theoretical

properties, an unguided random walk is known to be inefficient in covering the support of

the target density function. Gibbs Sampling can be inefficient as well, particularly when the

posterior density has regions with narrow support. In high dimensional parameter spaces

such as those encountered in semiparametric regression analysis, the convergence of these

standard MCMC methods can be prohibitively slow for practical use.

One of the modern MCMC techniques designed to address exploring high-dimensional

is called Hamiltonian Monte Carlo (HMC). This extension to Metropolis-Hastings is based

on the Hamiltonian differential equations. Inspired by statistical physics, these equations

incorporate a latent variable to develop more efficient MCMC proposals. Along this line,

further improvements appear feasible by using the posterior density’s inherent Riemannian

geometry to better inform the MCMC proposals. A focus of this research is to investigate

the possibility of applying HMC to improve the standard MCMC algorithms in complex

semiparametric analysis. In addition to algorithmic development, this research implements

newly developed algorithms into R packages hmclearn and bayesGAM for fitting of a broad
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class of statistical models. The end products of this research, including both computational

algorithms and software packages, are intended to promote HMC to fit statistical models

that are difficult or impossible using standard optimization techniques.

1.2 MCMC in Bayesian Statistical Analysis

Estimation and inference are made based on the observed data D together with a priori

information from the parameters of interest θ = (θ1, ..., θk)T ∈ Rk. The posterior distribution

f(θ|D) combines the data and prior information according to Bayes formula. The posterior

is shown to be proportional to the product of the likelihood function f(D|θ) and the prior

density f(θ) (Carlin and Louis 2008),

f(θ|D) = f(D|θ)f(θ)∫
f(D|θ)f(θ)dθ ∝ f(D|θ)f(θ) (1.1)

When f(θ|D) cannot be analytically derived, MCMC methods such as Gibbs Sam-

pling (Geman and Geman 1984) and the Metropolis-Hastings algorithm (Metropolis et al.

1953)(Hastings 1970) become the only options outside of large sample approximations.

In MCMC, a sequence of random samples is generated where each simulated value is

dependent only on the previous sample. This generates a sequence of correlated samples

that are more likely to concentrate around the areas of high probability density. While an

adjustment is often made to the number of simulations to get a more accurate estimate of

the sample size (i.e. often called the effective sample size), this method is still typically more

efficient than uncorrelated random sampling.

The particular differences between MCMC methods are based on the construction of

the transition probabilities. The posterior density is always the same, but the mechanism

2



by which the Markov chain explores this density differs by the method, and by parameter

selections within a method.

The mathematics of these transitions must be setup in such a way to ensure that

the Markov chain is ergodic, and that the steady-state distribution of f(θ|D) is sampled

appropriately. One important property of Markov chains with a stationary distribution is

that the chain is reversible, often called detailed balance (Brooks 1998). I abbreviate the

posterior notation to f(θ) for brevity,

f(θ(t))T (θ(t),θ(t+1)) = f(θ(t+1))T (θ(t+1),θ(t)). (1.2)

If the transition kernel T satisfies detailed balance, then f(θ) must be the steady-state

distribution (Tierney 1994).

I integrate to show that the steady-state probability is achieved when detailed balance

is satisfied (Kelly 2011).

f(θ(t+1)) =
∫
f(θ(t))T (θ(t),θ(t+1))dθ

=
∫
f(θ(t+1))T (θ(t+1),θ(t))dθ

= f(θ(t+1))
∫
T (θ(t+1),θ(t))dθ

= f(θ(t+1)).

(1.3)

In the discussion of MCMC, I will attempt to demonstrate how each of the MCMC methods

is designed to achieve detailed balance, consequently resulting in an ergodic Markov chain

with stationary distribution f(θ).

1.2.1 Metropolis-Hastings

Metropolis-Hastings (MH) defines a transition probability that produces a Markov chain

that is ergodic and satisfies detailed balance (Gilks, Richardson, and Spiegelhalter 1995).

Values of θ(t) in the chain are defined in part by a proposal density, which I will define as
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q(θPROP|θt−1). Here, θPROP is a proposal for the next value in the chain. This proposal

density is conditioned on the previously stored value θ(t−1). A variety of proposal functions

can be used, with random walk proposals being a common choice (Gareth O. Roberts,

Gelman, and Gilks 1997).

A Markov chain with this proposal function defined as the transition probability

would satisfy detailed balance if the following relation holds,

f(θPROP)q(θ(t−1)|θPROP) ?= f(θ(t−1))q(θPROP|θ(t−1)). (1.4)

However, there is no guarantee that this relationship is always true. It is likely that one side

of the equation will be greater than the other, and detailed balance will not hold (Chib and

Greenberg 1995).

In order to ensure detailed balance, the proposal is accepted with a probability α,

defined by the ratio of both sides of (1.4),

α(θPROP|θ(t−1)) = min
(

1, f(θPROP)q(θ(t−1)|θPROP)
f(θ(t−1))q(θPROP|θt−1)

)
. (1.5)

Note that if the proposal density is symmetric, such that q(θPROP|θt−1) = q(θ(t−1)|θPROP),

the ratio simplifies to

α(θPROP|θ(t−1)) = min
(

1, f(θPROP)
f(θ(t−1))

)
. (1.6)

The simplified form in (1.6) is the Metropolis algorithm, while the generalization in

(1.5) was provided by Hastings. Now it is possible to define a transition probability

T (θPROP|θ(t−1)) := q(θPROP|θ(t−1))α(θPROP|θ(t−1)) (1.7)
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which satisfies detailed balance for MH (Chib and Greenberg 1995),

f(θ(t−1))T (θ(t−1), θPROP = f(θPROP)T (θPROP, θ(t−1))

f(θ(t−1))q(θ(t−1), θPROP)α(θ(t−1), θPROP) = f(θPROP)q(θ(t−1)|θPROP)α(θPROP, θ(t−1))

f(θ(t−1))q(θPROP|θ(t−1)) min
(

1, f(θPROP)q(θ(t−1)|θPROP)
f(θ(t−1))q(θPROP|θ(t−1))

)
= f(θPROP)q(θ(t−1)|θPROP)

min
(

1, f(θ(t−1))q(θPROP|θ(t−1))
f(θPROP)q(θ(t−1)|θPROP)

)

min
(
f(θ(t−1))q(θPROP|θ(t−1)), f(θPROP)q(θ(t−1)|θPROP)

)
= min

(
f(θPROP)q(θ(t−1)|θPROP),

f(θ(t−1))q(θPROP|θ(t−1))
)
.

(1.8)
The final step is true due to the symmetry of the min operation.

One advantage of MH is that the algorithm does not require that the target density

be fully specified, but only up to a constant which does not depend on θ. As such, these

constants cancel when applied in the transition probability (1.5).

The steps in the MH algorithm can be specified.

Algorithm 1 Metropolis-Hastings
1: procedure MH(θ(0), f∗(θ), q(θ(x)|θ(y)), N)
2: Calculate f∗(θ(0))
3: for t = 1, ..., N do
4: θPROP ← q(θPROP|θ(t−1))
5: u← U(0, 1)
6: α = min

(
1, f(θPROP)q(θ(t−1),θPROP)

f(θ(t−1))q(θPROP,θ(t−1))

)
7: If α < u, then θ(t) ← θPROP. Otherwise, θ(t) ← θ(t−1)

8: end for
9: return θ(1)...θ(N)

10: end procedure

For random walk proposal densities and other proper density functions, MH will

be irreducible and aperiodic (Gelman et al. 2013). Under these conditions, the simulated

results will be correlated samples from the posterior density after some number of initial
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steps away from the initial value (Chib and Greenberg 1995). Efficient proposals may be

developed based on the structure of the posterior density (G. O. Roberts and Tweedie 1996).

1.2.2 Gibbs Sampling

Another traditional MCMC method is called Gibbs Sampling, which can be interpreted as a

specific implementation of MH (Gelman et al. 2013). Most statistical models in practical

application have multiple parameters. The posterior density for a model with k parameters

θ = (θ1, ..., θk)T from n observations of a continuous distribution y = (y1, ..., yn)T would

again be determined from Bayes formula,

f(θ|y) = f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

f(θ1, ...θk|y) = f(y|θ1, ..., θk)f(θ1, ..., θk)∫
...
∫
f(y|θ1, ..., θk)f(θ1, ..., θk)dθ1, ..., dθk

.

(1.9)

A joint distribution can be derived from its conditional distributions, provided that

the joint distribution exists (Arnold and Press 1989). This property is advantageous for

statistical models where the conditional posterior densities can be fully specified. Statistical

models based on the exponential family of distributions (e.g. linear regression, logistic

regression) are among the many popular types of models where it is possible to specify the

conditional distributions (Diaconis, Khare, and Saloff-Coste 2008).

The first step in Gibbs sampling is the mathematical derivation of the conditional

posterior densities. The Gibbs sampler then proceeds to draw N samples from these densities

in a sequential fashion with initial values for all but one of the parameters specified (Carlin

and Louis 2008).
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Algorithm 2 Gibbs Sampling
1: procedure Gibbs(θ(0)

2 , ..., θ
(0)
k , N)

2: for t = 1, ..., N do
3: θ

(t)
1 ← f(θ1|θ(t−1)

−1 , y)
4: θ

(t)
2 ← f(θ2|θ(t)

1 , θ
(t−1)
(−1,−2), y)

5: ...
6: θ

(t)
k ← f(θk|θ

(t)
−k, y)

7: end for
8: return θ(1)...θ(N)

9: end procedure

The transition kernel for Gibbs sampling is then the product of the conditional

densities of the posterior (Schervish and Carlin 1992),

K(θ(t)|θ(t−1)) = f(θ(t)
1 |θ

(t−1)
−1 )f(θ(t)

2 |θ
(t)
1 , θ

(t−1)
−1,−2)...f(θ(t)

k |θ
(t−1)
−k ). (1.10)

Provided f(θi|θ−i, y) is well-defined for the data y ∈ D, then K(θ(t)|θ(t−1)) produces

a Markov chain that is irreducible and aperiodic (G. O. Roberts and Smith 1994). One char-

acteristic of Gibbs sampling is that the Markov chain will produce samples that approximate

the marginal densities (Casella and George 1992),

f(θi|y) =
∫
f(θ|y)dθ−i

=
∫
f(θ−i, θi|y)dθ−i

=
∫
f(θi|θ−i,y)f(θ−i|y)dθ−i

= E [f(θi|θ−i,y)] .

(1.11)

The estimated marginal distributions then come directly from the simulations for

each θi ∈ θ (Casella and George 1992),

f̂(θi) = 1
N

N∑
i=1

f(θi|θ−i). (1.12)
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The ergodicity of the Markov chain assures convergence to the conditional expectation

of the posterior as N → ∞ (Besag et al. 1995). Sampling from the conditional density

f(θi|θ−i) provides more information than sampling just θi and provides a better estimate,

known as the Rao-Blackwellization property of the Gibbs sampler (J. S. Liu, Wong, and

Kong 1994). This can be seen from the law of total variance,

V ar(θi) = E[V ar(θi|θ−i)] + V ar[E(θi|θ−i)]

V ar[E(θi|θ−i)] = V ar(θi)− E[V ar(θi|θ−i)]

≤ V ar(θi).

(1.13)

When the derivation of conditional posterior densities is possible, the Gibbs sampler

offers an advantage of accepting the proposal for every iteration (Bonamente 2016). In

contrast, standard Metropolis-Hastings simulations require the selection of a proposal density

(e.g. a random walk) that could require tuning to achieve convergence in a reasonable period

of time. The transition kernel in Gibbs does not have this requirement, which removes

several implementation burdens from the analyst.

1.2.3 Variations of Metropolis-Hastings and Gibbs Sampling

The Metropolis-Hastings and Gibbs algorithms are sometimes used jointly to fit certain

statistical models that would be difficult with just one or the other technique (Carlin and

Louis 2008). This flexibility can be advantageous to fit complex models with many parameters,

particular those models with parameters whose full conditional posterior distribution cannot

be analytically derived. Gibbs is typically effective in exploring the distribution near the

starting point, while random-walk Metropolis-Hastings may be more effective for multimodal

or other complex distributions (Robert 2007). Software packages focused on MCMC

simulation often incorporate elements of both algorithms in model fitting.
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Adaptive Rejection Metropolis Sampling (ARMS) is an example of a specific method

that combines the two approaches, including a Metropolis-Hastings step within a Gibbs

sampling chain (Gilks, Best, and Tan 1995). The Metropolis-Hastings step is used for

conditional posterior densities that may be difficult to sample efficiently using Gibbs. The

proposal for this MH step is based on adaptive rejection sampling (Ripley 1987), which uses

an envelope function of the target conditional distribution to create samples. The intent of

this proposal is to reduce the probability of rejection, thereby optimizing the efficiency of

the algorithm.

An alternative to Metropolis-Hastings and Gibbs sampling that is often used in

conjunction with these standard MCMC techniques is called slice sampling (Radford M. Neal

2003). This method implements an auxiliary variable ν to sample from the posterior density

based on horizontal slices (Carlin and Louis 2008). Slice sampling iterates via repeated

sampling of the uniform distribution (Gelman et al. 2013). This method has the advantages

of generality to a wide variety of distributions and not requiring the analyst to tune a

proposal density, which leads itself well-suited for automated software implementations

(Radford M. Neal 2003). One disadvantage of slice sampling is that it does not perform well

on multi-modal distributions (Thompson and Neal 2010).

1.2.4 Limitations of Standard MCMC

Ergodic Markov chains require irreducible and aperiodic transition probabilities. From

a theoretical standpoint, these restrictions are fairly minimal. Based on these aspects of

MCMC theory, Gibbs and Metropolis-Hastings should be sufficient to fit any reasonably

well-behaved statistical model. However, each of these methods have characteristics that

limit their application for difficult problems.
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The transition probabilities of Gibbs sampling are based on the conditional posterior

densities. When the conditional densities are available, Gibbs sampling will almost always

meet the theoretical requirements of irreducibility or aperiodicity (G. O. Roberts and Smith

1994). The main limitation of Gibbs is that the full conditional densities cannot always

be derived. When the full conditionals are not available, Metropolis-Hastings or other

techniques must be used for the analysis.

Metropolis-Hastings also meets the theoretical requirements of MCMC, but without

the restrictions of fully specified conditional posterior densities. The main limitation of

Metropolis-Hastings is the inherent computational inefficiency of random walk proposals. One

possible difficulty in the selection of a proposal function is a mismatch between the domain of

the proposal and the support of the posterior density (G. O. Roberts and Smith 1994). One

can imagine an example where the posterior is a standard Normal π ∼ N(0, 1), but a random-

walk transition is used with a high variance q(θ(t)|θ(t−1)) ∼ f(θ(t−1)) + Unif(−1e6,+1e6).

The theoretical properties of irreducibility and aperiodicity would be satisfied, but the

convergence rate of such a proposal would be extremely slow. The more common research

questions regarding these standard MCMC methods are the rates of convergence and

detection of convergence, rather than the theoretical properties of convergence (Gelman and

Rubin 1992)(Brooks and Gelman 1998)(G. O. Roberts and Tweedie 1996).

An ergodic Markov chain will explore the entire posterior density given infinite time

(Radford M. Neal 1993). However, MCMC chains must have a finite termination point to

be practically useful. The principal risk of MCMC methods in practice is a chain that has

not had sufficient time to cover the target density (Gilks, Richardson, and Spiegelhalter

1995). The challenge is to determine how many simulations must be run before an MCMC

simulation can adequately represent the posterior distribution (Cowles and Carlin 1996).
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Many convergence detection approaches have been developed. Some of the methods are

heavily theoretical. For example, Rosenthal (1993) determined that the rate of convergence

of a particular data augmentation algorithm similar to Gibbs sampling was approximately

O(logn). However, such a a result is based on a special case of Gibbs sampling. The

difficulty of developing the mathematics for many Gibbs applications limits the practical

application of such results (Cowles and Carlin 1996).

In practice, diagnostic software such as CODA (Best, Cowles, and Vines 1995) is used

to computationally detect convergence of MCMC simulations. The Gelman and Rubin (1992)

test for convergence based on multiple independent Markov chains remains one of the most

popular diagnostics. The idea behind Gelman and Rubin’s test is that each independent

chain should converge to the same distribution. This statistic, called the Potential Scale

Reduction Factor (PSRF) R̂ (Brooks and Gelman 1998) calculates the ratio of the variance

between the means of each individual chain and average within-chain variances. If each

chain converges, then the within-chain variance should dominate the between-chain variance

(Cowles and Carlin 1996), creating a ratio close to zero and a PSRF close to one.

