
 

 

NMDAR-PSD95-NNOS AXIS-MEDIATED MOLECULAR MECHANISMS IN THE 

BASOLATERAL AMYGDALA UNDERLYING FEAR CONSOLIDATION 

 

 

 

 

 

 

 

Jheel Patel 

 

 

 

 

 

 

 

Submitted to the faculty of the University Graduate School 

in partial fulfillment of the requirements  

for the degree 

 Doctor of Philosophy    

in the Program of Medical Neuroscience,  

Indiana University 

 

May 2021 

  



 ii

Accepted by the Graduate Faculty of Indiana University, in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy. 

 

 

Doctoral Committee 

 

 

 

______________________________________ 

Patrick Sheets, Ph.D., Chair 

 

 

 

 

______________________________________ 

Anantha Shekhar, M.D., Ph.D. 

 

 

April 5, 2021 

 

______________________________________ 

David McKinzie, Ph.D. 

 

 

 

 

______________________________________ 

Bryan Yamamoto, Ph.D. 

 

 

 

 

______________________________________ 

Yunlong Liu, Ph.D. 

 

 

  



 iii

  

 

 

 

 

 

 

 

 

© 2021  

Jheel Patel 

 

  



 iv

DEDICATION 

To my loving family and all the women who paved the path for me. 

 

  



 v

ACKNOWLEDGEMENT  

I would like to thank my mentor, Dr. Anantha Shekhar, for the opportunity to do 

my dissertation work in his lab. I appreciate the time he took out of his busy schedule to 

mentor and guide me, share ideas, and train me to be a better scientist. I am grateful for 

the opportunity to learn from him.  

I also want to thank my committee members, Dr. Patrick Sheets, Dr. David 

McKinzie, Dr. Bryan Yamamoto, and Dr. Yunlong Liu. I always came out of committee 

meetings with a swarm of ideas and next steps, and that is thanks to my committee. They 

provided invaluable insights into my projects, gave useful feedback, and pushed me to be 

a greater scientist.  

I want to thank the many lab members who supported and encouraged me. To Dr. 

Andrei Molosh, for offering his mentorship and expertise towards my project. To Dr. Jodi 

Lukkes for her mentorship, constant support, and encouragement when the going got 

tough. To my lab members, present and past, for making lab an enjoyable and exciting 

place to be – Ping Li, Melissa Haulcomb, Erik Dustrude, Cris Bernabe, Izabela Caliman, 

Aline Abreu, Hayley Drozd, Sotirios Karathanasis, Stephanie Fitz, Janet Eng, Sreeparna 

Majumdar, Katie Andrews, Betsy Lungwitz, Amy Dietrich, and Andrew Burke. Every 

single one has contributed significantly to my journey in grad school. Specifically, thank 

you to Ping for laying the groundwork for my dissertation work, and for being a very 

smart, very funny, always positive person to talk to. A tremendous thank you to Melissa 

and Erik for not only training me and helping collect data for this project, but also 

teaching me how to be a fun, empathetic, and effective mentor.  



 vi

I want to thank the Stark Neurosciences Research Institute Administrative team, 

Building Operations team, and leadership for their support and assistance. Without them, 

my job would be a lot harder and more stressful, and I am grateful for their hard work 

that made SNRI a great place for my graduate research.  

I am also grateful for Dr. Stephanie Florio and Dr. Yvonne Lai, who are both 

amazing mentors and experts in their fields. I consider both of them my role models, and 

I am very excited to be working with them in this next year. 

I would like to thank Mark Kesling and the DaVinci Pursuit, for granting me an 

opportunity to bring together the two things that I love most: art and science. I am in awe 

of the work that dVP does in the community. I have been enriched by my experiences 

thus far, and I am excited to contribute and create much more in the future.  

I want to thank my friends who were my loudest cheerleaders in this journey and 

who made my heart full every single day. To the very best IBMG cohort, I doubt I would 

have made it past the first year of grad school had it not been for the funniest, most easy-

going, and supportive group of people I was lucky enough to enter grad school with. I am 

thankful for my friends within the Medical Neuroscience program, specifically David 

Haggerty and Andy Tsai, for their support and friendship. To my best friends, Karol 

Santiago and Kaitlynn McShea. Words cannot describe how lucky I am to have Karol 

and Kaitlynn by me in this journey; they have brought me joy, laughter, and fun travel 

stories, and for that, I am grateful.  

I would like to thank Dr. Stephanie Cunningham, my therapist, for being a big 

part of the reason why I have been able to achieve as much as I have in grad school.  



 vii

Finally, I want to thank my family. To Mansi, Krishna, and Ranen – the most 

supportive and loving siblings I could have asked for, who know just the right things to 

say, the right gifts to give, and the right food to cook for me. To my mother, Daina, my 

hero. I would not be the person I am today without her, her wisdom, the stories she shares 

with me, and the love she gives me. And finally, to my sweet nephew, Arian, who was 

born shortly after I began grad school, and so, has grown with me as much as I have 

grown with him. He has been the best thing about the past 4 years, and I am thankful for 

him, his laughter, and his love.  

 

 

  



 viii

Jheel Patel 

NMDAR-PSD95-NNOS AXIS-MEDIATED MOLECULAR MECHANISMS IN THE 

BASOLATERAL AMYGDALA UNDERLYING FEAR CONSOLIDATION 

Fear is an evolutionarily conserved response that can facilitate avoidance learning 

and promote survival, but excessive and persistent fear responses lead to development of 

phobias, generalized fear, and post-traumatic stress disorder. The primary goal of 

experiments in this dissertation is to determine the molecular mechanisms underlying 

formation of fear memories. The acquisition and consolidation of fear is dependent upon 

activation of N-methyl-D-aspartic acid receptors (NMDARs). Stimulation of NMDARs 

recruits neuronal nitric oxide synthase (nNOS) to the synaptic scaffolding protein, 

postsynaptic density protein 95 (PSD95), to produce nitric oxide (NO). Our laboratory 

has previously shown that disruption of the PSD95-nNOS interaction attenuates fear 

consolidation and impairs long-term potentiation of basolateral amygdala (BLA) neurons 

in a rodent model of auditory fear conditioning. However, the molecular mechanisms by 

which disrupting the PSD95-nNOS interaction attenuates fear consolidation are not well 

understood.  

Here, we used pharmacological and genetic approaches to study the effects 

underlying nNOS activity in the BLA during fear consolidation. During the early stage of 

fear memory consolidation (4-6 hours after fear acquisition), we observed increased α-

Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated 

current and synaptosomal AMPAR GluR1 subunit trafficking in the BLA; while during 

the late stage (24h after fear acquisition), we detected a combination of enhanced 

AMPAR- and NMDAR-mediated currents, increased synaptosomal NMDAR NR2B 



 ix

subunit expression, and phosphorylation of synaptosomal AMPAR GluR1 and NMDAR 

NR2B subunits in the BLA. Importantly, we showed that pharmacological and genetic 

blockade of nNOS activity inhibits all of these glutamatergic synaptic plasticity changes 

in the BLA. Additionally, we discovered whole transcriptome changes in the BLA 

following fear consolidation. In the group with pharmacological inhibition of nNOS 

activity, however, gene expression levels resembled control-like levels. We also observed 

altered expression of multiple genes and identified the insulin-like growth factor system, 

D3/D4 dopamine receptor binding, and cGMP effects as key pathways underlying nNOS-

mediated consolidation of fear.  

Our results reveal nNOS-mediated, sequentially orchestrated synaptic plasticity 

changes facilitated by AMPA and NMDA receptors in the BLA during early and late 

stages of fear memory consolidation. We also report novel genetic targets and pathways 

in the BLA underlying NMDAR-PSD95-nNOS axis-mediated formation of fear 

memories. 

 

Patrick Sheets, Ph.D., Chair 
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CHAPTER 1 

Introduction 

“Nothing in life is to be feared, it is only to be understood. Now is the time 

to understand more, so that we may fear less.”  

– Marie Curie 

1.1 Fear  

1.1.1 Persistent fear as a maladaptive response  

“Fear” is a complex, emotional response to a danger or stressor that may cause 

physical or psychological harm. ‘Fear responses’ serve as an essential survival 

mechanism for all sentient beings, protecting them from dangers such as predators or 

environmental catastrophes. In response to such immediate threats, most mammalian 

species demonstrate characteristic behaviors – autonomic arousal, cognitive vigilance, 

defensive behaviors, etc. – that ultimately aim to protect themselves and promote 

survival. Such fear responses are considered innate and conserved across species as an 

evolutionarily necessary means to survival.  

However, fear responses that persist beyond exposure to a threat or traumatic 

experience can become maladaptive. In fact, sustained and recurrent fear responses can 

result in further stress and anxiety and lead to the development of neuropsychiatric 

disorders.  

The earliest records of trauma-based psychiatric disorders come from 

Mesopotamian texts dating back to 609 BC1. These ancient texts describe hallucinations, 

sleep problems, and altered moods in soldiers who returned from battle. Today, these 

symptoms would be referred to as post-traumatic stress disorder (PTSD), a fear disorder 

that results from the inappropriate processing of traumatic experiences2. 
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Over the years, the pathology of fear disorders has been studied extensively. 

Numerous types of triggers, like sexual assault, combat, accidents, or abuse, can lead to 

PTSD with symptoms such as insomnia, hypervigilance, emotional numbness, self-

isolation, anxiety, etc. Due to the complex pathophysiology of PTSD, treatment options 

remain limited and often target the most severe symptoms, rather than the root causes of 

the disorder3. Thus, there is a dire need to study the mechanisms and neurobiology 

underlying fear disorders, in order to develop more effective treatments and prevention 

strategies. Fortunately, as an innate and conserved response, fear has neural substrates 

that have been characterized in most laboratory animals and can be further studied using 

preclinical models of fear learning.  

1.1.2 Preclinical models of fear learning 

A commonly used preclinical model of fear paradigm is Pavlovian fear 

conditioning. Pavlovian fear conditioning results in associative memory formation using 

two key stimuli: conditioned and unconditioned stimuli (CS and US, respectively)4,5. A 

CS is a neutral stimulus, such an auditory tone or light; while a US is an aversive 

stimulus that elicits a motivational response (e.g., a startle response, vocalizations; also 

known as the conditioned response (CR)) such as a foot shock4,5. In the fear acquisition 

stage of Pavlovian fear conditioning, the animal is exposed to a CS-US pairing, such as 

an auditory tone that co-terminates with a mild foot shock. Initially, the tone elicits no 

response. However, with multiple tone-foot shock presentations, the neural mechanisms 

associating the tone with the impending foot shock is strengthened, such that when the 

tone alone is presented at a later time, the animal displays a fear response6,7. Thus, 
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Pavlovian fear conditioning is a convenient and biologically relevant paradigm to study 

the neural mechanisms underlying learned fear behaviors. 

1.1.3 Fear memory consolidation 

After fear acquisition, the short-term fear association is labile. It is stabilized over a 

period of time to generate long-term fear memory in a process known as fear 

consolidation8-10. Fear consolidation occurs within hours after fear acquisition, and 

multiple molecular and cellular processes promote the strengthening of the memory at the 

synaptic and behavioral level9-11. Specifically, fear consolidation requires gene 

transcription and protein synthesis for long-term memory stabilization12,13. Additionally, 

a series of synaptic events triggered by initial fear learning results in a persistent 

strengthening of the synapses at the site of learning (a process known as long-term 

potentiation, or LTP), which further strengthens the neural network that is involved in 

fear memory consolidation14-16. 

1.2 Neural Substrates of Fear Consolidation 

The neural substrates mediating fear learning and fear memory formation are 

well-defined and include, but are not limited to, the amygdala, hippocampus, and medial 

prefrontal cortex (mPFC). In human and animal models of fear learning, the amygdala is 

a focal node involved in integration of fear generating sensory stimuli and emotional 

responses10,17-22.  

The amygdala is a limbic structure and a vital part of the neural network 

responsible for emotional learning23,24. The amygdala can be divided into multiple sub-

structures, such as the central nucleus of the amygdala (CeA) and the basolateral 

amygdala (BLA), which can be further divided into the lateral amygdala (LA) and the 
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basal amygdala (BA). The BLA is critical for the integration of threat sensory stimuli and 

fear responses and has extensive and appropriate afferent and efferent connections. 

Within the fear neurocircuitry, important afferent projections to the BLA include 

excitatory projections from the thalamus, mPFC, and hippocampus25. The BLA also 

sends efferent projections to the thalamus, mPFC, and hippocampus, in addition to 

several other regions, such as the CeA, ventral tegmental area (VTA), dorsal raphe, 

nucleus accumbens, and locus coeruleus26. This information is summarized in Figure 1.  

The neuronal population in the BLA is amorphously distributed, and it contains 

primarily glutamatergic pyramidal neurons (~80%) with a subset (~20%) of GABAergic 

(γ-aminobutyric acid) interneurons27,28.  
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Figure 1. Afferent and efferent projections of the basal and lateral amygdala. Black 

arrows indicate excitatory projections; red arrows with a blunted arrowhead represent 

inhibitory projections; green lines represent neuromodulatory projections (serotonergic, 

dopaminergic, etc.). BA = basal amygdala; LA = lateral amygdala; CeA = central nucleus 

of amygdala; DR = Dorsal Raphe; LC = locus coeruleus; NAc = nucleus accumbens; 

PFC = prefrontal cortex; VTA = ventral tegmental area. 
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During a fearful experience, initial sensory inputs, including the CS and US, converge 

on the BLA via multiple relays including from the LA to BA. Auditory inputs travel 

through the thalamocortical tract29. Contextual information is projected from the 

hippocampus7. Sensory input from the foot shock converges on the BLA through the 

spinothalamic tract30. The BLA then sends excitatory projections to the CeA, which in 

turn sends inhibitory GABAergic projections to the hypothalamus and brain stem regions, 

eliciting fearful behaviors, such as flight, freezing, and autonomic responses10,31,32. The 

BLA also sends excitatory projections to the intercalated cells (ITC), which are a mass of 

GABAergic neurons that act as an inhibitory gating system within the amygdala33. 