Ultimately, practical limitations of standard MCMC methods are due in greater part

to numerical and computational issues than the theoretical basis of Bayesian statistics. For

any of the MCMC methods discussed to this point, analysts must make decisions related

to computation. At a minimum, analysts must determine how long a simulation must run

before termination. A MCMC simulation that converges quickly and efficiently to the target

density is imperative for Bayesian inference to be practically useful.
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1.3 Motivation for Hamiltonian Monte Carlo

Modern MCMC algorithms extend standard methods to more efficiently explore the posterior

density. These extensions replace the purely random proposals of traditional Metropolis-

Hastings with problem-specific information. The intent of this additional information is

to produce a more efficient Markov chain, while preserving the essential requirements for

ergodicity. The theoretical basis for these informed proposals is derived from a number

of fields outside of traditional statistics, including computer science, information theory,

differential geometry, and physics. The fundamental concepts are introduced regarding these

methods and provide references for those interested in exploring further.

The principal Metropolis-Hastings extension introduced here is sometimes called

Hybrid Monte Carlo (Duane et al. 1987), but is more commonly referred to as Hamiltonian

Monte Carlo (HMC) today (MacKay 2003) (R. Neal 2011). HMC expands the traditional

Metropolis-Hastings technique by providing additional information from the target density

to guide the chain.

The original HMC method is based geometrically on Euclidean space, and is more

specifically described as Euclidean Hamiltonian Monte Carlo (EHMC) (Michael Betancourt

et al. 2017). This designation identifies a specific type of HMC from a broader from a broader

geometry called Riemannian HMC (RHMC) (Girolami and Calderhead 2011). Finally, I will

provide an overview of recent variations of these methods, along with computational and

software considerations.

In MCMC simulation, calculating expected values with respect to the posterior density

is frequently the objective. Calculating expected values involves computing or estimating an

integral (Michael Betancourt 2017). The expected value of g(θ) with respect to the density
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f(θ) is described

Ef (g(θ)) =
∫
θ
g(θ)f(θ)dθ. (1.14)

Direct calculations of these integrals are not always possible (Voss 2013). When a direct

calculation is not possible, numerical or simulation methods must be used to approximate

these integrals. The high-dimensional challenge of computing such an integral can be

illustrated by thinking of the expected value integral as the product of volume and density,

Ef (g(θ)) = volume · density

=
∫

Θ
dθ · g(θ)f(θ).

(1.15)

The contributions of volume and density can be used to define a typical set in the estimation

of such an integral (MacKay 2003). In the continuous case, the typical set is expressed

in terms of the density function and differential entropy (Vasicek 1976). The differential

entropy H(f) is defined as

H(x) = −
∫
f(x) log f(x)dx

= Ef [− log f(x)],
(1.16)

and can be interpreted as measure of the average information content(MacKay 2003).

The typical set can then be defined for a sequence of N random draws from a

probability density f(x) for some small ε > 0∣∣∣∣ 1
N

log f(x1, ..., xN )−H(x)
∣∣∣∣ ≤, ε (1.17)

where 1
N log f(x1, ..., xN ) p−→ H(x). In other words, a set of N draws is considered a typical

set if the average probability is close to its differential entropy (Cover and Thomas 2012).

An efficient MCMC simulation will sample many of the points in this typical set since this

region contributes the most information to expectations (Michael Betancourt 2017).
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Example: Typical set of the standard normal density

These concepts can be illustrated with a standard normal density.

f(x) = 1√
2π
e−

x2
2 , (1.18)

with the logarithm of the density

log f(x) = −1
2
[
log 2π + x2

]
. (1.19)

Next, I determine the differential entropy by calculating the expectation from equation 1.16,

H(x) = −
∫
f(x) log f(x)dx

=
∫
f(x)1

2
[
log 2π + x2

]
dx

= 1
2 log 2π + 1

2E(x)2

= 1
2 [1 + log 2π] .

(1.20)

As x moves further away from areas of high density, the negative log of the density increases

with distance away from the typical set. In calculating an expectation of the standard normal,

I note in Figure 1.1 that, as the distance increases from the mode, the volume contributes

more to the expectation than the density. I note the rapidly diverging contributions of the

density and volume, even in this one-dimensional case.

This divergence becomes particularly problematic in high-dimensional space; the

typical set resides in a small portion of the total volume (Michael Betancourt 2017). This

"curse of dimensionality"(Bellman 1957) is not unique to MCMC, but is universally challenging

to any estimation process in statistical computing. For example, quadrature methods

(Whittaker and Robinson 1967) are popular in frequentist statistics, but tend to scale poorly

for high dimensional problems (Evans and Swartz 2000).
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Figure 1.1: Illustration of an expected value computation with the standard normal
distribution

The standard MCMC algorithms random-walk Metropolis-Hastings and Gibbs sam-

pling can be inefficient when the posterior density is unfamiliar to the analyst (Turner et al.

2013). The inherent inefficiency of uninformed, random proposals of Metropolis-Hastings

and the local exploration of Gibbs sampling (Robert 2007) is especially challenging in

high-dimensions. Modern MCMC methods leverage information about the target density

and the inherent geometry of probability distributions (Efron 1978) to produce more efficient

estimations (Michael Betancourt et al. 2017).
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CHAPTER 2

A Bayesian Framework for Statistical Model Estimation

2.1 Making Hamiltonian Monte Carlo Accessible to Statisticians

Hamiltonian Monte Carlo (HMC) is one of the newer Markov Chain Monte Carlo (MCMC)

methods for Bayesian computation. An essential advantage of HMC over the traditional

MCMC methods, such as the Metropolis-Hastings algorithm, is its greatly improved compu-

tational efficiency, especially in higher-dimensional and more complex models. But despite

the method’s computational prowess and the existence of excellent introductions (R. Neal

2011)(Michael Betancourt 2017), practitioners still face daunting challenges in applying the

method to their own applications. Difficulties mainly arise in three areas: (1) unfamiliarity

with the theory behind the algorithm, (2) lack of understanding of how the existing software

works, (3) inability to tune the HMC parameters. These difficulties have limited the use of

HMC to those who understand the theory and have the programming skills to implement

the algorithm. But it does not have to be so.

A major challenge to understanding HMC is the algorithm’s basis in fields unfamiliar

to statisticians. The mathematics behind HMC is based on differential geometry, which

is an abstract and challenging subject to understand (Michael Betancourt 2017). Some of

this geometry is covered in a discussion on modern variants of HMC. However, this initial

introduction relies on concrete analogies from physical laws of motion. Physics provides a

less abstract interpretation of the Hamiltonian equations which can be helpful for some in

learning the essential concepts.
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In this chapter, I present a general framework for analysts to fit statistical models

on their own. To that end, a comprehensive overview of the HMC algorithm and the

intuition behind the method are provided. This overview is intended to demystify the HMC

algorithm for statisticians who are reluctant to use methods they do not understand. The

differentiating characteristics of this overview compared to other HMC introductions include,

1. An introduction to the HMC algorithm from a more familiar statistical perspective,

2. A concise step-by-step process for statisticians to fit their own models, and

3. A general purpose software package in the familiar R language to implement models in

practice.

To summarize, the intent of this section is to provide statisticians with sufficient

theoretical background to confidently use HMC in practice, a structured approach to model

fitting with HMC, and the tools necessary for research and data analysis.

2.2 Introduction to Hamiltonian Monte Carlo

2.2.1 The Idea

One way to improve the efficient convergence of MCMC is to adopt a proposal generating

mechanism that samples more frequently in parts of the parameter space that are more

likely to be accepted. Hamiltonian equations in classical mechanics turn out to be a perfect

tool to do so. In 1987, Duane and colleagues described for the first time one such procedure,

which they called the “Hybrid Monte Carlo’ ’ (Duane et al. 1987), abbreviated as HMC.

Because the method is based on the Hamiltonian dynamics of physics, it later acquired the

name Hamiltonian Monte Carlo, retaining the abbreviation of HMC (R. Neal 2011).

The idea of HMC is quite intuitive: To generate samples that mimic the behavior

of a target function f(θ), one should sample the high density areas more frequently than
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the low density areas. Or, if one works with − log f(θ), one should frequent the areas of

low values instead of high values of the negative log density. Such a sampling process can

be carried out in a more guided way, by mimicking the movement of objects in a simplified

physical environment.

I consider the movement of an object on a frictionless curve of varying height (R. Neal

2011). There are two dimensions in this example, although only one of the two dimensions

is of actual interest. The horizontal position of the object represents the value of θ, the

parameter of interest. The vertical position of the object is related to the auxiliary variable,

the momentum, whose purpose is to help guide the object along the path. The shape of

the curve itself is based on the particular negative log posterior function over which I am

sampling.

(a) (b)

(c) (d)

Figure 2.1: Convergence of the example MH simulation

This example is illustrated in Figure 2.1: (a) I apply a force with randomly generated

direction and strength to the object. This object acquires a certain amount of kinetic energy,

18



which makes it move in the direction of the applied force. The momentum, proportional

to the object’s velocity, changes throughout the path of the curve. (b) When the object

moves up along the curve, the velocity of the object, and therefore, its momentum, decreases.

Its kinetic energy decreases and potential energy increases, while the total energy remains

constant. The object will stop at a point when all of its kinetic energy is converted to

potential energy. (c) The potential energy then makes the object move in the opposite

direction, converting its potential energy back to kinetic energy. At the lowest point of the

curve, all of the energy is in the kinetic form (peak momentum), which would push the

object up to the left side of the curve. (d) As the object goes up on the curve, its kinetic

energy is converted to potential energy, until all is in the form of potential energy. Then the

object would stop and then slide back as guided by its potential energy. Since the surface is

frictionless, the total energy remains constant throughout these repeated movements.

Suppose I randomly select a stopping point for the object along this curve. The

horizontal position would represent a sampled value of the parameter of interest. This would

represent a single proposal in the MCMC chain.

Next, suppose I repeat this example along the same curve, but with a lower force

(and, therefore, a lower peak velocity). The object will have a lower momentum and traverse

a smaller portion of the curve, concentrated in the middle. Thus, the next sample would

have to be in the region of higher posterior density, regardless of the selected stopping

point. If I repeat this process with randomly applied momenta, one could obtain samples

following the target distribution. Most of the samples will be concentrated in the middle of

the curve, while fewer will be in the tails. Samples in the tails would only be possible when

the randomly applied force (and momentum) is high, while samples in the middle would be

possible for most randomly selected momenta.
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But how does this moving object remain on the curve? Hamiltonian equations provide

an answer. Hamiltonian equations are differential equations that govern the conversion of

kinetic and potential energy over the surface of a given function. One therefore could use

these equations to guide the generation of samples following a given distribution. To do

so, one only needs randomly generated momenta to keep the object moving back and forth

along the target function; the momenta themselves, however, are never the endpoints of this

exercise.

2.2.2 Fundamental Concepts of Hamiltonian Monte Carlo

From statistical mechanics, the canonical probability distribution (or Boltzmann distribution)

is defined

P (x) = 1
Z

exp {−E(x)/T}, (2.1)

where E(x) is an energy function for state x, T is the temperature of the system and Z is a

positive normalizing constant (Gibbs 1902).

The canonical distribution can be re-written as an invariant Hamiltonian function

(Michael Betancourt 2017) which describes total mechanical energy (Arnol’d 2013). I will call

the auxiliary variable p based on the notation that comes from physics equations describing

total energy, where p is commonly used to denote physical momentum. This variable is not

of interest itself, but is used in the proposal density to assist in the simulation of the target

posterior density f(θ|D).

In the univariate case, the inputs to the Hamiltonian H(θ, p) are position θ ∈ R and

momentum p ∈ R based on their physical interpretations. From a statistical perspective, θ

is the parameter of interest and p is a latent variable. The canonical distribution can then
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be more specifically written for the application as

f(θ, p) = 1
Z

exp {−H(θ, p)/T}

f(θ, p) ∝ exp {−H(θ, p)}.
(2.2)

Based on position and momentum, total energy is defined in the Hamiltonian as the

sum of kinetic K(θ, p) and potential U(θ) energy (Nakahara 2003) (2.3),

H(θ, p) = K(θ, p) + U(θ). (2.3)

Continuing the physical analogy, I describe the potential and kinetic energy as first-order

differential equations with respect to time (Arnol’d 2013). These relationships of the

Hamiltonian to time will be instrumental in the MCMC implementation,

dp

dt
= −∂H

∂θ

dθ

dt
= ∂H

∂p
.

(2.4)

I show that the total rate of change of the Hamiltonian with respect to time is zero. From a

physical perspective, this is analogous to the conservation of energy (Abraham and Marsden

1978). By the chain rule (2.5), I demonstrate the invariance of the Hamiltonian function,
dH(θ, p)

dt
= ∂H

∂θ

∂θ

∂t
+ ∂H

∂p

∂p

∂t

= −∂p
∂t

∂θ

∂t
+ ∂θ

∂t

∂p

∂t

= 0.

(2.5)

This conservation implies an acceptance probability of unity in the continuous case (R. Neal

2011). I will need to provide a discrete approximation of these differential equations in the

HMC implementation.

Another important property of the Hamiltonian function is the conservation of volume

in (θ, p) space (R. Neal 2011). By Liouville’s theorem, the Hamiltonian system can be shown

to preserve volume over time (Abraham and Marsden 1978). The conservation of volume can

be demonstrated by showing that the divergence of the vector field described by (2.4) is zero

21



(R. Neal 2011)(Arnol’d 2013). For (θ1, ..., θk) ∈ θ and a momentum vector (p1, ..., pk) ∈ p,
k∑
j=1

[
∂

∂θj

dθj
dt

+ ∂

∂pj

dpj
dt

]
=

k∑
j=1

[
∂

∂θj

dH(θ, p)
dpj

− ∂

∂pj

dH(θ, p)
dθj

]

=
k∑
j=1

[
∂2H(θ, p)
∂θj∂pj

− ∂2H(θ, p)
∂pj∂θj

]

= 0.

(2.6)

This aspect of Hamiltonian dynamics indicates that the probability space defined by (θ,p)

does not change over time.

In summary, the Hamiltonian function is invariant to transformation of parameters,

thereby preserving the geometry of the typical set (Michael Betancourt 2017). The flow

described by (2.4) incorporates information about the target density f(θ). In contrast

with uninformed random-walk proposals, HMC proposals will be based no problem-specific

information. By incorporating this information, HMC can improve on the efficiency of

traditional MCMC algorithms (R. Neal 2011).

2.2.3 Euclidean Hamiltonian Monte Carlo

In applying HMC to a generic MCMC setting, θ follows the posterior density f(θ), and the

momentum p is generated from a parametric distribution. The momentum matches the

dimensionality of θ as a vector of length k. The Hamiltonian function in the multivariate

case is similar to the univariate function H(θ,p) = U(θ) +K(p) where p ∈ Rk and θ ∈ Rk.

2.2.3.1 Algorithm Development

Since I am primarily interested in generating θ from a given distribution f(θ), I let U(θ) :=

− log f(θ). Such a designation ensures that MCMC samples of θ generated from the

Hamiltonian function follows the desired distribution. For momentum, I assume p ∼
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Nk(0,M), where M is a user-specified covariance matrix. Under this formulation, I have

H(θ,p) = − log f(θ) + 1
2pTM−1p. (2.7)

Over time, HMC travels on trajectories that are governed by the following first-order

differential equations, known as the Hamiltonian equations
dp
dt

= −∂H(θ,p)
∂θ

= −∂U(θ)
∂θ

= ∇θ log f(θ),

dθ

dt
= ∂H(θ,p)

∂p = ∂K(p)
∂p = M−1p,

(2.8)

where ∇θ log f(θ) is the gradient of the log posterior density. A solution to the Hamiltonian

equations is a function that defines the path of (θ,p) from which specific values of θ could be

sampled. Within an MCMC iteration, I sample a value θ from this path. The randomness

of the MCMC samples comes from the momentum p ∼ Nk(0,M) and the specific θ value

that is chosen.

As with other valid MCMC algorithms, HMC’s transition probability is designed to

meet the theoretical requirements for detailed balance and reversibility. These conditions

ensure that the HMC samples provide a valid representation of the posterior distribution. If

I denote the transition probability from θ(1) to θ(2) as T (θ(1),θ(2)), then detailed balance

requires that f(θ(1))T (θ(1),θ(2)) = f(θ(2))T (θ(2),θ(1)). The HMC transition probability

includes two components to ensure that detailed balance and reversibility hold true:

1. The accept/reject step, and

2. The negation of the momentum after the final leapfrog step.

The negated momentum illustrates the reversibility of HMC transitions, which can be

demonstrated by stepping through the leapfrog from the proposed state to the original state.

(Tierney 1994) develops the theoretical requirements for MCMC algorithms in general, while

(Michael Betancourt 2017) provides a detailed exposition specific to HMC.
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From the canonical distribution (2.2), I will extend the posterior density f(θ) with

an auxiliary momentum variable p to define a joint posterior density f(θ,p). The constants

for this distribution are set to unity,

f(θ,p) = e−H(θ,p). (2.9)

By calculating the logarithm of the canonical density, I formulate the relationship between

the Hamiltonian function and the log posterior density,

H(θ,p) = − log f(θ,p)

= − log f(p|θ)− log f(θ)

:= K(θ,p) + U(θ).

(2.10)

From the physical analogy, the potential energy function U(θ) is the negative log

posterior, and the kinetic energy function K(θ,p) is the conditional density of the latent

momentum variable. In a standard EHMC algorithm, the momentum p is defined to be

independent of the target θ, such that

f(p|θ) = f(p), (2.11)

and

K(θ,p) = K(p). (2.12)

The resulting Hamiltonian equation reflects the independence of the potential and kinetic

energy functions,

H(θ,p) = K(p) + U(θ)

= − log f(p)− log f(θ).
(2.13)

I define the distribution of the momentum p as a multivariate Normal for the k parameters

in (θ1, ..., θk)T ∈ θ where M is the covariance matrix, often chosen to be the identity matrix
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I,

f(p) = (2π)−k/2|M|e−
1
2 pTM−1p

∝ e−
1
2 pTM−1p

log f(p) ∝ −1
2pTM−1p.

(2.14)

The kinetic energy function becomes

K(p) = − log f(p)

= 1
2pTM−1p.

(2.15)

The kinetic energy function reduces to the analogous formula for kinetic energy in Newtonian

physics k = p2

2M (Serway and Vuille 2012). Also, the kinetic energy is a quadratic function of

p, which will become important in demonstrating the reversibility of the proposal (i.e. K(p)

= K(−p)). Now that the Hamiltonian function is defined for the target density and chosen

momentum, I apply the flow equations (2.4) that will define the MCMC exploration,
dp
dt

= −∂U(θ)
∂θ

= ∇θ log f(θ)

dθ

dt
= ∂K(p)

∂p = M−1p.
(2.16)

The differential equations will be used to develop a proposal function for new values of

(θt,pt). However, these differential equations do not have a closed form solution with the

exception of trivial examples. Therefore, I need to provide a discrete approximation. The

simplest approximation is from Euler’s method. If an approximate solution to the above

differential equations is found using Euler’s method,
dpi(t)
dt

≈ pi(t+ ε)− pi(t)
ε

dθi(t)
dt

≈ θi(t+ ε)− θi(t)
ε

,

(2.17)

such that

pi(t+ ε) ≈ pi(t) + ε
dpi(t)
dt

≈ pi(t) + ε∇θ log f(θ)

θi(t+ ε) ≈ θi(t) + ε
dθi(t)
dt

≈ θi(t) + εM−1pi(t).

(2.18)
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This approximation is problematic for HMC, because the discretization does not preserve

volume. I need to use a special type of approximation called a symplectic integrator, which

has the property of preserving volume (Channell and Scovel 1990). The approximation that

is commonly used in EHMC is called the Newton-Stormer-Verlet or "Leapfrog" integrator

(Hairer, Lubich, and Wanner 2003). The Leapfrog method preserves volume at a cost of

being slightly more complex than Euler’s method. Leapfrog is defined to move in discrete

steps of size ε,

p(t+ ε/2) = p(t) + (ε/2)∇θ log f(θ(t))

θ(t+ ε) = θ(t) + εM−1p(t+ ε/2)

p(t+ ε) = p(t+ ε/2) + (ε/2)∇θ log f(θ(t+ ε)).

(2.19)

I demonstrate that the Leapfrog is reversible by reversing the direction of the stepsize, where

ε∗ = −ε,

pi(t+ ε+ ε∗/2) = pi(t+ ε) + ε∗

2 ∇θ log f(θi(t+ ε))

θi(t+ ε+ ε∗) = θi(t+ ε) + ε∗M−1pi(t+ ε+ ε∗/2)

pi(t+ ε+ ε∗) = pi(t+ ε+ ε∗/2) + ε∗

2 ∇θ log f(θi(t+ ε+ ε∗)).

(2.20)

The course has reversed back to the original point,

θi(t+ ε+ ε∗) = θi(t)

pi(t+ ε+ ε∗) = pi(t).
(2.21)

The analyst is responsible for setting several parameters for EHMC: the stepsize

ε, the number of steps L for each proposal, and the mass matrix M. Some guidance on

the selection of these parameters is provided by R. Neal (2011) and Gelman et al. (2013).

Automated algorithms are also available that automatically select these parameters for the

user (Hoffman and Gelman 2014).
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Algorithm 3 Euclidean Hamiltonian Monte Carlo
1: procedure EHMC(θ(0), log f(θ),M, N, ε, L)
2: Calculate log f(θ(0))
3: for t = 1, ..., N do
4: p← N(0,M)
5: θ(t) ← θ(t−1), θ̃ ← θ(t−1), p̃← p
6: for i = 1, ..., L do
7: θ̃, p̃← Leapfrog(θ̃, p̃, ε,M)
8: end for
9: α← min

(
1, exp(log f(θ̃)− 1

2 p̃TM−1p̃)
exp(log f(θ̃(t−1))− 1

2 pTM−1p)

)
10: With probability α, θ(t) ← θ̃ and p(t) ← −p̃
11: end for
12: return θ(1), ...,θ(N)

13: function Leapfrog(θ∗,p∗, ε,M)
14: p̃← p∗ + (ε/2)∇θ log f(θ∗)
15: θ̃ ← θ∗ + εM−1p̃
16: p̃← p̃ + (ε/2)∇θ log f(θ̃)
17: return θ̃, p̃
18: end function
19: end procedure

Although the theoretical basis of EHMC is heavily mathematical, the particulars

of the implementation are not substantially more complex than the standard Metropolis-

Hastings algorithm. The most mathematically challenging aspect of this algorithm is the

calculation of the gradient of the log posterior. Tuning EHMC also requires setting two

parameters ε and L instead of selecting a proposal density as in Metropolis-Hastings. In

addition, the analyst may elect to select a covariance matrix M that is not identity. For

example, the diagonal elements of M may be scaled relative to the individual parameters

(θ1, ..., θk ∈ θ) (R. Neal 2011).

Like other well-known MCMC algorithms, EHMC also satisfies detailed balance and

is, in most cases, ergodic (R. Neal 2011). Michael Betancourt (2017) shows that detailed

balance is satisfied by the Hamiltonian proposals. The transition proposal is designated Q

with (θ0,p0) as the starting location and (θL,pL) as the proposal after L Leapfrog steps,

f(θ0,p0)Q(θL,−pL|θ0,p0) = f(θL,−pL)Q(θ0,p0|θL,−pL). (2.22)
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Unlike random-walk Metropolis-Hastings, the Leapfrog-based proposals in EHMC are de-

terministic. The proposal always move L steps in stepsize increments of ε. A formalized

definition of this proposal with the δ function is

δ(x) = 1 if x = 0

δ(x) = 0 otherwise.
(2.23)

Given (θ0,p0) as the initial point and (θL,pL) as the end point after L steps each of size ε,

I specify the proposal function for (θ∗,p∗),

Q(θ∗,p∗|θ0,p0) = δ(p∗ − (−pL))δ(θ∗ − θL). (2.24)

The negated momentum −pL is required to assure reversibility. The quadratic form of

the normal distribution ensures the negative momentum does not affect the joint distribu-

tion f(θ,p) = f(θ,−p) in (2.14). Based on the proposal function (2.24), the transition

probabilities at (θ0,p0) and (θL,pL) are both unity,

Q(θL,−pL|θ0,p0) = δ(−pL + pL)δ(θL − θL) = 1

Q(θ0,p0|θL,−pL) = δ(p0 − p0)δ(θ0 − θ0) = 1.
(2.25)

I incorporate a correction probability α for the discretization of the Hamiltonian equations

(R. Neal 2011) to balance the equation,

α · f(θ0,p0)Q(θL,−pL|θ0,p0) = f(θL,−pL)Q(θ0,p0|θL,−pL)

α · f(θ0,p0) · 1 = f(θL,−pL) · 1

α = min
(

1, f(θL,−pL)
f(θ0,p0)

)

α = min
(

1, e
−H(θL,−pL)

e−H(θ0,p0)

)

α = min
(

1, e
−H(θL,pL)

e−H(θ0,p0)

)
.

(2.26)

This formulation from Michael Betancourt (2017) shows that EHMC satisfies detailed

balance. The remaining conditions required to establish ergodicity and a stationary posterior

distribution are irreducibility and aperiodicity (Tierney 1994). EHMC can be shown to

be irreducible provided the posterior density is twice continuously differentiable (Durmus,

Moulines, and Saksman 2017)(Cancès, Legoll, and Stoltz 2007). The log posterior must be
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at least differentiable to run EHMC since the target is based on this gradient. The twice

differentiable condition will be satisfied for exponential family based models provided the

link function is twice differentiable (Fahrmeir, Kaufmann, and others 1985). In addition,

Livingstone et al. (2016) show that EHMC is ergodic for a wide variety of models where the

gradient of the log posterior is well-behaved.

The final condition of aperiodicity may be violated if the combination of parameters

stepsize ε, number of leapfrog steps L, and momentum covariance matrix M combine to

produce a proposals that are exactly periodic (R. Neal 2011). Incorporating some random

component in ε and L may be helpful in preventing periodic transitions (Mackenze 1989).

EHMC is seen to be generally ergodic provided some minor regularity conditions are met.

The potential for increased efficiency does have a cost in the number and variety of parameter

settings for EHMC, particularly in comparison with Metropolis-Hastings and Gibbs sampling.

Before considering automated selection of EHMC parameters, I will continue with model

formulation based on manual parameter selection.

The flowchart in Figure 2.2 shows the key steps in the HMC algorithm. Initial values

for θ and p are required to start the algorithm. With θ(0) and p(0) specified, the leapfrog

algorithm is used to find approximate solutions to the Hamiltonian equations. The leapfrog

solutions define the path of (θ,p) over time within an iteration.

Typically, multiple steps, each of length ε, are taken to generate an HMC proposal.

Parameter L represents the number of steps. While L is often fixed to a positive integer

value, some randomness can be introduced to ensure a valid exploration of the space of

(θ,p).
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Figure 2.2: Main Steps of the Hamiltonian Monte Carlo Method
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The efficiency of an HMC algorithm can be improved through parameter tuning and

reparameterization. HMC tuning involves selection and adjustment of the various HMC

parameters. Two parameters that need to be specified are the step size ε and the number

of leapfrog steps L. Elements in the covariance matrix M may also be adjusted from the

default identity matrix for efficiency improvement.

Euclidean Hamiltonian Monte Carlo utilizes the gradient of log f(θ) to generate more

efficient proposals in a MCMC. The gradient introduces some additional computational

burden, which, ideally, is offset by the benefit of proposals of larger jumps into higher

probability space.

Practical challenges in tuning Euclidean Hamiltonian Monte Carlo include setting

the stepsize parameter ε and number of Leapfrog steps L. Related to ε is the covariance

matrix M specified for the latent variable p.

A poorly selected stepsize ε can cause the MCMC to converge too slowly if too small,

and miss narrow regions of the probability space if too large (Michael Betancourt 2017).

An extension of EHMC that uses the second derivative of log f(θ) as a replacement for the

covariance matrix M is introduced in the next section.

2.3 Modern Variants and Adaptations of HMC

2.3.1 Riemannian Manifold Hamiltonian Monte Carlo

Euclidean Hamiltonian Monte Carlo provides a more informed proposal than random-walk

Metropolis by using information from the target density (Gelman et al. 2013). The

Hamiltonian Monte Carlo proposal is based on a combination of the step-size ε, the number

of leapfrog steps L, the parameterization of the latent variable p, and the gradient of the
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target density. One way to consider Hamiltonian proposals is via the concept of distance

traveled in the parameter space of θ. In Euclidean space, the distance is calculated via the

L2-norm,

D(θ, θ + γθ) =
√
γθ · γθ

= ||γθ||.
(2.27)

If I consider a total distance of γ in (2.27), Euclidean Hamiltonian Monte Carlo assumes

that the distance between the starting value and the proposal is approximately constant

over a small distance. However, the gradients may change rapidly over even short distances

(Calderhead 2011). One way to incorporate the rate of change in the gradient is to consider

proposals using the second derivative.

Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) extends EHMC by using

a metric based on the second derivative to adjust the gradient based on the location in

the parameter space (Girolami and Calderhead 2011). The key concepts regarding how

the second derivative in Riemannian Hamiltonian Monte Carlo is linked to differential

geometry are introduced here. In particular, the second order information is used to derive

the shortest path through the parameter space based on the more general Riemannian

geometry(Calderhead 2011).

2.3.1.1 Riemann Geometry

Bernhard Riemann was a German mathematician who made significant contributions to

providing a general framework for geometry beyond Euclidean space (Laugwitz 2008). One

of the principals of Riemannian geometry is that there exists a theory of surfaces that is

independent of 3-dimensional Euclidean space(O’Neill 1997).
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In R3 space, I define a dot product of two vectors x and y as

x · x = |x||x| cosφ, (2.28)

where φ is the angle between the two vectors. The dot product therefore provides information

on the distance between points and the angle between them.

Abstract surfaces beyond 3-dimensions do not have dot products. However, Riemann

conceived of a generalization of dot products called inner products that can be applied to

abstract surfaces beyond 3-dimensional space (O’Neill 1997). An inner product between

vectors x and y in arbitrary linear space M has the following properties (Jain, Ahmad, and

Ahuja 1995):

1. Positive Definite: < x,x > ≥ 0 and < x,x >= 0 iff x = 0

2. Symmetry: < x,y >=< y,x > for x,y ∈ R

3. Linearity: α < x,y >= α < x,y > and < x + z, z >=< x,y > + < y, z > where

x,y, z are vectors in M and α is a constant.

The distance between two points θ and θ+ dθ is considered in a k-dimensional space,

(θ1, ..., θk), (θ1 + dθ1, ..., θk + dθk) (2.29)

This distance is assumed to be in quadratic form,

grsθrθs, (2.30)

with a summation following the Einstein convention (Barndorff-Nielsen, Cox, and Reid 1986)
k∑

r,s=1
grsdθ

rdθs. (2.31)

Here, grs is a collection of inner products in Riemannian space and is called a metric tensor

(or simply, metric) (O’Neill 1997).

Although many metric tensors can be defined in the potentially high-dimensional

space of θ (Calderhead 2011), one natural consideration for use in HMC is the expected

Fisher information matrix (Girolami and Calderhead 2011), where
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G(θ) = −Eθ
[
∇2 log f(y|θ)

]
. Rao (1945) noted that G(θ) is a metric tensor in Riemannian

space since it is positive definite and position-dependent. Further, Rao showed that the

distance between two positions in the same probability space of θ, f(y|θ) and f(y|θ + δθ),

is in quadratic form δθTG(θ)δθ.

The general idea of Riemannian Hamiltonian Monte Carlo is to choose a metric

G(θ) that provides information beyond the first-order gradient of the target density to

produce more efficient proposals (Girolami and Calderhead 2011). In this introduction,

I choose the expected Fisher information matrix to illustrate this method. However, in

complicated models this particular metric may not be a feasible choose due to mathematical

and computational complexities (M. J. Betancourt 2013).

2.3.1.2 Algorithm Development

In Euclidean Hamiltonian Monte Carlo, the distribution of the auxiliary momentum p

is defined as a multivariate normal with covariance matrix M (2.16). The Hamiltonian

equations specify the rate of change of θ with respect to time,

p = Mdθ

dt
= Mθ̇. (2.32)

I calculate the L2 norm of θ̇

||θ̇||M = θ̇TMθ̇ = pTM−1p. (2.33)

The momentum p in Euclidean Hamiltonian Monte Carlo does not depend on θ since

M is constant. Riemannian Manifold Hamiltonian Monte Carlo replaces M with a

position-dependent metric G(θ), such that p ∼ N(0, G(θ)). The distance of θ̇ in

Riemannian Manifold Hamiltonian Monte Carlo then depends on the position of θ (Rao

1945)(Calderhead 2011),

||θ̇||2G(θ) = θ̇TG(θ)θ̇ = pTG(θ)−1p. (2.34)
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The Hamiltonian is revised to incorporate the metric G(θ)(Girolami and Calderhead 2011),

H(θ,p) = − log f(p|θ)− log f(θ)

= 1
2 log((2π)k|G(θ)|) + 1

2pTG(θ)−1p− log f(θ).
(2.35)

The dependence of momentum on θ creates a more mathematically complex set of differential

equations,

dθi
dt

= ∂H

∂pi
=
[
G(θ)−1p

]
i

dpi
dt

= −∂H
∂θi

= ∂

∂θi
log f(θ)− 1

2 tr
[
G(θ)−1∂G(θ)

∂θi

]
+ 1

2pTG(θ)−1∂G(θ)
∂θi

G(θ)−1p.
(2.36)

Since the momentum now depends on θ, the Newton-Stormer-Verlet Leapfrog integra-

tor is no longer time reversible (i.e. G(θ(t)) 6= G(θ(t+ε)) ) (Calderhead 2011). A generalized

version of the Leapfrog integrator (Hairer, Lubich, and Wanner 2003) is able to preserve the

reversibility required for MCMC. This generalized Leapfrog is used in Riemannian Manifold

Hamiltonian Monte Carlo(Girolami and Calderhead 2011),

p
(
t+ ε

2

)
= p(t)− ε

2∇θH
[
p
(
t+ ε

2

)
,θ(t)

]
θ(t+ ε) = θ(t) + ε

2

{
∇pH

[
p
(
t+ ε

2

)
,θ(t)

]
+∇pH

[
p
(
t+ ε

2

)
,θ(t+ ε)

]}
p(t+ ε) = p

(
t+ ε

2

)
− ε

2∇θH
[
p

(
t+ ε

2

)
,θ(t+ ε)

]
.