Specifically, ITCs send inhibitory projections to the CeA, thereby regulating CeA 

output34. In Figure 2, the amygdalar circuit for fear responses is summarized, in addition 

to a graphical representation of specific interneurons in the BLA, which is discussed in 

more detail in Section 1.3.4.2.  
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Figure 2. Amygdalar circuitry in fear responses. Conditioned, like a musical tone, and 

unconditioned stimuli, such as a foot shock, converge on the LA, which then projects to 

the ITCd and BA. The BA sends excitatory projects to the CeM, which projects to other 

brain regions eventually resulting in a conditioned response, such as freezing. The ITCs 

send inhibitory projections to the CeL and CeM, thereby serving as an inhibitory gating 

mechanism in the amygdalar circuitry. LA = lateral amygdala; BA = basal amygdala; 

ITCd = intercalated cells dorsal; ITCv = intercalated cells ventral; CeL = central nucleus 

of amygdala, lateral; CeM = central nucleus of amygdala, medial; nNOS = neuronal nitric 

oxide synthase; NPY = neuropeptide Y; SOM = somatostatin; PV = parvalbumin; CR = 

calretinin. 

 

  



 

8 

In the Pavlovian fear conditioning paradigm, the BLA is believed to encode multiple 

presentations of the CS-US pairing as an association generator35-37. In fact, studies 

lesioning the BLA show that it is a necessary region for re-expression of conditioned fear 

responses38. Selective inactivation of the BLA immediately after classical fear 

conditioning resulted in poor fear retention 24 hours after training, implicating the BLA 

as a critical region for fear memory consolidation39. Significant evidence demonstrates, 

overall, that the BLA is key in fear memory consolidation18,40-43. Furthermore, studies 

confirm that fear consolidation is a coordinated process that is dependent on synchronous 

N-methyl-D-aspartate receptor (NMDAR)-mediated LTP and protein synthesis in the 

amygdala; blocking either can impair fear consolidation44-46. Thus, synaptic plasticity and 

molecular signaling downstream of NMDAR activation within the BLA play an 

important role in strengthening the CS-US association, leading to fear memory 

consolidation. This thesis is focused on the BLA as an important modulator of fear 

memory consolidation and its role in regulating the mechanisms underlying fear 

consolidation. 

1.3 Neurobiology of Fear Consolidation 

1.3.1 Glutamate signaling 

Glutamate is an amino acid and is the primary excitatory neurotransmitter in the 

central nervous system (CNS). It is stored within vesicles localized to the presynaptic 

terminals of neurons47. Upon glutamatergic afferent signaling, action potential 

propagation activates glutamatergic terminals, the fusion of glutamate-containing vesicles 

to the synaptic membrane, and subsequent extracellular glutamate release48,49. Glutamate 

released into the synaptic cleft can then bind to postsynaptic glutamate receptors. 
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Activation of postsynaptic glutamate receptors generates excitatory postsynaptic currents 

(EPSCs), which reflect depolarization of the postsynaptic membrane50,51. In the BLA 

during fear conditioning, the activation of postsynaptic glutamate receptors and 

subsequent synaptic activity leads to the strengthening of synapses (i.e., LTP), which 

further fortifies the CS-US association48,52,53. 

There are two major classes of glutamate receptors that glutamate can bind to: 

metabotropic and ionotropic. Metabotropic glutamate receptors are G-protein coupled 

receptors that activate intracellular signal transduction54. Ionotropic glutamate receptors, 

on the other hand, are ligand-gated ion channels and conduct fast excitatory 

neurotransmission54. 

Of relevance to this project, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid receptors (AMPARs) and NMDARs are tetrameric ionotropic glutamate receptors 

that conduct excitatory synaptic transmission55,56. AMPARs conduct fast synaptic 

transmission; in contrast, NMDARs generate slower but longer-lasting 

neurotransmission57-59. Both receptors are expressed abundantly in the BLA and play 

distinct roles in fear memory formation and long-term memory storage within the BLA60-

63.  

1.3.2 NMDAR signaling  

NMDARs are ionotropic glutamate receptor that serve as coincidence 

detectors64,65. Unlike AMPARs, which are activated by glutamate binding, NMDARs 

contain an extracellular Mg2+ block within the channel at basal conditions; in order to 

remove the Mg2+ ions, there must be presynaptic glutamate release and sufficient 

postsynaptic membrane depolarization, which is mediated by AMPAR activity64-68. Once 
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open, NMDARs are permeable to Na+, K+, and Ca2+ 54. Increased ion flow via NMDARs 

allows for the activation of intracellular signaling downstream of NMDARs66,69,70. Due to 

their slow activation and deactivation, NMDARs are considered important for the long-

lasting strengthening of synapses68,71,72. In the BLA, NMDAR-dependent LTP 

contributes to the formation of fear memories10,53,73-75.  

NMDARs are tetramers that are composed of three subunits, NR1, NR2, and 

NR376-78. All NMDARs contain two obligatory NR1 subunits and two NR2 or NR3 

subunits, although NR3 is not commonly found within forebrain regions79-81. The NR2B 

subunit of NMDARs is especially important for LTP that contributes to associative 

learning82-85. Additionally, blocking NR2B-containing NMDARs within the BLA can 

impair cued fear acquisition86. However, the role of NR2B and NR2B-mediated 

intracellular signaling in fear memory consolidation is not clearly elucidated.  

Multiple phosphorylation sites on NR2B have been similarly reported to be 

important for NMDAR function. Phosphorylation at Ser1303 by calcium/calmodulin-

dependent protein kinase II (CaMKII) and protein kinase C (PKC) enhances Ca2+ influx 

without affecting overall expression levels of NR2B, suggesting that the primary role of 

p-Ser1303 in modulating NMDAR synaptic activity is to enhance Ca2+ entry85,87,88. 

Phosphorylation at Tyr1472, which occurs via Fyn kinase activation, increases after LTP 

and may contribute to normal fear learning by regulating appropriate localization of 

NMDARs at synapses89,90. Finally, the phosphorylation of Ser1480 by casein kinase 2 

(CK2) maintains NR2B at extrasynaptic sites. Upon dephosphorylation of Ser1480, 

NR2B surface expression is increased91-93. This suggests that NMDARs phosphorylated 
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at Ser1480 serve as an extrasynaptic pool of NMDARs that can be recruited to the 

synapse in an activity-dependent manner93. 

1.3.3 AMPAR signaling 

As glutamate is released from presynaptic terminals, it can bind to and open 

AMPARs94,95. Glutamate binding to AMPARs allows for Na+ influx and K+ efflux; this 

contributes to fast and transient synaptic transmission96. AMPARs are also selectively 

permeable to Ca2+, depending on the AMPAR subunit composition96. AMPARs are 

composed of four subunits: GluR1, GluR2, GluR3, and Glur497,98. Of these subunits, the 

presence or absence of GluR2 determines the Ca2+ permeability of the AMPAR. GluR2-

containing AMPARs are Ca2+-impermeable, while GluR2-lacking AMPARs are Ca2+-

permeable96,99. As a result, GluR2-lacking AMPARs have higher channel conductance as 

they allow for intracellular Ca2+ flow 100.  

In the BLA, specifically, there is evidence for the importance of GluR1 in fear 

learning. Acquisition of auditory fear conditioning and LTP in the BLA is disrupted in 

GluR1-/- knockout mice101. Additionally, fear conditioning results in an increase in 

GluR1-containing AMPARs in the amygdala, which is reversed with D-cycloserine, a 

partial NMDAR agonist, suggesting that NMDAR and GluR1-containing AMPAR 

activity during fear conditioning are linked in the BLA102.  

Importantly, in addition to increasing membrane trafficking and the expression of 

GluR1 in the BLA, phosphorylation of GluR1 regulates AMPAR function, similar to 

NMDARs. There are two essential sites on GluR1 – Ser831 and Ser845 – that are 

reported to be involved in fear memory-specific AMPAR function. CaMKII and PKC 

phosphorylate AMPARs at Ser831, and protein kinase A (PKA) and cGMP-dependent 
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protein kinase (PKG) phosphorylate AMPARs at Ser845103-105. The phosphorylation of 

AMPARs at Ser831 is important for increased AMPAR channel conductance106; whereas 

phosphorylation at Ser845 increases AMPAR open time probability, thereby potentiating 

AMPAR-mediated current107. Phosphorylation of both Ser831 and Ser845 is important 

for modulating LTP in fear learning108-110. 

Figure 3 summarizes the information above, focusing on regulation of AMPARs 

and NMDARs via key intracellular signaling cascades, including signaling downstream 

of the NMDAR-PSD95-nNOS axis.  
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Figure 3. Intracellular signaling cascade downstream of NMDAR activation in an 

nNOS-expressing cell. Intracellular Ca2+ influx activates PKC and CaMKII, which then 

activates CKII. The scaffolding of PSD95 and nNOS to the NMDARs, and subsequent 

Ca2+ influx also activates production of nNOS, which leads to a cascade resulting in 

PKG activation. Both CamKII and PKC phosphorylate AMPARs on Serine 831 and 

NMDARs on Serine 1303, such that it positively regulates their insertion to the 

membrane surface. CKII phosphorylates NMDARs on Serine 1480, and PKG 

phosphorylates AMPARs on Serine 845. Lastly, all signaling pathways lead to 

transcriptional regulation, gene expression, and protein synthesis. CaMKII = 

calcium/calmodulin-dependent protein kinase II; PKC = protein kinase C; CKII = casein 
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kinase II; PSD95 = postsynaptic density protein 95; nNOS = neuronal nitric oxide 

synthase; sGC = soluble guanylyl cyclase; cGMP = cyclic guanosine monophosphate; 

PKG = cGMP-dependent protein kinase; CREB = cAMP-response element binding 

protein. 
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1.3.4 NMDAR-PSD95-nNOS axis 

1.3.4.1 PSD95 structure & function 

The function of AMPARs and NMDARs are linked in part due to intracellular 

signaling that includes multiple proximal molecules within the synapse where AMPARs 

and NMDARs are located. These dense regions, referred to as the post-synaptic density 

(PSD), are compartments localized to the dendritic spines of excitatory synapses and are 

a central region for signal transduction events111. The PSD can contain receptors, 

scaffolding proteins, and signaling proteins, and these proteins are optimally organized to 

form complexes that stabilize ion channels and receptors at the synapse and further 

recruit and activate downstream signaling molecules.  

An important scaffolding protein within the PSD is PSD95, a 95 kDa member of 

the membrane-associated guanylate kinase (MAGUK) family112. PSD95 binds, stabilizes, 

and traffics AMPARs and NMDARs and, upon receptor binding, can also recruit multiple 

signaling molecules to the surface membrane and close to the channel pores113-116. PSD95 

is composed of three PDZ domains, a Src homology 3 domain, and a guanylate kinase 

domain that has no catalytic activity112,117. All PSD95 domains promote protein-protein 

interaction and thus mediate the assembly of protein complexes at the synapse117-119.  

PSD95 is abundant in the forebrain120. The synaptic functions mediating fear 

memories are dynamically modulated by PSD95. Studies show that PSD95 localizes 

NMDARs to the synapse and inhibits their internalization121,122. Additionally, the loss of 

PSD95 in synapses leads to diminished synaptic AMPARs, impaired AMPAR-mediated 

transmission, long-term depression, and decreased dendritic spines123-128. Multiple 

behavioral studies in PSD95-mutant models also demonstrate deficits in spatial memory 
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tasks, anxiety-like behavior, hypoactivity, and fear learning129,130. Thus, by its regulation 

of synaptic transmission, PSD95 plays an important role in learning and memory. 

1.3.4.2 nNOS structure & function 

Nitric oxide synthase (NOS) is an enzyme that catalyzes the production of L-

citrulline and nitric oxide (NO) from L-arginine and oxygen131,132. There are three distinct 

NOS isoforms, with 51-60% sequence homology in humans: neuronal NOS (nNOS), 

endothelial NOS (eNOS), and inducible NOS (iNOS)133. All NOS isoforms contain an N-

terminal oxygenase domain and a C-terminal reductase domain and are 

homodimeric134,135. The oxygenase domain can bind iron protoporphyrin IX (heme), 

tetrahydrobiopterin (BH4), L-arginine, and oxygen136. The reductase domain can bind 

flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and NADPH132,136. 

Separating these two domains is a calmodulin (CaM) binding domain, which serves as a 

Ca2+ sensor137,138.  

While all isoforms are expressed in the CNS, they are not uniformly distributed. 

nNOS is primarily found in neurons and astrocytes139,140. iNOS is expressed in astrocytes 

and microglia during inflammation141,142, and eNOS is found in astrocytes and vascular 

endothelial cells143,144.  

The research presented in this thesis focuses on the nNOS isoform, which is a 160 

kDa constitutively expressed enzyme145. Unlike eNOS and iNOS, nNOS contains a PDZ 

domain at the N-terminus, which interacts with other PDZ-containing proteins, such as 

PSD95146. Binding to PSD95 via the PDZ-PDZ domain interaction localizes nNOS to the 

cellular membrane147. Moreover, nNOS activity is Ca2+-dependent. With elevated 

intracellular Ca2+ levels, Ca2+/CaM binds to nNOS, which facilitates the production of 
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NO148. Thus, the interaction between PSD95 and nNOS is critical for activation of nNOS, 

as evident from numerous studies that show that blocking this interaction disrupts the 

enzymatic activity of nNOS149-151.  