(2.37)

Once a Riemannian metric G(θ) is defined, the generalized Leapfrog integrator is used to

generate proposals for θ. The Metropolis-Hastings probability correction is retained from

the Euclidean Hamiltonian Monte Carlo (2.26)(Girolami, Calderhead, and Chin 2009).

Compared to EHMC, RMHMC adds the overhead of additional computations includ-

ing the Riemannian metric, its inverse, and implicit numerical methods for the generalized

leapfrog. Fixed point iteration is one such numerical method that can be used for RMHMC

(Girolami and Calderhead 2011).
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Algorithm 4 Riemannian Manifold Hamiltonian Monte Carlo
1: procedure RMHMC(θ(0), log f(θ), G(θ), N, ε, L)
2: Calculate log f(θ(0))
3: for t = 1, ..., N do
4: p0 ← N(0, G(θ))
5: θ(t) ← θ(t−1), θ̃ ← θ(t−1), p̃← p(0)

6: for i = 1, ..., L do
7: θ̃, p̃← Generalized Leapfrog(θ(t),p(t), ε)
8: end for
9: α = min

(
1, H(θ̃,p̃)

H(θ(t−1),p0)

)
10: With probability α, θ(t) ← θ̃ and p(t) ← −p̃
11: end for
12: return θ(1)...θ(N)

13: function GeneralizedLeapfrog(θ(t),p(t), ε)
14: p̃← p(t)− ε

2∇θH
[
p
(
t+ ε

2
)
,θ(t)

]
15: θ̃ ← θ(t) + ε

2 {∇pH [θ(t), p̃] +∇pH [θ(t+ ε), p̃]}
16: p̃← p̃− ε

2∇θH [θ(t+ ε), p̃]
17: end function
18: end procedure

2.3.2 Algorithmic Variations of HMC

EHMC is now a standard MCMC algorithm for Bayesian data analysis, with robust imple-

mentations in STAN and PyMC software packages. Several variations of EHMC have been

proposed to improve the algorithm’s efficiency and usability. Since RMHMC is not available

as a general purpose modeling algorithm at the time of this writing, I focus methodological

development on EHMC.

This section provides perspective on current areas of research derived from the EHMC

algorithm. From this section on, the EHMC algorithm is abbreviate to HMC for brevity.

2.3.2.1 No-U-Turn Sampler (NUTS)

Perhaps the most impactful algorithmic variation of HMC uses the No-U-Turn Sampler

(NUTS) (Hoffman and Gelman 2014). NUTS reduces the practical complexities of imple-

menting HMC by automatically selecting the number of Leapfrog steps L. NUTS was
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originally implemented in Stan, and has since been adapted for PyMC. HMC with NUTS

automated parameter selection is the primary MCMC algorithm for both software packages

(Gelman, Lee, and Guo 2015)(Salvatier, Wiecki, and Fonnesbeck 2016).

The goal of NUTS is to automatically determine when a sufficient number of leapfrog

steps have occurred for a proposal to maximize efficient sampling. One of the ways that

NUTS makes this determination is by calculating the distance between proposals and the

current position θ(t). This development assumes a single parameter θ. This distance is

determined by the derivative of half the squared difference between the current position θ(t)

and a new position θ(t+1) with respect to time,
d

dt

(θ(t+1) − θ(t)) · (θ(t+1) − θ(t))
2 = (θ(t+1) − θ(t)) · d

dt
(θ(t+1) − θ(t)) = (θ(t+1) − θ(t)) · p(t),

(2.38)
where p(t) is the current momentum (latent variable). This represents the distance away

from the original θ(t) given an infinitesimally small amount of time. NUTS therefore suggests

an algorithm that progresses through leapfrog iterations until the proposal θ(t+1) reverses in

direction towards the original θ(t) (i.e. no U-turn).

The EHMC model with momentum p is specified,

f(θ, p) ∝ exp(log f(θ)− 1
2p · p). (2.39)

NUTS introduces an additional latent variable u for slice sampling such that

f(θ, p, u) ∝ I
[
u ∈ (0, exp(log f(θ)− 1

2p · p))
]
, (2.40)

where I is the indicator function. The conditional probabilities f(u|θ, p) and f(θ, p|u) are

each uniform if u ≤ exp(log f(θ)− 1
2p · p). In addition to u, each NUTS iteration generates

a set of position-momentum states B and a subset of these states C to which transitions

may occur without violating detailed balance. Here, B is built by iteratively doubling the

number of leapfrog sets in positive and negative time, at random. Integrating backwards
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and forward in time preserves time reversibility. This process is repeated until the distance

between the original state θ and new θ′ decreases (i.e. a U-turn).

The steps in NUTS are designed to leave the resulting joint distribution

f(θ, p, u,B, C|ε) invariant. Note that the first 3 steps constitute a Gibbs sampler.

1. Sample p ∼ N(0, 1)

2. Sample new latent variable u ∼ U [0, exp(log f(θ(t))− 1
2p · p)]

3. Sample the number of leapfrog steps from the joint distribution p(B, C|θ(t), p, u, ε)

4. Sample θ(t+1), p ∼ T (θ(t), p, C)

where T (θ(t), p, C) is a transition kernel satisfying
1
|C|

∑
(θ,p)∈C

T (θ′, p′|θ, p, C) = I[(θ′, p′) ∈ C]
|C|

. (2.41)

As a result, the posterior distribution can be written,

p(θ, p|B, C, u, ε) ∝ p(B, C|θ, p, u, ε)p(θ, p|u)

∝ p(B, C|θ, p, u, ε)I[u ≤ exp(log f(θ)− 1
2p · p)]

∝ I[(θ, p) ∈ C],

(2.42)

which demonstrates that the joint distribution (θ, p) is uniform over the elements of C. Note

that NUTS places restrictions on the joint density of B, C to satisfy detailed balance and to

ensure the invariance of p(θ, p, u,B, C|ε),

The end result of the NUTS algorithm is a transition kernel defined such that the joint

density p(θ, p, u, ε|B, C) is invariant. This ensures that the target density is also invariant.

Reversible time is preserved by resampling u and p forwards and backwards in time until

the trajectory begins to reverse direction or a probability state that is extremely low occurs.

38



The second tuning parameter ε is selected using largely heuristic calculations based

on the acceptance probability for a standard HMC. Hoffman and Gelman (2014) propose a

target average acceptance probability of 0.65. However, NUTS does not have an accept/reject

step. As such, an alternate statistic is devised called HNUTS , which can be interpreted as

an average acceptance probability that HMC would have given during the final doubling

iteration,

HNUTS :=
∑

θ,p∈Bfinal
min

[
1, p(θ, p)
p(θ(i−1)), pi,0

]
, (2.43)

with expectation hNUTS := Et[HNUTS
t ].

Despite the heuristic nature of the selection of ε, there is justification for an acceptance

probability of 0.65 in high-dimensions (Beskos et al. 2010). Further, software that implements

HMC with NUTS provides methods of adjusting the step size manually if desired.

The NUTS algorithm enables analysts to perform HMC without the need to manually

select tuning parameters L and ε. As the primary HMC implementation in Stan and PyMC,

NUTS can be considered a standard in modern MCMC practice.

2.3.2.2 Automatic or manual differentiation

In the development of HMC so far, I have assumed that the gradient function of the log

posterior has been derived and is provided for the purpose of HMC programming. In

real practice, however, analytically evaluating a gradient is often quite cumbersome. The

challenge is especially severe in higher dimensional spaces. To overcome this difficulty,

analysts typically resort to numerical methods for gradient calculation. While gradient

approximation methods such as finite differencing are readily available, the accumulation of

discretization error creates challenges in an HMC algorithm, which requires L+ 1 gradient

calculations per proposal.
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Gradient computation algorithms with an accuracy to the computer’s floating point

error have been developed for HMC (Carpenter et al. 2015) and for machine learning

algorithms such as deep learning (Theano Development Team 2016). These algorithms use a

computational graph to translate an often complex expression into a network of fundamental

operations. The result is a representation of the original expression as the composition of

many low-level functions (e.g. f = f1 ◦ f2 ◦ ...). Once this graph is derived, the chain rule is

used to calculate the gradient exactly.

While automated differentiation algorithms provide the benefit of automated scala-

bility, they are associated with a small increase in computation time. When programmed

efficiently, functions that directly calculate an analytically derived gradient can outperform

automated algorithms. However, the benefits of flexibility and scalability in automated

methods often outweigh the added computational burden. Users with sufficient technical

expertise may be able to add custom functionality since many software implementations of

HMC are open-source.

2.3.2.3 Stochastic Gradient Hamiltonian Monte Carlo

While NUTS addresses difficulties in HMC parameter selection, Chen, Fox, and Guestrin

(2014) propose Stochastic Gradient Monte Carlo (SGHMC) to address the computational

burdens of HMC. SGHMC replaces the actual gradient of the log posterior with a noisy

estimate derived from machine learning algorithms. This algorithmic variation of HMC

addresses "big data" problems where gradient calculations are not computationally feasible.

Standard HMC calculates the potential energy function or log posterior in (2.10)

based on the entire dataset D. One way to decrease the computational burden is to reduce

the size of the data. A "noisy" estimated gradient is computed from a simple random sample
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of the data D̃ called a mini-batch (Robbins and Monro 1951),

∇Ũ(θ) = |D|
|D̃|
∇ log f(θ)

∇Ũ(θ) ≈ ∇U(θ) +N(0, V (θ)).

(2.44)

The noisy gradient approximates the actual gradient via an appeal to the central limit

theorem, where V is the covariance of the noise of the stochastic gradient. The most

straightforward application of SGHMC replaces the gradient of the log posterior directly

with (2.44). This algorithm requires an additional Metropolis-Hastings correction before

discretization since the joint density f(θ,p) is not invariant to this transformation. The

MH step requires all of the data for computation, reducing the efficiency of this algorithm.

A balance between the efficiency of a less computationally intensive gradient and

numerous, costly MH steps could not be found. Simulation studies of this version of SGHMC

showed either poorly behaved trajectories or inefficient computations. A more robust

algorithm is proposed based on second-order Langevin dynamics(Wang and Uhlenbeck 1945).

This method adds a "friction" term BM−1pdt to diminish the noise introduced by noisy

gradient, where B = 1
2εV (θ). The result is a revised set of Hamiltonian equations

dθ = M−1p dt

dp = −∇U(θ)dt+N(0, 2B(θ)dt).
(2.45)

This friction term offsets the impact of a large divergence in dp. The resulting time

evolution of the Hamiltonian equation can be be described by the Fokker-Planck equation,

which describes the time evolution of a system when subject to friction forces. The result

is a stationary distribution of H(θ,p), as desired. Although the stochastic gradient HMC

produces a stationary distribution, the simulation is not time reversible. The effects of the

lack of time reversibility have been left for future study. Initial simulation experiments on

SGHMC focused on predictive applications common in machine learning. Additional research
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would need to be performed to determine the feasibility of using SGHMC in statistical

inference.

2.4 A General Process for Fitting Statistical Models using HMC

The major steps required to fit a statistical model are summarized in Figure 2.3. Following

the steps illustrated in the diagram, one could generate HMC samples with user-specified

posterior and gradient functions, by using the hmc function in the hmclearn package.

The first set of steps require the specification of the log posterior as the sum of the log

likelihood and log prior, at least to a numerical constant, log f(θ|y) = log f(y|θ) + log f(θ),

where θ is the parameter of interest and y is the data.

If the support of θ is restricted, a transformation must be applied. For example, if

θ ∈ (0,∞), then a log transformation may be applied such that log θ ∈ R. The Jacobian

must be derived and applied correctly in such cases.

Once the full log posterior function is specified (again, to a normalizing constant), an

R function must be provided to return the result for simulated values of θ. The user may

reference separate functions for the log likelihood and log prior, if so desired. Only the log

posterior function must be provided in the software.

Similarly, a function must also be provided to calculate the gradient of the log posterior.

The preferred approach is to manually derive the gradient, and then program the exact

gradient function for the software. Alternatively, users may opt to use an automated gradient

calculation. However, the gradients provided must be calculated exactly. Approximations

such as finite differencing are inadequate for HMC.
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Figure 2.3: Major steps of HMC implementation
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Once the data and functions are available, the HMC algorithm must be tuned to

the application. It is generally a good practice to set ε to a smaller value relative to the

magnitude of the parameter of interest. A smaller ε results in closer approximations and

thus higher acceptance rates. But a small ε must be coupled with a large L to ensure the

trajectory length εL is large enough to move the simulated parameter to a distant point in

the distribution. On the other hand, if εL is too large the trajectory is likely to circle back,

causing waste in simulation. To tune ε and L is to find the right combination of these values.

One usually does so by monitoring the acceptance rate. (R. Neal 2011) suggested that the

optimal acceptance rate is approximately 65%.

At the same time, it is often helpful to examine the trace plots of the MCMC samples

for signs of autocorrelation. Slow-moving chains with stronger autocorrelation often indicate

insufficient εL. While ε and L can be tuned jointly, most analysts choose to select the step

size first, then under a given step size, they fine-tune the number of steps per leapfrog L.

Additional adjustments may be made to the tuning parameters beyond these basic

steps. For example, different values of ε for each of the k parameters in θ can be chosen to

increase the sampling efficiency. The parameter for the number of steps L must be a natural

number. However, randomly chosen L could be used to guard against periodicity of the

Markov chain. The step size ε may also be randomized. A useful algorithm known as the

No U-Turn Sampler (NUTS) automatically selects L for each sample; NUTS is a commonly

used alternative to manual parameter tuning (Hoffman and Gelman 2014).

2.4.1 hmclearn: A Flexible Computational Tool

I present an R package hmclearn to provide users with the software tools to learn the

intricacies of the HMC, through explicit specification of log posterior and gradient functions,
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as well as parameter tuning. It is designed to give user a hands-on experience for implementing

HMC analysis for a broad class of statistical models. Once users have understood and

mastered the essential HMC steps, they could go on to write their own code for specific

applications. And while one of the major purposes of developing this package was to help

teach HMC to new users, hmclearn facilitates fitting a wide variety of statistical models.

As such, hmclearn can also be used as general purpose software to use HMC for research

purposes.

The core function in hmclearn is hmc, which is a general-purpose function for MCMC

sample generation using the EHMC method (shortened to simply HMC for the remainder of

this chapter). This function takes user-defined log posterior and gradient functions as inputs

and produces MCMC samples. Here, an explicit specification of prior f(θ) is not required as

an input function. Instead, I provide users with the capability to define their log posterior

log f(θ|y) = log f(y|θ) + log f(θ), which includes f(θ). Such a design reduces the number

of required input functions, while preserving users’ flexibility in choosing different priors.

Other input parameters to hmc include the number of samples N , the step size ε,

the number of leapfrog steps L, and the Mass matrix M. These are the essential elements

to start an HMC simulation, but the user will typically need to adjust at least some of

these parameters to tailor the simulation to their specific applications. Users are required

to provide their own starting values for θ when using the hmc function for their own

applications. Examples of log posterior and gradient functions are provided in hmclearn

for various generalized linear mixed effect models, which can be used as templates for less

standard models.

Running multiple MCMC chains is often desirable to determine if each chain converges

to the same distribution of θ. Since modern computers almost universally have multiple
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core processors, parallel processing can be an efficient way to run multiple chains at the

same time. To that end, hmclearn includes parameters to enable parallel processing as well

as multiple chains.

Finally, a variety of Bayesian graphical functions are provided based on the bayesplot

package (Gabry and Mahr 2016). Some of the functionality directly incorporated in hmclearn

include trace plots, histograms, density plots, and credible interval plots. The integrated

functions comprise the core diagnostic plotting functions typical for MCMC applications.

Additional diagnostics can be programmed directly or called based on the output of the

hmc function. This package along with source code and vignettes are available on CRAN at

https://cran.r-project.org/web/packages/hmclearn/index.html.

2.4.2 Fitting a Mixed Effects Model in HMC

A mixed effects model is used to illustrate fitting standard statistical models using HMC.

While standard, these models can be difficult to fit using standard methods. Further, more

complex models including generalized additive models can be expressed in mixed effect

model form.