The production of NO also requires nNOS homodimerization, which is dependent 

on the binding of BH4, heme, and L-arginine at the oxygenase domain132. Meanwhile, 

NADPH in the reductase domain reduces FAD, which shuttles electrons to FMN132. Once 

CaM binds nNOS, a conformational change allows for electron transfer from FMN on 

one nNOS monomer’s reductase domain to the heme on the oxygenase domain of the 

other nNOS monomer152,153. The heme group can then bind oxygen and facilitate 

catalytic production of L-citrulline and NO, as summarized in Figure 4.  
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Figure 4. The structure and activation of nNOS. (1) NADPH reduces FAD and 

transfers electrons to FMN. Meanwhile, binding of L-arginine, heme, and BH4 to the 

oxygenase domain leads to (2) homodimerization via interaction at the N-terminal 

oxygenase domains. (3) Upon CaM binding at the CaM-binding site, conformational 

changes allow for electron transfer from the reductase domain of one nNOS monomer to 

the oxygenase domain of the other nNOS monomer. (4) With electron transfer to the 

heme group, heme can now bind oxygen and catalyze production of nitric oxide. FAD = 

flavin adenine dinucleotide; FMN = flavin adenine mononucleotide; CaM = calmodulin; 

L-Arg = L-arginine; heme = iron protoporphyrin IX; BH4 = tetrahydrobiopterin; NO = 

nitric oxide.  
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Multiple studies confirm nNOS expression in the BLA and demonstrate that 

nNOS-expressing cells are largely GABAergic and display high intrinsic excitability154-

156. A recent study of nNOS-expressing cells in the BLA further revealed that most 

nNOS-positive cells express neuropeptide Y (NPY) and somatostatin (SOM) and, to a 

lesser extent, express parvalbumin (PV) and calretinin156. In contrast, nNOS-positive 

cells in the BLA barely express calbindin and vasoactive intestinal peptide (VIP)156. 

Another study found that nNOS-positive neurons project locally within the BLA as well 

as outside of the BLA, to structures like the piriform cortex and caudate-putamen154. In 

addition to illustrating the heterogeneity of nNOS-positive interneurons in the BLA, these 

studies indicate that nNOS-positive neurons play diverse roles within the BLA circuit and 

may have long-range inhibitory projections that regulate other brain regions154,156.  

The roles of nNOS and NO in neuropsychiatric illnesses are an emerging area of 

study in neuroscience. While nNOS is known to regulate cardiovascular function, blood 

clotting, and immune responses133, it is also crucial for neurotransmission. In fact, 

disrupting nNOS function in rodent models results in depressive-like behavior, greater 

aggression, and impaired social cue processing157,158. Mice with a knockdown of the 

nNOS gene show deficits in both spatial working and reference memory159. In addition to 

cognitive function, nNOS-/- mice that undergo fear conditioning exhibit dramatically 

reduced short-term (1 hour post-fear conditioning) and long-term (24 hours and 7 days 

post-fear conditioning) memory of cued and contextual fear160. nNOS appears to play an 

important role in cognitive function and behavior, and as such, the neural mechanisms 

underlying its effects on behaviors are worth investigating.  
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An initial study of NOS and LTP in the hippocampus suggested that eNOS, not 

nNOS, was primarily responsible for LTP induction161. However, a recent study from our 

laboratory showed that blocking nNOS activity can disrupt LTP in BLA neurons162. 

Thus, nNOS may have site-specific effects on LTP and thereby modulate the formation 

of fear memories.  

1.3.4.3 NMDAR-PSD95-nNOS dynamics  

While it is established that PSD95 and nNOS are involved in modulating fear 

behavior, understanding the structure of the NMDAR-PSD95-nNOS complex is key for 

isolating and therapeutically targeting this interaction. PSD95 contains three PDZ 

domains117. PDZ domains are protein domains that are 80-100 amino acids long and 

typically contain five or six β-strands and two or three α-helices163. Based on the 

structure, PDZ domains may bind the C-terminus of other proteins or other PDZ 

domains164,165. Of the three PDZ domains of PSD95, PDZ1 and PDZ2 can bind to the C-

terminus of NMDARs, specifically to the NR2 subunit166. The PDZ motif of nNOS, 

which includes a flexible two-stranded β-finger formation, binds to PDZ2 of PSD95; the 

PDZ dimerization stabilizes the nNOS β-finger into a rigid β-sheet structure164,167. This 

stabilization also requires a salt bridge between Arg121 in the nNOS β-finger and Asp62 

in the canonical nNOS PDZ domain167. A point mutation at Arg121 changes the β-finger 

in nNOS to a highly flexible structure and abolishes the PSD95-nNOS dimer 

formation167. This indicates that after binding PSD95, the conformational change in the β-

finger in nNOS is necessary to maintain the PSD95-nNOS interaction.  

In summary, the typical formation of the NMDAR-PSD95-nNOS complex 

includes NR2 subunit binding to PDZ1 on PSD95, and the subsequent binding of nNOS 
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to PDZ2 of PSD95. Upon binding to PSD95, the nNOS PDZ domain shifts 

conformationally such that it remains tightly anchored to PSD95 and thus maintains 

proximity to NMDARs. Thus, PDZ interactions via PSD95 mediate the formation of the 

ternary NMDAR-PSD95-nNOS complex and the subcellular localization of nNOS at the 

synaptic membrane118,168. 

Consequently, once NMDARs are activated, intracellular Ca2+ increases. 

Intracellular Ca2+ can bind CaM, a Ca2+ sensor. CaM binds to a helical region located 

between the N-terminal oxygenase and C-terminal reductase domains of nNOS. CaM 

binding to nNOS conformationally alters the catalytic domain of nNOS and thereby 

catalyzes NO production169. The importance of CaM is further supported by a study that 

showed that CaM-bound nNOS homodimers, unlike CaM-lacking nNOS homodimers or 

nNOS monomers, are catalytically active170. Thus, nNOS enzymatic activity requires a 

cascade of events, which begins with the formation of the NMDAR-PSD95-nNOS 

complex. Specifically, the interaction between PSD95 and nNOS is a crucial step in 

ensuring the proximity between NMDARs and nNOS as well as robust NO production. 

Downstream of the NMDAR-PSD95-nNOS axis, NO then regulates multiple 

mechanisms that are important for neurotransmission, specifically in the context of 

learning and memory. 

1.3.4.4 Downstream implications of NO activity  

As NO production is mediated by Ca2+/CaM binding, its activity is interconnected 

to neurotransmission. Downstream of NMDAR activation, NO production has several 

distinct pathways that affect synaptic activity, as summarized in Figure 5.  
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First, NO is a free radical that can diffuse through the postsynaptic membrane and 

retrogradely interact with the presynaptic neuron171. In retrograde signaling, NO is shown 

to modify and potentiate neurotransmitter release and produce LTP172-175. 