A random intercept mixed effects model can be specified as

g[E(yi|ui)] = Xiβ + ziui,

for i = 1, ..., n subjects, where each subject’s response vector yi = (yi1, ..., yid)T contains

j = 1, ..., d observations. Each subject has an individual random intercept parameter ui,

where u = (u1, ..., un)T . The fixed effects design matrix Xi = (xTi1, ...,xTid)T ∈ Rd×(q+1),

where the jth row of Xi contains the q + 1 covariate values of that observation, including a

global intercept. The fixed effects regression coefficients for q covariates and a global intercept

are a vector β = (β0, ..., βq)T . The random intercept vector is zi = (zi1, ..., zid)T = 1d. The
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distribution of yi conditional on ui is Poisson with log link function, where log[E(yi|ui)] =

Xiβ + ziuj .

The subject-level response vectors are combined in a single vector, y = (yTi , ...,yTn )T ∈

Rnd×1. The full fixed effects design matrix for all subjects is X = (X1, ...,Xn)T ∈ Rnd×(q+1),

and the random effects design matrix is Z = In ⊗ 1d ∈ Rnd×n. The log likelihood for the

Poisson mixed effects model, omitting constants, is

log f(y|X,Z,β,u) ∝ −1Tnd
[
exTijβ+zijui

]
nd×1

+ yT (Xβ + Zu),

where β is the fixed effects coefficient vector, ui is the random intercept, and
[
exTijβ+zijui

]
nd×1

is an nd × 1 vector ∀i = 1, . . . , n and j = 1, . . . d. I specify multivariate normal priors

β|σ2
β ∼ N(0, σ2

βI) and u ∼ N(0,G), where σ2
β is a hyperparameter set by the analyst and G

is parameterized for efficient Bayesian computation.

Mixed effect models are types of hierarchical models (Gelman et al. 2013). I

parameterize the covariance matrix of G for efficient sampling of hierarchical models such

that G1/2 := λIτ , where τ = (τ1, ..., τn)T ∼ N(0, In) (M. J. Betancourt and Girolami 2013).

For λ, I assign a 2-parameter half-t prior per the recommendation of (Gelman 2006) for

hierarchical models.

One final parameter transformation is necessary before applying HMC. Since the

support of λ is (0,∞), I apply a logarithmic transformation to expand the support to R.

The result is

ξ = log λ, λ = g−1(ξ) = eξ,

f(ξ|a, b) ∝

1 + 1
νξ

(
eξ

Aξ

)2
−(νξ+1)/2

eξ,

log f(ξ|a, b) ∝ −νξ + 1
2 log

1 + 1
νξ

(
eξ

Aξ

)2
+ ξ,

where νξ and Aξ are hyperparameters set by the analyst.
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With the log likelihood and priors defined, I specify the log posterior, omitting

constants, as

log f(β, τ , ξ|y,X,Z, σ2
β, νξ, Aξ) ∝ −1Tnd

[
exTijβ+eξzijτi

]
+ yT (Xβ + eξZτ )− β

Tβ

2σ2
β

−

νξ + 1
2 log

1 + 1
νξ

(
eξ

Aξ

)2
+ ξ − 1

2τ
Tτ .

The parameters of interest are defined as θ := (β0, ..., βq, τ1, ..., τn, ξ)T , where k = q + n+ 2.

To fit this model using hmc, the user must provide a function for the log posterior where the

first function parameter is a vector for the parameters of interest θ. Additional function

parameters can be included for the data and hyperparameters. An example log posterior

function for this model and specification of priors is included in hmclearn.

Writing the Hamiltonian function where p ∼ Nk(0,M) for the mixed effects regression

model is straightforward once the log posterior is developed,

H(θ,p) = H(β, τ , ξ,p) ∝ log f(β, τ , ξ|y,X,Z, σ2
β, νξ, Aξ) + 1

2pTM−1p.

With the Hamiltonian function explicitly defined, I write the Hamiltonian equations for this

particular model. The leapfrog algorithm is used to find a discrete approximation to the

solutions of the Hamiltonian Equations. The steps of the leapfrog algorithm are integrated

directly with hmc in a self-contained function. this function requires, as an input, a separate

standalone function that returns a vector for the gradient of the log posterior. As with the

log posterior function, the first function parameter must be a vector for the parameter of

interest θ. An example gradient function for this model is also included in hmclearn,
∇β log f(β, ξ, τ |y,X,Z, σ2

β , νξ, Aξ) ∝ XT

(
−
[
exTijβ+eξzijτi

]
nd×1

+ y
)
− β/σ2

β ,

∇ξ log f(β, ξ, τ |y,X,Z, σ2
β , νξ, Aξ) ∝ eξτTZT

(
−
[
exTijβ+eξzijτi

]
nd×1

+ y
)
− νξ + 1

1 + νξA2
ξe

−2ξ + 1,

∇τ log f(β, ξ, τ |y,X,Z, σ2
β , νξ, Aξ) ∝ eξZT

(
−
[
exTijβ+eξzijτi

]
nd×1

+ y
)
− τ .

Everything that is required to solve the Hamiltonian equations via the leapfrog

algorithm and generate samples from the distribution of f(θ) is now available. The main hmc
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function handles the details of the HMC sample generation process for the user. Additional

programming details are provided with the hmclearn package, including detailed vignettes

with more examples.

This example comes from a study on gopher tortoises (Ozgul et al. 2009) (Fox, Negrete-

Yankelevich, and Sosa 2015) (Bolker 2018). The mortality of the tortoise populations is

measured in the number of shells, the dependent variable. I estimate the association of the

number of shells to year (2004, 2005, 2006) and seroprevalence to Mycoplasma agassizii.

The random effects are intercepts for each of n = 10 sites in Florida. Each site has d = 3

observations, one for each year. The fixed effects are a global intercept, two indicator variables

for the three years, and seroprevalence. The poisson mixed effects model formulation for

this application is

log[E(shells)] ∝
10∑
i=1

3∑
j=1

[
−e[1,I(2005)ij ,I(2006)ij ,previj ]β+eξzijτi+

yij
(
[1, I(2005)ij , I(2006)ij ,previj ]β + eξzijτi

)]
−

βTβ

2σ2
β

− νξ + 1
2 log

1 + 1
νξ

(
eξ

Aξ

)2
+ ξ − 1

2τ
Tτ ,

(2.46)

where y := (shells1, ...., shells10)T and shellsi = (shells1, shells2, shells3)T . The fixed effects

design matrix is composed from xTij = [1, I(2005)ij , I(2006)ij ,previj ], and the random effects

design matrix from zij = 1 for site i and 0 otherwise, for all observations j = 1, 2, 3.

To fit this model using hmc, the initial values of θ must first be specified in a vector of

length k = 15. I use the default hyperparameters for the sample log posterior and gradient

functions in hmclearn, such that σ2
β = 1e3, νξ = 1, and Aξ = 25. The step sizes are set

to values for this particular model and data set as part of the tuning process. %The log

posterior and gradient functions are based on the likelihood and prior choices in this example.
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The model takes a few seconds to run on a modern pc. Users have a number of

options to summarize and visualize the HMC samples. The generic summary function

provides quantiles from the posterior samples in a table. Many data visualization options are

available through direct integration with the bayesplot package (Gabry and Mahr 2016).

Graphical options for visualizing the posterior samples include histograms, density plots, and

credible interval plots. General MCMC diagnostics such as trace plots, autocorrelation plots,

and R̂ statistics (Gelman and Rubin 1992) are also readily available. Additional customized

analyses can be performed using the posterior sample output from hmc.

The design matrices X and Z must be setup for hmc. The fixed effects matrix

X contains a global intercept and covariates for year 2005 factor.year.2005, year 2006

factor.year.2006, and Seroprevalence prev.

A random intercept is generated for each of the 10 sites in the dataset and stored as

a block diagonal matrix in Z.

R> data(Gdat)
R>
R> ##########
R> # block diagonal
R> Zi.lst <- split(rep(1, nrow(Gdat)), Gdat$Site)
R> Zi.lst <- lapply(Zi.lst, as.matrix)
R> Z <- Matrix::bdiag(Zi.lst)
R> Z <- as.matrix(Z)
R> X <- model.matrix(~ factor(year), data=Gdat)
R> X <- cbind(X, Gdat$prev)
R> colnames(X)[ncol(X)] <- "prev"
R> colnames(X) <- make.names(colnames(X))
R> colnames(X)[1] <- "intercept"
R> y <- Gdat$shells

50



The log posterior and gradient functions are based on the likelihood and prior choices

in this example.

R> glmm_poisson_posterior <- function (theta, y, X, Z, n, nrandom = 1,
+ nuxi = 1, Axi = 25, sig2beta = 1000)
+ {
+ Z <- as.matrix(Z)
+ p <- ncol(X)
+ beta_param <- theta[1:p]
+ tau_param <- theta[(p + 1):(p + n * nrandom)]
+ xi_param <- theta[(p + n * nrandom + 1):(p + n * nrandom +
+ nrandom)]
+ Dhalf <- diag(exp(xi_param), nrandom, nrandom)
+ L <- diag(nrandom)
+ LDhalf <- L %*% Dhalf
+ LDhalf_block <- kronecker(diag(n), LDhalf)
+ u_param <- LDhalf_block %*% tau_param
+ XZbetau <- X %*% beta_param + Z %*% u_param
+ log_likelihood <- -sum(exp(XZbetau)) + y %*% XZbetau
+ log_beta_prior <- -1/2 * t(beta_param) %*% beta_param/sig2beta
+ log_tau_prior <- -1/2 * t(tau_param) %*% tau_param
+ log_xi_prior <- -(nuxi + 1)/2 * log(1 + 1/nuxi * exp(2 *
+ xi_param)/Axi^2)
+ result <- log_likelihood + log_beta_prior + log_tau_prior +
+ sum(log_xi_prior)
+ return(as.numeric(result))
+ }
R>
R> g_glmm_poisson_posterior <- function(theta, y, X, Z, n, nrandom=1,
+ nuxi=1, Axi=25, sig2beta=1e3) {
+ Z <- as.matrix(Z)
+ p <- ncol(X)
+
+ # extract parameters from theta vector
+ beta_param <- theta[1:p]
+ tau_param <- theta[(p+1):(p+n*nrandom)]
+
+ # diagonal of G matrix
+ xi_param <- theta[(p+n*nrandom+1):(p+n*nrandom+nrandom)]
+
+ # reconstruct G LDLT decomposition
+ Dhalf <- diag(exp(xi_param), nrandom, nrandom)
+
+ L <- diag(nrandom)
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+
+ LDhalf <- L %*% Dhalf
+ LDhalf_block <- kronecker(diag(n), LDhalf)
+
+ # u is deterministic function of xi and tau
+ u_param <- LDhalf_block %*% tau_param
+
+ XZbetau <- X %*% beta_param + Z %*% u_param
+
+ # block L and xi for xi gradient
+ L_block <- kronecker(diag(n), L)
+ Dhalf_block <- kronecker(diag(n), Dhalf)
+
+ # gradient
+ g_beta <- -t(X) %*% (exp(XZbetau) - y)- (beta_param)/sig2beta
+
+ # tau gradient
+ g_tau <- -t(LDhalf_block) %*% t(Z) %*% (exp(XZbetau) - y) - tau_param
+
+ # gradient for xi using matrix algebra
+ zero_v <- rep(0, nrandom)
+ g_xi <- sapply(seq_along(1:nrandom), function(jj) {
+ zv <- zero_v
+ zv[jj] <- 1
+ bd <- kronecker(diag(n), diag(zv, nrandom, nrandom))
+ - t(L_block %*% bd %*% Dhalf_block %*% tau_param) %*% t(Z) %*%
+ (exp(XZbetau) - y)
+ })
+ g_xi <- g_xi - (nuxi + 1) / (1 + nuxi*Axi^2 * exp(-2*xi_param)) + 1
+
+ g_all <- c(as.numeric(g_beta),
+ as.numeric(g_tau),
+ g_xi)
+
+ return(g_all)
+ }

With the dependent variable and design matrices defined, I run HMC for the Poisson

mixed effects model. Initial values are set to zero and default hyperparameters are selected.

R> N <- 2e3
R>
R> set.seed(412)

52



R> initvals <- c(rep(0, 4),
+ rep(0, 10),
+ 0)
R>
R> eps_vals <- c(3e-2, 3e-2, 3e-2, 1e-3, rep(1e-1, 10), 3e-2)
R>
R> fm3_hmc <- hmc(N = N, theta.init = initvals,
+ epsilon = eps_vals, L = 10,
+ logPOSTERIOR = glmm_poisson_posterior,
+ glogPOSTERIOR = g_glmm_poisson_posterior,
+ varnames=c(colnames(X),
+ paste0("tau", 1:ncol(Z)), "xi"),
+ param=list(y = y, X=X, Z=Z, n=10),
+ chains=2, parallel=FALSE)

R> summary(fm3_hmc, burnin=200, probs=c(0.025, 0.5, 0.975))

Summary of MCMC simulation

2.5% 50% 97.5% rhat
intercept -1.129909142 -0.08752398 0.692578094 0.9997424
factor.year.2005 -1.372014112 -0.66698791 -0.003595214 0.9998643
factor.year.2006 -1.012942877 -0.38332103 0.214769142 1.0010172
prev 0.006494779 0.02331707 0.039944877 0.9999076
tau1 -2.410554813 -0.77997020 0.817336772 0.9997693
tau2 -1.729833796 -0.18396657 1.220663444 0.9997559
tau3 -1.983026482 -0.56865490 0.806617926 1.0001245
tau4 -0.568423528 0.73061452 2.175718706 1.0024635
tau5 -1.610232724 -0.10697694 1.196162525 0.9997881
tau6 -0.560222899 1.11240129 2.487083132 1.0000637
tau7 -1.046858556 0.23629673 1.463913025 1.0001180
tau8 -1.660281510 -0.19001017 1.089851556 1.0005547
tau9 -0.752246407 0.92311776 2.312896544 1.0010893
tau10 -2.503686065 -0.99581556 0.489402086 0.9997290
xi -2.587503507 -0.36255053 0.554016427 1.0032564

In this example, the posterior estimates are comparable to frequentist estimates. I

use the lme4 package (Bates et al. 2007) to provide frequentist parameter estimates as a

comparison to HMC.
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R> fm3 <- glmer(shells~prev+factor(year)+(1|Site),
+ family=poisson,data=Gdat,
+ control=glmerControl(optimizer="bobyqa",
+ check.conv.grad=.makeCC("warning",0.05)))
R>
R> coef(summary(fm3))

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.05779059 0.397498868 -0.1453856 0.884406472
prev 0.02230054 0.007714978 2.8905518 0.003845661
factor(year)2005 -0.65368457 0.357270249 -1.8296642 0.067300174
factor(year)2006 -0.37351125 0.322775316 -1.1571865 0.247196154

Next, I store frequentist fixed effects estimates in R variables.

R> freqvals_fixed <- c(fixef(fm3))
R> freqvals_fixed <- freqvals_fixed[c(1, 3, 4, 2)]

I also compare the random effects parameter estimates with lme4. I apply the linear

transformation back to u for comparison.

R> u.freq <- ranef(fm3)$Site[, 1]
R> lambda.freq <- sqrt(VarCorr(fm3)$Site[1])
R>
R> # transform parameters back to original scale
R> fm3_hmc$thetaCombined <- lapply(fm3_hmc$thetaCombined, function(xx) {
+ tau_mx <- as.matrix(xx[, grepl("tau", colnames(xx))])
+ u_mx <- tau_mx * exp(xx[, "xi"])
+ u_df <- as.data.frame(u_mx)
+ colnames(u_df) <- paste0("u", 1:ncol(u_df))
+ xx <- cbind(xx, u_df, exp(xx[, "xi"]))
+ colnames(xx)[ncol(xx)] <- "lambda"
+ xx
+ })
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The frequentist estimates for fixed effects are close to HMC in this example, as shown

in Figure 2.4.

intercept prev
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Figure 2.4: Comparison of frequentist and Bayesian fit of the fixed effect parameters from
the mixed effects model example from hmclearn

R> diagplots(fm3_hmc, burnin=200, comparison.theta = freqvals_fixed,
+ cols=1:4)

The random effects parameters are also aligned with frequentist estimates, as shown

in Figure 2.5.
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Figure 2.5: Comparison of frequentist and Bayesian fit of the random effect parameters
from the mixed effects model example from hmclearn
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CHAPTER 3

Fitting Non-Standard Statistical Models Using HMC

The Bayesian framework developed in the previous chapter is beneficial for standard statistical

models as well as complex, non-standard models. For standard statistical models, this

framework facilitates applications to high-dimensional datasets. Complex non-standard

statistical models, however, present additional challenges to analysts who want to use HMC

to fit such models. The nature of these challenges range from the practical, such as tuning

and gradient derivations, to the theoretical, namely the mathematical parameterization

development required to take advantage of HMC’s strengths and minimize HMC’s limitations.

In this chapter, a Bayesian parameterization is developed for a specific class of

non-standard models called Generalized Additive Models (GAM). The variant of GAM’s

developed here estimates multiple responses as well as the subject-level correlation between

responses. While multiple outcomes may be estimated independently, this approach neglects

the potential significance of the correlation of measures within the same individual (H. Liu,

Tu, and others 2012). This type of model is particularly relevant to biostatistics, where

multiple outcomes are often measured simultaneously.

The innovations presented in this chapter provide statisticians with methodological

development necessary for complex models, as well as the tools for applying HMC in practical

research, including

1. A description of certain limitations of HMC in fitting complex models, particularly

with respect to estimating correlated parameters,
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2. Methodological development of parameterization specifically to take advantage of the

strengths while accounting for limitations of HMC,

3. The empirical Bayesian nature of priors specified for computational efficiency and its

implications for analysts ,

4. Example parameterization development for a class of complex, non-standard statistical

models, and

5. A general purpose software package in the familiar R language to efficiently fit many

standard and non-standard models using HMC with few technical barriers.

To summarize, the intent of this section is to provide statisticians interested in using

HMC for complex models with strategies to design their own parameterization for efficient

model fitting. These strategies include methodological development for parameterization

as well as practical tools for fitting non-standard models in practice. While the focus on

this chapter is on developing methods to fit a particular class of models, the results of this

research can be applied to many other statistical models that present similar computational

challenges.

3.1 Challenges using HMC to Fit Complex Statistical Models

For simpler models, the derivation of the gradient of the log posterior as well as manually

setting tuning parameters is a feasible undertaking. However, for large and complex models,

the derivation and tuning exercises present a substantial barrier to using HMC for practical

applications. Automated tools to handle gradient derivation and computation as well as

parameter tuning are needed for HMC to facilitate the adoption of this technique by applied

statisticians.

58



It is important to note that exact gradient computation is critical to implement HMC

in practice. The error introduced by approximation methods such as finite differencing

accumulate through the multiple steps of the leapfrog algorithm. As a result, the discrete

approximation error to the Hamiltonian equations increases to where the acceptance ratio

drops to nearly zero in my computational experiments.

The most efficient gradient formulation possible for computation is a function coded

to calculate the gradient directly, as presented in the previous chapter. When possible,

programming such a function directly is the optimal approach. If this is not feasible, an

exact automated gradient computation approach is required. Available software tools for

automated gradient computation include Autodiff (Carpenter et al. 2015) and the Tensorflow

API (Abadi et al. 2016).

Model tuning also becomes prohibitively challenging as the number of parameters

grows. Some of these challenges can be mitigated using techniques presented in this chapter.

However, the sheer volume of hundreds or even thousands of parameters can be daunting for

even the most experienced Bayesian statisticians. A number of automated tuning methods

are available for practical use today, including the popular No U-Turn Sampler (Hoffman

and Gelman 2014) for automatic selection of ε and L.

In addition to the complexities of gradient computation and model tuning, the HMC

algorithm itself has mathematical characteristics that present challenges to implementation.

HMC proposals are based on a combination of the step-size ε, the number of leapfrog steps

L, the parameterization of the latent variable p, and the gradient of the log target density.

One way to consider Hamiltonian proposals is via the concept of distance traveled in the

parameter space of θ. In Euclidean space, the distance is calculated via the L2-norm, such

that D(θ,θ + γθ) = ||γθ||.
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If I consider a total distance of γ in (2.27), Euclidean Hamiltonian Monte Carlo

assumes that the distance of in each direction of the parameter space is approximately

constant over a small distance. However, the gradients may change rapidly over even short

distances (Calderhead 2011). Since Euclidean HMC only includes first order information,

parameterization adjustments may be essential when fitting complex statistical models.

Correlated parameters are particularly challenging since the linear mapping of HMC proposals

via M−1p may not efficiently explore the log posterior (Girolami and Calderhead 2011).

The development of a parameterization strategy to take advantage of the benefits of

HMC, while minimizing the algorithm’s limitations is required to maximize computational

efficiency. Such computational challenges can be illustrated with the complexities of fitting

covariance matrices using HMC. In particular, I focus on covariance matrix model fitting for

Generalized Additive Models (GAM) with multiple response as an example of a complex

non-standard statistical model.

3.2 A New Approach to Fitting Covariance Matrices Using HMC

To fit multiple response GAM’s using HMC, a covariance matrix of the multiple outcomes

must be simulated to estimate the subject-level correlation. Current parameterization for

covariance matrix estimation with HMC uses the single parameter LKJ (Lewandowski,

Kurowicka, and Joe 2009) prior. Although this approach is effective for many general

applications, this single-parameter approach restricts the analyst’s ability to incorporate

prior covariance information in the estimation process. In particular, the prior specification

of partial covariances between outcome pairs cannot be directly incorporated with an LKJ

prior. A preferred parameterization would allow analysts to set priors for partial covariances

directly. To that end, a novel parameterization for simulating covariance matrices in HMC

is developed to provide that flexibility.
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In the mixed effects model framework, the random effects are modeled as a multivariate

Normal with covariance G, where u ∼ N(0,G). One of the most challenging aspects of using

MCMC to estimate mixed effects models is parameterizing the covariance of the random

effects G. There are a number of options, with varying opinions.

The traditional approach from Gibbs sampling is to use an inverse Wishart prior

on G. With this prior, the conditional posterior distribution of G is also inverse Wishart.

One disadvantage of the inverse Wishart is that the flexibility in parameterization is limited

(Gelman et al. 2013). Another disadvantage is that the marginal distribution of the variance

is an inverse gamma distribution. The inverse gamma can be especially problematic for G

when the variance is close zero. Simply put, the distribution of the inverse gamma is not

well-behaved at extremely low values (Gelman 2006). The density near zero is extremely

low, which biases estimates to larger variance even if the true variance is low.

One alternative approach is the scaled inverse Wishart distribution. This approach

incorporates additional parameters for the variance via a diagonal matrix. The most

commonly used approach in today’s hierarchical models divides the covariance matrix into

diagonal matrices of standard deviations and a correlation matrix (Barnard, McCulloch,

and Meng 2000).

Barnard, McCulloch, and Meng (2000) call this approach a separation strategy.

Beyond the intuitive appeal of separating the standard deviations and correlation, MCMC

chains can more easily navigate the separated parameters. The priors for the standard

deviations can be any distribution with strictly positive values, such as a lognormal. The

prior for the correlation matrix is typically chosen to be the LKJ prior (Lewandowski,

Kurowicka, and Joe 2009). The LKJ distribution is defined for a correlation matrix with a
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single scaling parameter that is used to provide information on the strength of the individual

partial correlations.

This separation strategy approach works well for many modeling applications. In par-

ticular, the single parameter prioritization is appealing in fitting high-dimensional correlation

matrices. The individual parameterization of each partial correlation can be prohibitively ex-

pensive from a computational efficiency perspective. However, this single-parameter approach

has a disadvantage in constraining the off-diagonal covariance parameters. For statistical

models where the correlations are parameters of interest, a more flexible parameterization is

needed.

Optimally, each off-diagonal parameter of a given covariance matrix would receive its

own prior when fitting such a model with HMC. A particular complexity in designing an

approach for HMC is that each parameter must be unconstrained. Further, each simulated

covariance matrix must also be positive semi-definite.

I propose a modeling strategy based on the modified Cholesky decomposition to

simultaneously allow unconstrained parameterization while ensuring positive definite results.

In this approach, L is the lower triangular matrix with diagonal elements of 1 and D is a

diagonal matrix of the variances and D1/2 a diagonal matrix of the standard deviations.

G = LDLT

= LD1/2D1/2LT

An appealing aspect of this decomposition is that the off-diagonal parameters in L can be

observed as autoregressive parameters on the random effects (Chan and Jeliazkov 2009).

Provided the diagonal elements of D are strictly positive, the off-diagonal elements of L may

be unconstrained.
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This approach provides the analyst with the flexibility to incorporate prior information

for individual partial correlations. A practical application for this flexibility is multiple

response modeling. In biostatistical applications, multiple outcomes are often measured

simultaneously. Prior information from previous biostatistical studies may be incorporated

into such modeling using this structure. This direct specification of priors for particular

correlations is not possible with the commonly used LKJ prior. In contrast, the modified

Cholesky approach provides researchers with maximal flexibility for such applications.

The inverse gamma prior was first explored in researching variance parameters for the

diagonal elements of D, with a log transformation to allow the parameter to be unconstrained

over all real numbers. This approach created significant problems in the MCMC simulations

of mixed effects models due to the previously articulated issues with inverse gamma’s

behavior close to zero.

An alternative parameterization was explored based on the half-t family of distribu-

tions (Gelman 2006). These distributions behave well at zero, and provide the flexibility for

a variety of parameterizations, including the half-cauchy and improper uniform distribution.

The half-t priors applied to D substantially the computational efficiency of model fitting

with HMC.

One of the difficulties identified by M. J. Betancourt and Girolami (2013) is the

curvature of the distribution of the random effects with the covariance G. At low variance

values, the movement of the random effects in the chain can be severely restricted. These

difficulties were observed in fitting linear mixed models and generalized linear mixed models

with a logit link.
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A remedy for the funnel distribution problem is to re-define u based on the product

of a standard normal vector τ and the modified Cholesky decomposition of G. The HMC

chain samples on τ , D1/2, and L. The random effects u are a deterministic function of the

sampled parameters. This approach assures that the variance of τ is always constant, while

the covariance is sampled separately.

The distribution of the random effects are defined as normal with a mean of zero.

Note that in this parameterization, I directly decompose G instead of G−1 as in Chan and

Jeliazkov (2009),

u ∼ N(0,G)

G = LDLT

= LD1/2D1/2LT .

Let λk where k = 1, ...p denote the diagonal entries of D1/2 and let akj where

1 ≤ j < k ≤ p denote free elements of lower unitrangular matrix L,

D1/2 :=



λ1 0 ... 0

0 λ2 0... 0

... ... ... ...

0 0 ... λp


L :=



1 0 0 ... 0

a21 1 0 ... 0

a31 a32 1 ... ...

... ... ... ... ...

ap1 ap2 ... ... 1


.

Also define λ := (λ1, ..., λp)T and ak := (ak1, ..., ak,k−1)T and a := (aT2 , ...,aTp )T .

I use a half-t prior for standard deviation λk and Normal priors for a,

p(λk) ∼
(

1 + 1
ν

(
λk
A

)2)−(ν+1)/2

a|λ ∼ N(a0, A0).
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The hyperparameter a0 does not need to be zero, and A0 can be correlated and may depend

on λ. In this model, I define a independent of λ.

I re-parameterize u using a standard normal parameterization which I define as

τ = (τ1, ..., τq). Here, u is a deterministic function of G and τ ,

τ ∼ N(0, Iq),

u := LD1/2τ

∼ N(0,LD1/2I(LD1/2)T )

∼ N(0,LD1/2D1/2LT )

∼ N(0,G).
The distribution of u therefore does not change with this parameterization. This re-

parameterization allows λ and τ to be largely independent in HMC sampling.

3.3 Data Driven Prior Specification for Efficient HMC Estimation

The kinetic energy component in HMC is based on a mass matrix M , which effectively

rotates and scales the target distribution (M. J. Betancourt and Girolami 2013),

K(θ,p) = 1
2pTM−1p.

The standard HMC algorithm defines M as a unit diagonal matrix. The HMC chain will

converge (Gelman et al. 2013), but may be made more efficient by choosing a different M

based on the data. The mass matrix is ideally based on the covariance of the parameters,

which is unknown. An approach to tuning with this uncertainty is to transform the parame-

ters via Cholesky decomposition (R. Neal 2011) or QR decomposition. Both approaches

standardize the design matrix such that the mass matrix is then close to identity. I prefer QR

decomposition as a standard design matrix transformation to minimize the computational

impact of correlated parameters in HMC sampling.
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Let θ = R∗β for a model with n samples. The HMC estimates θ, from which I may

use the deterministic formula to determine β,

X = Q∗R∗

Q∗ = Q ·
√
n− 1

R∗ = 1√
n− 1

R

Xβ = Q∗R∗β

β = R∗−1
θ.

By assigning a prior on the transformed parameters β, I effectively employ empirical Bayes

to form the priors (M. Betancourt 2017). For a linear mixed effect model formulation with

dependent variable y,

y = Xβ + Zu + ε

= QβRββ + QuRuu + ε

= Qββ̃ + Quũ + ε,
where β and u are fixed and random effect parameters, X and Z are the related design

matrices, and ε is the error term. From QR decomposition, the transformed parameters are

noted as β̃ = Rββ and ũ = Ruu.

Next, I define the parameter for the random effects parameter u via standard normal

multiplied by another scale parameter, where

τ ∼ N(0, I)

u := τλ

:= τeξ

u ∼ N(0, λ2I)

∼ N(0, e2ξI).
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The model equation then is adjusted to

y = Xβ + Zu + ε

= Xβ + e2ξZτ + ε

= QβRββ + e2ξQuRuτ + ε.
In this methodology, I assign priors to the transformed parameters

τ̃ ∼ N(0, I)

τ = R∗−1
u τ̃ ∼ N(0,R∗−1

u R∗−Tu )

ũ = eξτ̃ ∼ N(0, e2ξI)

u = eξτ

= eξR∗−1
u τ̃

u ∼ N(0,R∗−1
u (e2ξI)R∗−Tu ).

This differs from the standard prior u ∼ N(0, e2ξI). Since this parameterization includes

information from the design matrix Z, I note that this approach is a form of empirical Bayes.

I demonstrate that the prior for u incorporates all of the correlation information from the

data,

Z = QR

= Q
√
n− 1 ·R/

√
n− 1

= Q∗R∗

ZTZ = (Q∗R∗)TQ∗R∗

= (R∗)T (Q∗)TQ∗R∗

= (R∗)T (Q
√
n− 1)T (Q

√
n− 1)R∗

= (n− 1)(R∗)TQTQR∗.
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Since Q is a matrix of orthonormal columns, QTQ = I,

ZTZ = (n− 1)(R∗)T IR∗

ZTZ = (n− 1)(R∗)TR∗

(ZTZ)−1 = 1
n− 1

(
(R∗)TR∗

)−1

= 1
n− 1(R∗)−1R∗−1T

(R∗)−1R∗−1T = (n− 1)(ZTZ)−1.

Finally, it is apparent that the prior covariance for u can be written in terms of the design

matrix (ZTZ)−1

u ∼ N(0,R∗−1
u (e2ξI)R∗−Tu )

∼ N(0, e2ξR∗−1
u IR∗−Tu )

∼ N(0, e2ξR∗−1
u R∗−Tu )

∼ N(0, (n− 1)e2ξ(ZTZ)−1).

Note that I also utilize the QR decomposition in the estimation of the fixed effect

parameters β. This prior, also multivariate Normal, is assigned to β̃, but with a fixed

hyperprior on the variance,

β̃ = R∗ββ

β̃ ∼ N(0, σ2
βI)

β = R∗β
−1β̃

β ∼ N(0, σ2
βR∗β

−1R∗β
−1T )

∼ N(0, (n− 1)σ2
β(XTX)−1).

The hyperprior σ2
β is typically set large for a relatively uninformative prior when β has

no prior information. Here also, the use of QR decomposition employs an empirical Bayes

approach to model fitting with HMC.
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While the parameterization approaches presented in this section are optimal in terms

of computational efficiency, they do present statisticians with potentially difficult choices in

assigning priors. For applications where vague priors are used for estimation, the empirical

Bayesian nature of the priors presents little difficulty, as the information of the data on such

priors is minimal.

In cases where an informed prior is desired, analysts have several options. One option

is to fit the models in HMC directly, with the raw design matrices untransformed. For

this option, a small step size may be necessary to accommodate the curved nature of the

parameter space. The HMC chain will be ergodic and converge to the true posterior, but at

a slower rate due to the small step sizes. In addition, more samples may be needed if the

resulting MCMC chain has a high autocorrelation. The analyst may also elect to tune the

mass matrix M to the expected covariance of the parameter of interest θ, although this can

be difficult in practice. Finally, analysts may account for prior information while using the

empirical Bayes priors from the design matrices transformations. For QR decomposition,

the analyst would need to derive the transformed priors as assess the additional information

provided by the data, as shown above.

3.4 Fitting Multivariate Response Generalized Additive Models Using HMC

The foundation of this modeling approach is based on semiparametric regression (Ruppert,

Wand, and Carroll 2003), which incorporates both parametric and nonparametric components

in a statistical model. Nonparametric smoothing may be handled by a variety of basis

functions, including truncated polynomials and thin plate splines (TPS). The multiple

outcomes are connected by a subject-specific random effect based on a multivariate normal

distribution (H. Liu, Tu, and others 2012). Therefore, this complex modeling framework
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incorporates multidimensional responses, nonparametric effects, and the interaction of the

nonlinear associations of bivariate independent variables to multiple outcomes.