Second, NO reacts with cysteine residues in proteins to produce S-nitrocysteine, 

in a posttranslational modification known as S-nitrosylation176,177. S-nitrosylation sites 

have been identified in over 1000 proteins178,179. In addition to regulating protein function 

and localization, S-nitrosylation in the CNS also modulates neurotransmission and 

neurogenesis180-184. For example, the NR2B subunit of NMDARs, Src and Fyn kinases 

(which both phosphorylate NR2B at Tyr 1472), and PSD95 are S-nitrosylated 

downstream of NO formation, resulting in fine-tuned regulation of NMDAR 

activity181,185-187. Similarly, S-nitrosylation of the GluR1 subunit of AMPARs, stargazin 

(a transmembrane AMPAR regulatory protein that binds and maintains AMPAR 

membrane expression), and N-ethylmaleimide sensitive factor (NSF) facilitates enhanced 

expression and conductance of AMPARs in neurons188-190. S-nitrosylation is also 

involved in the transcriptional regulation of genes180,191.  

Third, NO binds to the ferrous heme of soluble guanylate cyclase (sGC), which 

catalyzes the conversion of guanosine-5’-triphosphate (GTP) to cyclic guanosine 

monophosphate (cGMP), a secondary messenger137,192. cGMP activates numerous 

intracellular signaling cascades and regulates gene transcription193,194. Notably, cGMP 

regulates PKG activity, which has numerous implications for synaptic plasticity171,195,196. 

Studies show that PKG modulates phosphorylation and extrasynaptic expression levels of 

GluR1 and increases synaptic potentiation by binding to the GluR1 subunit on 

AMPARs197-199. This suggests that NO-mediated PKG can influence the priming of 
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AMPARs at the synapse, clearly affecting synaptic transmission. Additional studies in 

the visual cortex, spinal neurons, hippocampus, and VTA indicate that NO and cGMP-

mediated pathways are crucial for synaptic potentiation200-203. There is also evidence that 

blocking PKG signaling in the LA impairs LTP and fear memory consolidation204. In 

combination with a study published by our laboratory that shows that blocking nNOS 

activity impairs LTP and fear memory consolidation, this strongly indicates that signaling 

mechanisms downstream of nNOS modulate synaptic transmission and thereby impact 

fear memory formation162.  
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Figure 5. nNOS-mediated intracellular signaling cascade. In addition to the cascades 

shown in figure 2, nNOS activation downstream of NMDAR channel opening results in 

NO synthesis. NO can activate the sGC-cGMP-PKG pathway, which 1) travels 

retrogradely and signals to the presynaptic neuron, 2) S-nitrosylates multiple important 

proteins, and 3) phosphorylates AMPARs at Serine 845. Specifically, NO S-nitrosylates 

NSF, GluR1, stargazin, PSD95, NR2B, Fyn kinase, and Src kinase, resulting in overall 

enhancement of AMPAR and NMDAR channel conductance. CaMKII = 

calcium/calmodulin-dependent protein kinase II; CKII = casein kinase II; PSD95 = 

postsynaptic density 95; nNOS = neuronal nitric oxide synthase; NO = nitric oxide; sGC 

= soluble guanylyl cyclase; cGMP = cyclic guanosine monophosphate; PKG = cGMP-

dependent protein kinase; NSF = N-ethylmaleimide sensitive fusion protein; CREB = 

cAMP-response element binding protein.  
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1.3.5 Gene transcription 

Transcription is a biological process that copies DNA into RNA during the first 

step of gene expression and protein synthesis. For long-term memory formation and 

storage, transcription is necessary and occurs at the time of learning13,205-207. More recent 

studies have also revealed that transcription-dependent consolidation of memory can last 

more than 24 hours past the initial learning event, indicating that there is a temporal 

window when initial memory consolidation can be disrupted208-210. This is further 

validated in studies that show that the higher the latency in administering a 

pharmacological manipulation after a learning event, the less effective it is in regulating 

long-term memory consolidation211,212. 

Specifically, in fear consolidation models, disrupting cyclic adenosine 

monophosphate response element-binding protein (CREB) function in the amygdala can 

impair fear memory formation213. Similarly, CCAAT enhancer-binding protein (C/EBP) 

can modulate both long-term memory formation and long-term synaptic plasticity214-216. 

CREB is a transcription factor that can activate C/EBP, which is an immediate early 

gene217,218. This reveals the importance of transcriptional elements in the BLA for the 

long-term storage of fear memories. Studies also show that genes important for fear 

consolidation and synaptic plasticity are transcriptionally regulated219,220. In summary, 

there is evidence to demonstrate that transcriptional pathway cascades that occur after 

initial learning within the amygdala activate and maintain long-lasting functional 

changes.  

Interestingly, research in the last 20 years has begun to establish the role of NO 

signaling in gene transcription. cGMP signaling, downstream of NO production, can 



 

26 

activate transcriptional machinery221,222. Specifically, in the BLA during fear 

conditioning, NO-cGMP-PKG signaling activates extracellular signal-related kinase 

(ERK) expression and thereby drive gene expression223. Furthermore, NO signaling 

results in increased phosphorylation of CREB, a process required for CREB-driven 

transcriptional regulation224. Therefore, NO signaling plays a well-defined role in 

regulating gene transcription and may be an important part of the mechanism underlying 

transcriptional regulation of fear consolidation.  

1.4 nNOS Inhibitors 

The inhibition of NMDARs has previously been shown to strongly impair fear 

consolidation225-228. However, blocking the activity of receptors as ubiquitous as 

NMDARs results in detrimental off-target effects229,230. As a result, it has become 

increasingly necessary to find pathways and therapeutic targets downstream of NMDARs 

that may selectively improve fear learning deficits. Recent studies of nNOS show that 

inhibition of nNOS activity, systemically and within the BLA, can specifically impair 

auditory fear consolidation162,231. Thus, nNOS inhibitors are a promising therapeutic 

target that must be explored further.  

Several nNOS inhibitors have been shown to alter fear behaviors. NG-nitro-L-arginine 

methylester (L-NAME) has task-dependent effects on fear extinction in rats232. 7-

nitroindazole (7-NI) administration in mice resulted in decreased fear expression and 

greater fear extinction233. Amygdala-specific injections of 7-NI and an NO scavenger 

were both able to inhibit fear renewal234. However, these nNOS inhibitors do not have 

high oral bioavailability nor efficiently cross the blood-brain barrier235,236. As a result, 
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small-molecule protein-protein interaction inhibitors have been increasingly studied as an 

alternative approach to blocking nNOS signaling. 