H. Liu, Tu, and others (2012) apply this approach to modeling the association of the

bivariate response of systolic and diastolic blood pressure and the joint nonlinear effects

of height and weight. The multivariate response modeling framework is preferred for this

application due to the high correlation of systolic and diastolic blood pressure as well as

the significant interaction of the effects of height and weight. While weight was the major

influence on both systolic and diastolic blood pressure, height showed a more significant

association with diastolic blood pressure in comparison with a lesser effect of height on

systolic blood pressure. This study demonstrates the capabilities of this modeling approach

to differentiating the effects of weight and height on multivariate outcomes. In addition,

these associations vary by sex and race, indicating different pathophysiologies by these

factors.

This multivariate additive framework requires a computational approach capable

of fitting the high-dimensional data produced by the univariate and bivariate smoothing

functions, as well as the covariance structure of multiple responses. To the best of my

knowledge, no current software packages are designed to handle this type of model directly.

However, some model-fitting software can be used if the data is specially organized in

a specific required format. For example, frequentist approaches for fitting these models

rely on specifying fixed and random effect parameters in a mixed effect model framework

(Ruppert, Wand, and Carroll 2003)(S. Wood 2017). This approach involves maximizing

the log likelihood or a restricted log likelihood. The restricted maximized log likelihood

(REML) approach accounts for the degrees of freedom in the fixed effects to reduce the bias

in the covariance parameter selections. In either case, frequentist estimation requires the
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maximization of the log likelihood over a high dimensional space due to the substantial

number of smoothing parameters. Approaches to fitting the maximum likelihood such

as quadrature methods tend to scale poorly with high dimensions, limiting the practical

potential to use existing software to fit multivariate generalized additive models.

3.4.1 Generalized Additive Model Formulation

A general formulation of the model is based on yijk for multiple responses r = 1, . . . , R

from i = 1, . . . ,m subjects at j = 1, . . . ni time points for each subject. As an extension of

Generalized Linear Model’s (GLM), the model is from the exponential family of distributions,

f(yijr|ηijr, φr) = exp
(
yijrηijr − b(ηijr)

a(φ)r
+ c(yijr;φr)

)
, (3.1)

where ηijr is the natural parameter of the distribution and φr is the nuisance or dispersion

parameter (Agresti 2015). The mean of the response is parameterized as µijr = E(yijr),

where µijr is a function of the natural parameter. A monotonic, differentiable link function

g(·) is applied to the natural parameter such that ηi = g(µi). Choosing sensible link functions

depends on the distribution of the response. For example, the identity function g(µi) = µi is

used for normal data, and the logit function is often used for binomial data g(µi) = log µi
1−µi .

A multivariate response generalized additive model is specified,

ηijk = g(µijr) = xTijβr + zTijbr + sr(t1ij , t2ij), (3.2)

where βr = (β(1)
r , . . . , β

(p)
r )T is a vector of fixed effect parameters for covariates xij , br =

(b(1)
r , . . . , b

(q)
r )T is a vector of random effects parameters for subject-level covariates zij and

sr(·) is a nonparametric smooth function for independent variables t1ij and t2ij .

The smooth function can be expressed generally as s(t1ij , t2ij) =
∑K
k=1 γrkhk(t1ij , t2ij)

with coefficients γrl (Li, Liu, and Tu 2017). Further, the smoothing function

can be written in the form s(t1ij , t2ij) = TT
ijγij , where γr = (γTr1, · · · , γTrK) and
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Tij = [h1(t1ij , t2ij), . . . , hK(t1ij , t2ij)]T . The result of the smooth function sr(t1ij , t2ij)

where j = 1, . . . , ni and i = 1, . . . ,m can be expressed as a vector sr. This can be written in

matrix form,

sr = Trγr, (3.3)

where sr is the vector of coefficients. The basis function matrix Tr includes the row vectors

TT
ij ∀ i, j.

The response is expressed in matrix form, where

yTr = (y11r, . . . , y1nir, . . . , ym1r, . . . , ymnir)T ,

Y = (yT1 , . . . ,yTR)T ,
(3.4)

for r = 1, . . . , R. The fixed effects design matrix for subject i is defined X(β)
i =

(xTi1, . . . ,xTini)
T , and the random effects design matrix for subject i is Z(b)

i = (zTi1, . . . , zTini)
T .

For all subjects, X(β) = (X(β)
1

T
, . . . ,X(β)

m
T

)T with fixed effect parameters β̃ = (βT1 , . . . ,βTR)T

and Z(b) = (Z(b)
1
T
, . . . ,Z(b)

m
T

)T with random effect parameters b̃ = (bT1 , . . . ,bTR)T . Similarly,

I define s = (sT1 , . . . , sTR)T , γ = (γT1 , . . . ,γTR)T , and T = (TT
1 , . . . ,TT

R)T . Equation (3.2) can

then be written for the full dataset,

η = X(β)β̃ + Z(b)b̃ + Tγ. (3.5)

The random effect parameters follow a multivariate normal distribution, b̃ ∼ N(0,Σb ⊗ Im).

3.4.2 Bivariate smoothing parameterization

Thin plate splines are a commonly used option to model sr in (3.2). I let ψ = (β̃T , λ̃T ,γT )T

be a vector of parameters, where λ̃ represent the variance components of Σb. One approach

to fitting this model would consist of maximizing a penalized log-likelihood function (Hastie

and Tibshirani 1990),

p`(ψ) = `(ψ)−
R∑
r=1

λrJ(sr), (3.6)
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where `(ψ) is the log-likelihood function. The function J(sr) applies a penalty to sr

with smoothing parameter λr. A common choice for the penalty function is J(sr) =∫ ∫
R2 s′′r (t1, t2)2dt1dt2, which can be written in quadratic form J(sr) = γTr Srγ (S. N. Wood

2003). Here, Sr is a positive-definite matrix of known coefficients which can be divided into

penalized and unpenalized components for the smoothing function sr. The coefficient vector

γr can be split into fixed and random effect coefficients based on the eigen decomposition of

the Sr (Hastie and Tibshirani 1990).

The vector γr can be divided into fixed and random effects coefficients, such that

γTr Srγr = γTr,ESr,Eγr,E , where Sr,E is diagonal with positive eigenvalues of Sr, γr,E are the

random effect coefficients, and γr,F are the unpenalized fixed effects coefficients (Li, Liu,

and Tu 2017). A mixed effect model formulation of (3.3) can be specified,

sr = Tr,Fγr,F + Tr,Eγr,E , (3.7)

with fixed effects design matrix Tr,F and random effects design matrix Tr,E and γr,E ∼

N
(
0, λr

Sr,E

)
. The mixed model form of the full model is expressed by substituting (3.7) into

(3.5),

η = Xβ + Zu, (3.8)

where X = (X(β),diag(T1,F , . . . ,TR,F )) and Z = (Z(b),diag(T1,E , . . . ,TR,E)) are

the fixed and random effects matrices. The fixed effects parameters are com-

bined, β = (β̃T ,γT1,F , . . . ,γTR,F )T , and the random effects parameters are combined,

u = (b̃T ,γT1,E , . . . ,γTR,E)T . The distribution of the random effects parameters is multivariate

normal, u ∼ N(0,Σu) where Σu = diag(Σb ⊗ Im,S−1
1,E/λ1, . . . ,S−1

R,E/λR). The variance

components of Σu are λu = (λ̃T , λ1, . . . , λR)T .
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3.4.3 Extending Generalized Additive Models to Multiple Responses

I summarize some of the numerous complexities required for multivariate generalized additive

models:

• Multiple outcomes,

• Correlation of multiple outcomes on individual subjects,

• Nonlinear effects of independent measures, and

• Interaction of two nonlinear effects on the outcomes of interest.

The combination of these factors necessitates a sophisticated modeling approach

beyond what is commonly used by analysts today. The framework that is proposed for such

applications is a multivariate additive model that was originally proposed by H. Liu, Tu,

and others (2012) and generalized by Li, Liu, and Tu (2017).

3.4.4 Connecting Random Intercepts from Multiple Responses

Subject-level random intercepts may be specified as one of the random effects parameters.

The random intercepts of the multiple responses are assigned to b̃, the first parameters in u.

The variance-covariance matrix Σb captures the correlation between repeated measurements

of the same subject, as well as the correlation between multiple response variables (H. Liu,

Tu, and others 2012).

I apply modified Cholesky decomposition similar to the recommendation by Chan

and Jeliazkov (2009) for simulated estimation of Σb. The modified Cholesky decomposition

is applied to the covariance matrix Σb = LDLT where L is a R×R lower triangular matrix,

and D is a R×R diagonal matrix containing the variance parameters of Σb.

74



The lower triangular matrix L contains 1’s on the diagonal and off-diagonal elements

agh, 1 ≤ h ≤ g ≤ R− 1. For R > 2,

L =



1 0 . . . 0

a21 1 0 0

. . . . . . . . . . . .

aR1 aR2 . . . 1


and D =



λ̃1 0 . . . 0

0 λ̃2 . . . 0

. . . . . . . . . . . .

0 0 . . . λ̃R


.

Further, I define the off-diagonal parameters of L as ag = (ag1, . . . , ag,g−1)T and a =

(aT2 , . . . , aTR−1)T . The modified Cholesky decomposition with strictly positive restrictions on

D ensure that simulated covariance matrices Σb will be positive definite with a unconstrained.

(Newton 1988)(Pourahmadi 1999).

3.5 Modeling Framework for Semiparametric Regression

I begin the development of the modeling framework with a single dependent variable. The

formulation of this model is similar to mixed effect models familiar to statisticians,

g[E(y|X,Z,β,u)] = Xβ + Zu. (3.9)

I define g(·) as a link function to the linear predictors as expressed in (3.9). The de-

pendent variable y = y1, . . . , yn has n observations. The fixed effects design matrix is

X = (xT1 , . . . ,xTp )T for p fixed effect parameters where β = (β1, ..., βp)T . As applied to

GAMs, X and β are the expressions for the parametric portion of the model. The default in

bayesGAM is to assign β1 as a global intercept, although this can be overridden by the user.

The random effects design matrix Z captures the smoothing functions for the nonparametric

portion of the model, while u are the corresponding nonparametric parameters.

Further, the nonparametric parameters and error parameters are assumed to be

normally distributed, such that u ∼ N(0,G). The covariance of the random effects G is

specially structured to facilitate efficient sampling in HMC (M. J. Betancourt and Girolami
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2013). I define G := λT Iqτ , where λ = (λ1, . . . , λq)T are strictly positive parameters and τ =

(τ1, . . . τq)T . The distribution of τ ∼ N(0, Iq) is standard normal with no hyperparameters.

Semiparametric models express nonlinear relationships using a set of basis functions.

These basis functions include knots at selected points in the span of a given independent

variable. The individual parameters for the knots u provide the weights for the nonlinear

function. The random effect design matrix Z = (Z1, ...,Zq) combines the submatrices for

the j = 1, . . . , q variables modeled by nonlinear smoothing functions. The dimensions of

each submatrix is dependent on the number of knots Kj for each variable. The individual

knot locations for each set of nonlinear parameters j are defined as κ(j)
1 , . . . , κ

(j)
Kj

such that

Zj ∈ Rn×Kj .

For example, a linear spline basis function can be specified for a simple semiparametric

model with normal response. In this example, q = 1 for a single nonparametric smoothing

function, such that

y = β1 + β2x+
K1∑
k=1

u
(1)
k (x− κ(1)

k )+ + ε, (3.10)

where β = (β1, β2)T are the fixed effects parameters, κ(1)
1 , . . . , κ

(1)
K1

are the knots of the

truncated line basis for x, u = (u(1)
1 , . . . , u

(1)
K1

)T are the nonparametric parameters, and

ε = (ε1, . . . , εn)T are the error parameters. The truncated line functions (x − κk)+ are

strictly positive, where

(x− κ(1)
k )+ = x− κ(1)

k ∀(x− κ(1)
k ) > 0,

= 0 ∀(x− κ(1)
k ) ≤ 0.
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The design matrices are defined,

X =



1 x1

. .

. .

. .

1 xn


and Z =



(x1 − κ(1)
1 )+ . . . (x1 − κ(1)

K1
)+

. . . . .

. . . . .

. . . . .

(xn − κ(1)
K )+ . . . (xn − κ(1)

K1
)+


.

One might consider estimating the nonparametric coefficients u directly along with the

fixed effects parameters β. While this approach would simplify the estimation process, this

specification will typically overfit the nonlinear relationship, overweighting u and producing

a non-smooth curve when plotting the fitted response values vs.~f(x). Therefore, bayesGAM

always estimates u as random effect parameters with more restricted priors.

Continuing with the simple semiparametric model example, the likelihood and log

likelihood for (3.10) are specified omitting constants,

f(y|X,Z,β,u, σ2
ε ) ∝ (σ2

ε )−n/2e
− 1

2σ2
ε

(y−Xβ−Zu)T (y−Xβ−Zu)
,

log f(y|X,Z,β,u, σ2
ε ) ∝ −

n

2 log(σ2
ε )−

1
2σ2

ε

(y−Xβ − Zu)T (y−Xβ − Zu).

For a Bayesian approach to fitting these models, I assign normal or student-t priors to

β. For example, β ∼ N(0, σ2
β) where σ2

β is a hyperparameter set automatically by the software

or manually by the user. The error parameters are assigned a prior restricted to strictly

positive values, such as a half-normal or half-t distribution. For example, ε ∼ N(0, σ2
ε In)

where ε ∈ (0,∞). The distribution of the random effects u ∼ N(0,G) is also treated as a

prior. The diagonal hyperparameters λ are assigned either half-normal or half-t priors to

ensure strictly positive estimations. %Finally, (ε1, . . . , εn)T are also assigned half-normal or

half-t priors, with hyperparameters set automatically by the software or manually by the

user. Note that Stan automatically applies transformations for constrained parameters to

correctly sample in HMC.
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From Bayes formula, the log posterior is proportional to the log likelihood plus the

log prior,

log f(β,u|y,X,Z, σ2
ε , σ

2
β,G) ∝ log f(y|X,Z,β,u, σ2

ε )−
βTβ

2σ2
β

− 1
2uTG−1u. (3.11)

Intuitively, the log prior for u functions to lower the log posterior for high values of ||u||.

The structure of this model therefore penalizes the log posterior for overfitting u. This

produces a smoother nonlinear relationship between y and f(x).

The TPS basis function can be extended to bivariate smoothing, which I apply in

bayesGAM. The automated bivariate spline smoother to obtain K knots κ1, ...,κK ∈ R2

is adopted from Ruppert, Wand, and Carroll (2003) ’s algorithm in section 13.5, which is

designed to be computationally efficient for semiparametric regression and easily implemented

using R software. The steps of the bivariate smoothing algorithm as applied in bayesGAM

are

1. Automatically choose the number of knots K = max [20,min(n/4, 150)].

2. Apply a clustering algorithm designed for large applications to automatically select

the knots.

3. Compute the design matrices for the bivariate smoothing (biv),

• Xbiv = [1 xi]

• Zbiv
K =

[
||xi − κk||2 log||xi − κk||

]
1≤i≤n

• Ω =
[
||κk − κ′k||2 log||κk − κk′ ||

]
1≤k, k′≤K

4. Compute the singular value decomposition (SVD) of Ω.

5. Use the result from SVD to obtain Ω1/2.

6. Compute the random effects design matrix Zbiv = Zbiv
K Ω1/2.
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With the development of the modeling framework for univariate response models

complete, I continue with the extension to multivariate responses.

3.5.1 Framework for Multivariate Response Modeling

The bayesGAM package fits multivariate response models based on a generalized design

from H. Liu, Tu, and others (2012) and Li, Liu, and Tu (2017). Given i = 1, . . . ,m subjects,

the r > 1 responses for the ith subject and l = 1, . . . , ni observations for subject i can be

specified in matrix form,

Yi = (y(1)
i , . . . ,y(r)

i ) =



y
(1)
i1 . . . y

(r)
i1

y
(1)
i2 . . . y

(r)
i2

. . . . .

y
(1)
ini

. . . y
(r)
ini


, (3.12)

where Yi ∈ Rni×r.

The multiple outcomes are modeled,

g
[
y

(1)
il |xil, zil,β

(1),u(1)
i , U

(1)
i

]
= U

(1)
i + xTilβ(1) + zTilu

(1)
i

. . .

g
[
y

(r)
il |xil, zil,β

(r),u(r)
i , U

(r)
i

]
= U

(r)
i + xTilβ(r) + zTilu

(r)
i ,

(3.13)

where Ũi = (U (1)
i , ..., U

(r)
i )T is the random subject effect vector, β(1), . . . ,β(r) are each p× 1

vectors of fixed parameters, and u(1)
i , . . . ,u(r)

i are each q × 1 vectors for the nonparametric

smoothing parameters for the ith subject.

The r outcomes therefore share the same covariates, but include different fixed effect

parameters, random subject effect parameters, and nonparametric smoothing parameters for

each response. The random effect for each subject is assumed to be normally distributed,

such that Ũi ∼ N(0,Σu). This software application uses modified Cholesky decomposition

as recommended by Chan and Jeliazkov (Chan and Jeliazkov 2009) for simulated estimation
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of Σu, but with two key differences. First, the modified Cholesky decomposition is applied

directly to the covariance matrix Σu = LDLT since a known distribution (e.g.~Wishart) is

not strictly necessary for the model. Second, the priors for λ̃ = (λ̃1, ..., λ̃r)T , the diagonal

elements of D, use half-t or half-normal priors instead of inverse gamma. These priors ensure

that the posterior marginal distribution of λ̃ is strictly positive.

The lower triangular matrix L contains 1’s on the diagonal and off-diagonal elements

agh, 1 ≤ h ≤ g ≤ r − 1. For r > 2,

L =



1 0 . . . 0

a21 1 0 0

. . . . . . . . . . . .

ar1 ar2 . . . 1


and D =



λ̃1 0 . . . 0

0 λ̃2 . . . 0

. . . . . . . . . . . .

0 0 . . . λ̃r


.

Further, I define the off-diagonal parameters of L as ag = (ag1, . . . , ag,g−1)T and a =

(aT2 , . . . ,aTr−1)T . The parameters a are unconstrained, and may use student-t or normal

distribution priors centered at zero in the software. The modified Cholesky decomposition

with the restrictions on D ensure that the simulated covariance matrix values for Σu will be

positive definite (Newton 1988)(Pourahmadi 1999).

3.5.2 bayesGAM: a General Purpose Package for Modeling

A few software packages are currently available to fit semiparametric models. The SemiPar

package (Wand et al. 2005) fits semiparametric models using frequentist techniques from

the nlme package (Pinheiro et al. 2017). The mgcv (Simon Wood 2011) and gamm4 (Simon

Wood and Scheipl 2020) packages fit GAMs using frequentist techniques as well. These

packages are reliable, robust, and computationally efficient for many applications of GAMs.

Traditional Bayesian techniques such MH and Gibbs sampling are also used to fit

GAMs. The R (R Core Team 2017) packages DPPackage (Jara et al. 2011) and BNSP
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(Papageorgiou and Marshall 2020) fit semiparametric models using MH, while Bspmma

(Burr and others 2012) uses Gibbs sampling (Geman and Geman 1984), another traditional

but more restrictive MCMC technique, to fit semiparametric models based on Dirichlet

priors.

Fewer options for fitting generalized additive models are available for HMC. General

purpose HMC software such as Stan (Gelman, Lee, and Guo 2015) and PyMC (Salvatier,

Wiecki, and Fonnesbeck 2016) can be programmed to fit custom models such as semipara-

metric regression. Stan is a BUGS-like (Spiegelhalter et al. 1999) language for probabilistic

Bayesian programming which uses HMC as the principal algorithm for fitting statistical

models. PyMC is based on Python, which is popular in computer science but is typically

less familiar to statisticians. All of these software packages are powerful options to analysts

who have strong technical expertise in the requisite languages and sufficient understanding

of the methodology to translate GAMs to these applications.

The R packages MCMCglmm (Hadfield and others 2010) and brms (Burkner 2017) are

designed to fit multilevel models using MCMC. MCMCglmm uses MH and other traditional

MCMC algorithms to fit these models. brms creates and compiles Stan code based on inputs

provided by the user in R. Analysts can fit GAMs using these packages provided they have

a strong background in the methodology and understand how to translate their models to

Bayesian multilevel models to use the software.

The R package rstanarm uses pre-compiled Stan code to fit a wide variety of GAMs

based on the exponential family of models. The types of models that can be fit using

rstanarm closely match those available in the frequentist gamm4 package. Analysts are

also able to choose from a set of priors that are provided in the software. While rstanarm

provides a wealth of capabilities for fitting GAMs, one feature not present is the ability to fit
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multivariate response GAMs. The flexible and powerful brms package provides the flexibility

to fit many models, including multivariate response models, but requires a compiler to be

build each individual model in Stan before running.

Analysts have powerful, readily available options to fit GAMs using HMC provided

they have sufficiently high technical expertise. To program statistical models with Stan

directly, for example, analysts must also be comfortable with installing and working with C++

compilers on their pc’s or servers. A case can certainly be made that learning to work with

compilers is valuable for statisticians and data analysts. However, not everyone has the time

or inclination to make this time investment, particularly if there is uncertainty whether newer

computational techniques will offer practical benefits over more familiar software. Further,

while the developers of HMC software provide comprehensive documentation on setup and

installation and make themselves readily available for questions, the variety of operating

systems and hardware frequently make installation time-consuming and difficult. Such

challenges will inevitably continue to occur through no fault of the HMC software developers.

For example, the recent macOS release Catalina has presented technical difficulties for

application users and developers alike.

The bayesGAM package is designed to provide an easy-to-use option to fit univariate

and multivariate response GAMs using HMC with few technical burdens. The R functions

in this package use rstan (The Stan Development Team 2020) to call Stan routines that

run the HMC simulations. The Stan code for these models is already translated to C++

and pre-compiled for the user. The programming formulation for models in bayesGAM is

designed to be familiar to statisticians and analysts who fit statistical models in R using

base and contributed packages. Table 3.1 compares the functionality of R packages that use

HMC to fit GAMs.
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Table 3.1: GAM model fitting functionality from R packages
Feature rstanarm

stan_gamm4
rstanarm
stan_mvmer

brms walker bayesGAM

Parametric models y y y y y
Nonparametric models y n y n y
Pre-compiled Stan code y y n n y
Multivariate GLM y y y n y
Multivariate nonpara-
metric models

n n y n y

Autoregressive models n n n y y

As will be detailed later, the decomposition and parameterization of the covariance

matrix for the multivariate response is structured to maximize flexibility in prior specification

and simulation. This approach enables modeling unstructured covariance matrices, which

is often difficult to fit using available software packages due to the high dimensionality.

Modern Bayesian graphics from the bayesplot package (Gabry and Mahr 2016) are directly

integrated with the software, in addition to custom plotting functions for multivariate

responses and nonparametric associations. My hope is that this software helps analysts

with their current models and promotes the use of HMC for more general adoption in the

statistical community. This package along with source code with examples are available on

CRAN at https://cran.r-project.org/web/packages/bayesGAM/index.html.

The main function in the bayesGAM package is also called bayesGAM. Similar to

many other R packages, this function supports model specification via formulas, denoted

with the dependent variable(s) on the left-hand side and the independent variable(s) on the

right hand side, separated by ~. An optional random intercept model can be specified with

the random argument, similar to the nlme package (Pinheiro et al. 2017).

R> bayesGAM <- function (formula, random = NULL,
+ family = gaussian, data, offset,
+ beta = list(), eps = list(), lambda = list(),
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+ spcontrol = list(qr = TRUE, mvindep=FALSE, ...),
+ method = "bayesGAMfit", ...)

Multivariate response models can be specified using the base cbind function, with

each of the dependent variable names separated by commas. This specification is all that

is needed for the software to recognize a multivariate model. When a random intercept is

specified, the covariance between the multiple responses per subject is automatically modeled.

Simulated values for the covariance matrix and its corresponding correlation matrix are

stored in the results.

3.5.2.1 family: Currently supported distributions and link functions for the

response

Currently, this software includes the capability to fit some of the most common of the

exponential family of distributions: gaussian, binomial, and poisson. The link functions

for these distributions are the same as those supported in the family function in base R

(Agresti 2015) (Venables and Ripley 2002).

• Gaussian family supports the identity, log, and identity link functions.

• Binomial family supports logistic, normal, and cauchy cumulative distribution functions,

labeled logit, probit, and cauchit, respectively.

• Poisson family supports the log, identity, and sqrt link functions

3.5.2.2 np: Nonparametric smoothing function

Smoothing functions can be specified by the np function. For univariate smoothing, truncated

cubic polynomial basis functions are the default with automated knot selection. The user

may optionally set a different degree for truncated polynomial basis functions or TPS basis

functions as desired. Automated knot selection is available as the default option in bayesGAM.
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The automated knot selection can be overridden by the user by providing the number of

knots, in which case the software automatically selects the knots based on quantiles of the

distribution. Alternatively, the user may provide a numeric vector of knot locations for

univariate smoothing.

Bivariate smoothing based on thin-plate splines is employed when two variables are

passed to np. By default, bivariate function knots are automatically selected by the software.

The user may override the number of knots in the bivariate case by parameter.

3.5.2.3 L: Create lagged variables

A convenience function L is provided with the package to specify autoregressive models

directly in the formula. Multiple lags can be created at once as specified by the user.

This function assumes that the data is pre-sorted in ascending time order. Optionally, lag

functions can be applied at a group level (e.g., for each subject id). To use this feature, the

data must be sorted by id first, then time. The design matrices are automatically adjusted

to remove cases with missing values after applying the L function.

3.5.2.4 prior: Specifying distributions for the priors

Prior distributions are specified for the model parameters β, ε, λ, and a with function

parameters beta, eps, lambda, and a, respectively. The β parameters are the fixed effects

parameters. The ε parameter(s) are for the error terms of gaussian response models. The λ

parameter(s) are included for models with nonparametric smoothing functions or random

intercepts. When both random intercepts and v nonparametric smoothing are specified in

univariate response models, the first parameter λ1 ∈ λ applies to random intercepts and

all other λ2, ..., λv+1 ∈ λ apply to the smoothing function. In multivariate response models,
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the first parameters in λ are applied to λ̃1, . . . , λ̃r ∈ λ, while all remaining parameters

λr+1, . . . , λv+r ∈ λ are applied to the nonparametric smoothing functions.

The prior distributions that are currently available are the normal and central (2-

parameter) student-t distributions, specified with normal and st inputs, respectively. For β

and a, these priors assume support of R. The prior distributions for ε are λ automatically

constrained to the support of (0,∞), corresponding to half-normal and half-t distributions.

These constraints are passed to Stan, which automatically handles parameter transformations

required for HMC. When prior distributions are not specified explicitly, bayesGAM uses vague

normal priors for β and a, and student-t priors for ε and λ.

3.5.2.5 Additional controls for fitting GAMs

Special controls are currently provided for QR decomposition via a logical functional

parameter set in a list passed spcontrol. To facilitate efficient simulation, QR decomposition

is used for the design matrices X and Z when QR = TRUE. Since the computational efficiency

gained by using QR decomposition for HMC can be significant, QR decomposition is

the default setting for bayesGAM. The method for fitting models using bayesGAM is called

bayesGAMfit, which prepares the data for model fitting using the R interface to Stan,

rstan (The Stan Development Team 2020). For multivariate response models with random

intercepts, mvindep determines whether to model the responses with an unconstrained

covariance Σu, the default FALSE, or a diagonal covariance by setting mvindep=TRUE.

Additional parameters can be passed to the rstan::sampling function through the

... argument in bayesGAM. This can be used to fine tune technical parameters used in Stan,

such as those supporting the No U-turn Sampler (NUTS) algorithm (Hoffman and Gelman

2014). For example, specifying
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control=list(adapt_delta=0.98), cores=4

in bayesGAM will pass both the control list and the adapt_delta parameters to

rstan::sampling, as well as the number of CPU cores for parallel processing.

The default summary method displays posterior quantiles, R̂ statistics, and effective

sample sizes for each of the simulated parameters based on the method in rstan (The Stan

Development Team 2020). The prior distributions used to fit the model can be displayed

via the showPrior function.

The default plot method for objects created by bayesGAM uses functionality from

ggplot2 (Wickham 2016). The mean response is plotted against the independent variable(s),

with smoothing automatically displayed for nonparametric functions. Credible intervals are

also displayed based on a subsample of the MCMC results. In the bivariate smoothing case,

a contour plot is displayed for each dependent variable. Additional plotting is available

through the plot functions available for stanfit objects. Available plots include posterior

intervals, trace plots, histograms, R̂ statistics, effective sample size, and autocorrelation.

Functions from the bayesplot package (Gabry and Mahr 2016) can also be used for objects

created by bayesGAM.

3.6 Fitting a Bivariate Response GAM Using HMC

This example models the joint distribution of diastolic and systolic blood pressure of children

and young adults. The modeling of the covariance matrix of the joint response Σb is

unconstrained, such that the correlation of the response variables can be evaluated. The

model specification for this data is

DBPij = Udi + βd0 + βd1SexMi + βd2RaceWi + fd(WEIGHTij , ageij) + εdij

SBPij = U si + βs0 + βs1SexMi + βs2RaceWi + f s(WEIGHTij , ageij) + εsij
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for observations i = 1, ...,m subjects and j = 1, ..., nj observations per subject. The

multivariate response is indicated using the base R function cbind. The random intercepts

are generated from the subject ID’s. Note that the random intercepts must be specified as

factors. Normal priors are selected for β, half-normal priors are set for λ, and half-t priors for

ε. The spcontrol parameter mvindep is set to FALSE to indicate that Σb is unconstrained.

R> fbp_corr <- bayesGAM(cbind(dias, sys) ~
+ SexM + RaceW + np(WEIGHT, age),
+ random = ~ factor(ID),
+ data = bpdatakeep,
+ beta = normal(c(0, 50)),
+ lambda = normal(c(0, 1)),
+ eps = st(c(4, 0, 3)),
+ spcontrol=list(mvindep = FALSE),
+ family = "gaussian",
+ cores=4, chains=4, iter=2000)

A normal prior is specified for β, half-normal for λ, and half-t for ε. The prior for a

is a vague normal prior default from the software. A summary view is displayed showing the

quantiles of the posterior distribution of the parameters. The R̂ statistic is shown for each

of the parameters are close to 1 for all parameters indicating that the chains mixed well.

R> summary(fbp_corr, probs=c(0.025, 0.50, 0.975))

Inference for Stan model: multresponse_continuous.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat
eps[1] 7.87 0.01 0.30 7.31 7.87 8.50 3224 1
eps[2] 7.59 0.01 0.29 7.06 7.57 8.19 3317 1
a[1] 0.58 0.00 0.20 0.21 0.58 0.98 1590 1
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beta_(Intercept)[1] 55.43 0.10 4.28 46.19 55.49 64.57 1703 1
beta_SexM[1] -0.40 0.05 1.64 -3.70 0.71 2.83 1168 1
beta_RaceW[1] 1.20 0.05 1.67 -2.06 1.25 4.52 1362 1
beta_WEIGHT[1] 0.19 0.00 0.05 0.09 0.18 0.28 2492 1
beta_age[1] -0.25 0.00 0.21 -0.67 -0.25 0.17 2940 1
beta_(Intercept)[2] 89.73 0.18 5.25 77.95 90.08 99.52 826 1
beta_SexM[2] 1.07 0.05 1.72 -2.30 1.05 4.38 1411 1
beta_RaceW[2] 0.41 0.05 1.70 -2.86 0.40 3.90 1254 1
beta_WEIGHT[2] 0.39 0.00 0.05 0.29 0.39 0.48 2070 1
beta_age[2] -0.59 0.00 0.21 -0.99 -0.59 -0.18 2588 1

Samples were drawn using NUTS(diag_e) at Tue Mar 9 20:29:52 2021.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

The nonparametric relationship of WEIGHT and age is displayed using the default

plot method.

R> plot(fbp_corr)

Figure 3.1: Contour plot of the bivariate response of diastolic and systolic blood pressure
by bayesGAM
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Figure 3.1 shows that blood pressure has a nonlinear positive association with weight

and a slight negative association with age.

The correlation of diastolic and systolic blood pressure is 0.56, similar to the results

from H. Liu, Tu, and others (2012), as shown in Figure 3.2.

Figure 3.2: Correlation of the bivariate response of diastolic and systolic blood pressure to
weight and age

3.7 Extending the Application of HMC in Statistics

This research develops a Bayesian computational framework for statisticians to fit standard

and non-standard statistical models. This framework includes a comprehensive description of

HMC from a statistical point of view, a process to fit a wide variety of models, and the tools

to use these methods. The benefit of this research lies in the flexibility and computational

efficiency of this framework when applied to complex models with high-dimensional data.
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An example application of this framework was applied to fit a non-standard multiple

response GAM. This approach was applied to a real biostatistical application of a study on

blood pressure. The results of this study and other applications demonstrate the power and

validity of these computational methods. Numerous opportunities for expanded applications

of this framework to grow as methodological research continues to produce increasingly

complex statistical models.

While multiple response GAM’s have a relatively narrow application, the methods

developed in this research are widely applicable to many types of statistical models. The

application of this Bayesian framework to multiple response GAM’s provides strategies for

estimating correlating parameters, setting effective priors, and parameterization considera-

tions. These strategies offer contributions to statistical computation beyond fitting a single

class of non-standard models. As the design and development of statistical models continue

to evolve, the HMC algorithm and methods to apply HMC effectively will be required to

support the rapidly evolving field of biostatistical research.
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