1.5 Small-Molecule PSD95-nNOS Binding Inhibitors  

Small-molecule protein-protein interaction inhibitors are an ideal option for 

preclinical and clinical studies, because they are not as potent as nNOS inhibitors and 

have pharmacokinetic properties that are better suited for in vivo studies. Significantly, 

two small-molecule inhibitors have been effective in blocking the PSD95-nNOS 

interaction. The first is IC87201 (2-((1H-benzotriazol-6-ylamino)methyl)-4,6-

dichlorophenol), which disrupted the PSD95-nNOS interaction with an IC50 of 31 μM. 

While its binding site is unknown, IC87201 inhibited NMDAR-dependent cGMP 

production, had antinociceptive effects in an NMDA-induced thermal hyperalgesia model 

and chemotherapy-induced neuropathic pain model, and abolished mechanical allodynia 

in a nerve injury model151,237.  

Another PSD95-nNOS inhibitor that is structurally similar to IC87201 but has a lower 

IC50 is ZL006 (4-(3,5-dichloro-2-hydroxy-benzylamino)-2-hydroxybenzoic acid)238. 

ZL006 is thought to interact with the Arg121 residue of the β-finger on the PDZ domain 

of nNOS, resulting in a disrupted salt bridge238. This restricts the conformational change 

in nNOS that is required for binding to PSD95, ultimately inhibiting the PSD95-nNOS 

interaction and the catalytic activity of nNOS167,238. Accordingly, ZL006 inhibited 

NMDAR-dependent NO synthesis with an IC50 of 82 nM238. ZL006 is also reported to 

cross the blood-brain barrier and attenuate fear consolidation with systemic and intra-

BLA administration162,238. Additionally, ZL006 does not affect the NMDAR-PSD95 

interaction, but it sufficiently blocks the PSD95-nNOS interaction in the BLA162,238. For 
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these reasons (summarized in Table 1), ZL006 is a useful tool in exclusively analyzing 

nNOS-dependent signaling within the NMDAR-PSD95-nNOS axis.  

ZL006 

Structure 

 

Molecular weight 328.1 g/mol 

Activity site (anticipated)238 Arg121 of nNOS 

IC50 
238 82 nM 

ED50 (suppression of mechanical allodynia, 

mice)239 
0.93 mg/kg i.p.  

[ZL006] serum (1.5 mg/kg intravenous, 

rat)238 

15 minutes: ~ 2.8 µg/mL  

60 minutes: ~ 1.6 µg/mL 

[ZL006] brain (1.5 mg/kg intravenous, 

rat)238 

15 minutes: ~ 0.3 µg/mL  

60 minutes: ~ 0.6 µg/mL 

Table 1. A summary of ZL006 properties.  

1.6 Aims and Hypothesis  

As described in detail above, NMDAR- PSD95-nNOS interaction and thereby 

generating NO production is a critical step for conditioned fear responses, and 

corresponding gene transcription, and regulation of glutamate signaling162,240. Our 

laboratory has recently shown that the PSD95-nNOS interaction is especially important 

in the BLA for fear consolidation, and intra-amygdalar inhibition of the PSD95-nNOS 

interaction sufficiently impairs auditory fear consolidation162. Additionally, disrupting the 

PSD95-nNOS interaction results in impaired LTP in BLA neurons. Based on these 

observations, in this dissertation, I focus on the role of the NMDAR-PSD95-nNOS axis 
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within the BLA in the regulation of the molecular mechanisms underlying cue-induced 

conditioned fear consolidation.  

The central hypothesis of the project is that activation of the NMDAR-PSD95-nNOS 

axis is required for changes in the glutamatergic signaling, receptor dynamics, and gene 

transcriptions in the BLA underlying fear consolidation. The specific aims of this project 

are:  

I. To map the alterations in the BLA transcriptome as a result of auditory fear 

conditioning with or without pre-treatment with PSD95-nNOS binding 

inhibitor ZL006.  

II. To determine the role of the NMDAR-PSD95-nNOS axis on time-dependent 

shifts in glutamatergic signaling and synaptic AMPAR and NMDAR 

dynamics following auditory fear memory consolidation.  

III. To elucidate the effects of a BLA-specific knockdown of the nNos gene on 

auditory fear consolidation and synaptic AMPAR and NMDAR dynamics.  
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CHAPTER 2 

Transcriptomic Study of Molecular Mechanisms Underlying NMDAR-PSD95-

nNOS-NO Axis Mediated Fear Consolidation in the Amygdala: Key Role of IGF2 

and IGFBP2 

2.1 Introduction  

Normal fear responses are evolutionarily necessary to promote survival241. These 

responses are often triggered by perceived threats or aversive stimuli such as loud noises 

or pain. However, persistent fear responses that remain long after cessation of aversive 

stimuli can lead to anxiety or fear disorders241,242. Persistent fear responses have been 

studied in rodents using Pavlovian cued fear conditioning242,243. In this procedure, fear 

acquisition is induced through the repeated pairing of a neutral conditioned stimulus (CS) 

such as light or sound with an unconditioned aversive stimulus (US) such as a shock or 

predator odor242. Following acquisition, i.e., fear association with the CS, fear 

consolidation occurs over the next several hours, during which period the association of 

the CS and US is further established, and the labile fear memory stabilizes to become a 

long-term learned response244-246. In humans, the consolidation of cue-induced trauma is 

considered a critical process underlying the pathophysiology of anxiety and fear 

disorders247. As such, identifying potential therapeutic targets for disrupting fear 

consolidation may lead to novel therapies for anxiety and fear disorders. 

During fear acquisition, N-methyl D-aspartate receptors (NMDARs) recruit and 

assemble postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase 

(nNOS) in a complex at the cell surface118,248,249. The assembly of this complex 

conformationally changes nNOS to actively produce nitric oxide (NO)250. We previously 
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reported that blocking the PSD95-nNOS interaction via systemic and intra-basolateral 

amygdala (BLA) administration of a small molecule protein-protein inhibitor, ZL006, 

attenuated fear consolidation, thus establishing the importance of BLA-associated 

PSD95-nNOS-NO axis in consolidation of cued fear162. 

Our findings are consistent with other studies highlighting the role of the PSD95-

nNOS-NO axis in fear responses; however, little is known about the downstream 

molecular mechanisms following NO production that regulate fear consolidation231,251,252. 

In the present study, we explored transcriptome-wide changes in the BLA after 

cued fear consolidation and demonstrated unique gene expression patterns and 

corresponding functional enrichment of signaling pathways. Next, we determined which 

of these gene expression patterns and networks were altered by pre-treatment with 

ZL006. Our findings demonstrate several novel gene networks critical for NO-induced 

fear consolidation in the amygdala and identify novel therapeutic targets specific to cued 

fear consolidation. 

2.2 Materials and Methods 

Animals: Adult male Sprague-Dawley rats (250-300 g, Harlan, IN, USA) were 

used for fear conditioning and RNA-sequencing experiments. Rats were housed in a 

temperature-controlled vivarium (22 °C) on a 12:12h light-dark cycle with food and 

water provided ad libitum. Rats were single-housed and given at least three days to 

acclimate to the new housing environment before handling and behavioral testing. 

Animal care was in accordance with NIH Guidelines for the Care and Use of Laboratory 

Animals, and all procedures were approved by the IUPUI Institutional Animal Care and 

Use Committee. 
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Fear conditioning test: Rats were fear-conditioned and treated as described 

previously162. Briefly, rats were handled for five mins each/day for five days leading up 

to fear conditioning. On the first day of testing, rats were habituated to the conditioning 

contexts for 10 min each. Context A was a box with transparent walls, a metal grid floor 

connected to a shock generator (Stoelting Co., Wood Dale, IL, USA), and was cleaned 

with 70% ethanol between trials; context B was a box with patterned walls, a solid floor 

insert, and was cleaned with 1% acetic acid for a novel odor. Both boxes were placed in a 

larger, soundproof Ugo Basile box. 

For fear conditioning, 24 h after habituation, rats were placed in context A for 

habituation (100s) followed by three tones (20s, 4kHz, 80dB) that co-terminated with a 

shock (0.5s, 0.8mA). The “tone-only” group experienced the same protocol but without 

receiving foot-shocks. In the experiments for Figure 7A, all rats received drug or vehicle 

intraperitoneal injections immediately after fear conditioning. After 24 h, rats were 

placed in context B with the same protocol, without foot-shocks. Animal movement was 

tracked using an automated video recording and tracking system (ANYmaze, Stoelting 

Co.). Fear responses were calculated as percent time spent freezing during tones; freezing 

was defined as full immobility excluding respiration. A two-way ANOVA was used, with 

treatment as a between-subjects factor and tones as a within-subjects factor. Post hoc 

Fisher’s LSD test was used when p < 0.05. 

Drugs and chemicals: For intraperitoneal injections, ZL006 (Sigma Aldrich, St. 

Louis, MO, USA) was dissolved in a vehicle of 10% DMSO (Sigma Aldrich):90% of 

100% ethanol (Fisher Scientific, Pittsburgh, PA, USA), emulphor (Alkamuls EL-620, 



 

33 

Solvay, Brussels, Belgium), and sterilized saline (1:1:8). Rats were injected with either 

the drug formulation (10 mg/kg) or vehicle alone at an injection volume of 1 ml/kg. 

Tissue preparation and RNA-sequencing: Fifteen minutes after fear consolidation, 

rats were deeply anesthetized under isoflurane and decapitated. Brains were removed, 

snap-frozen in cold iso-pentane (Fisher Scientific) and stored at -80 °C until use. Brains 

were sectioned on a cryostat (300 μm), and the BLA was punched using a 1 mm diameter 

micro-punch (Electron Microscopy Sciences, Hatfield, PA, USA). RNA was isolated 

using the RNeasy Plus Mini Kit (Qiagen, Hilden, Germany). Briefly, after lysis, BLA 

was homogenized and spun down using gDNA Eliminator spin columns to remove 

genomic DNA. The flow-through containing total RNA was purified, washed, and eluted 

using RNeasy Mini spin columns. For library preparation, 300 ng of total RNA was used 

with TrueSeq Total RNA Sample Prep Kit (Illumina, San Diego, CA, USA). Barcoded 

libraries were sequenced using the Illumina Hi-Seq 4000. 

Volcano plots & heat maps: Differential gene expression analyses were conducted 

in the statistical environment R (v3.6.0) using package edgeR253. In brief, the gene counts 

were loaded into R and filtered to exclude low expression genes that were not adequate 

for statistical assessment. Normalization and dispersion factors were estimated following 

the edgeR default setting. The negative binomial model and likelihood ratio test were 

used in edgeR to identify differentially expressed genes. The false discovery rate (FDR) 

was calculated to correct for multiple comparisons, where FDR < 0.05 is considered 

statistically significant. The volcano plot of differential expression genes was generated 

using R. Heatmaps for differentially expressed genes were generated using R package 

gplots with normalized gene expression data of log-transformed count-per-million. 
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Gene enrichment analyses: Gene ontology enrichment analysis was assessed via 

The Database for Annotation, Visualization, and Integrated Discovery (DAVID 

Bioinformatics, v6.8). The enrichment analysis annotated functionally related gene 

groups with a p-value < 0.05. The most significant canonical signaling pathways 

downstream of the DEGs were profiled using Kyoto Encyclopedia of Genes and 

Genomes 2020 (KEGG). The transcription factor pathways activated downstream of 

DEG expression were analyzed using TRANSFAC and JASPAR databases (p < 0.05). 

Protein-protein interaction networks: For protein-protein interaction networks, the 

STRING application was used in Cytoscape software (v3.7.2) (The Cytoscape 

Consortium). DEGs and respective fold changes were uploaded for each group and used 

to find interactions between DEGs and neighboring proteins. Network were mapped 

using an edge-weighted spring-embedded layout. 

Protein expression analysis: Following fear consolidation, rats were deeply 

anesthetized using isoflurane and decapitated. Brains were removed, rapidly frozen in 

cold iso-pentane (Thermo Scientific), and stored at -80 °C until ready to process. Brains 

were sectioned on a cryostat (300 μm), and BLA was punched using a 1 mm diameter 

micro-punch (Electron Microscopy Sciences). BLA was homogenized in 10% w/v lysis 

buffer and 1X Halt protease and phosphatase inhibitors cocktail (Thermo Scientific). 

15μg protein was loaded and run on NuPage Bis-Tris Protein Gel (Thermo Scientific). 

The gel was transferred to a nitrocellulose membrane, blocked, and incubated overnight 

at 4 °C with anti-Igf2 (1:500, Abcam, Cambridge, MA, USA) and anti-Igfbp2 (1:500, 

Abcam). Blots were incubated for 1 h with IRDye 800CW goat anti-rabbit secondary 

antibody (1:10,000, LI-COR Biosciences, Lincoln, NE, USA) and imaged with an 
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Odyssey CLx Imaging System (LI-COR Biosciences). Densitometry analyses of bands 

of protein of interest were normalized to loading control, β-actin. A one-way ANOVA 

was used for multiple group comparisons, followed by a post hoc Tukey’s HSD test when 

p < 0.05. 

2.3 Results 

Cued fear conditioning uniquely alters the basolateral amygdala transcriptome 

We first aimed to validate that cued fear conditioning induces unique 

transcriptome changes in the BLA. To do this, we presented rats with three 20s tones, 

each tone co-terminating with a 0.5s foot-shock. A control group received the tones 

without foot-shocks (Figure 6A). As Figure 6B shows, rats presented with tone-shock 

pairs displayed high freezing levels by the end of acquisition training (70.8 ± 12.6%). 

After 24 h, all rats were placed in a new context and presented with five 20s tones, 

separated by 60s intervals, to test for cued fear memory consolidation. We observed high 

freezing levels throughout testing (averaged 82.55 ± 3.7%), thereby demonstrating 

successful consolidation of cued fear memory. 

Following confirmation of fear consolidation 24 h later, rat brains were collected, 

and the BLA was micro-punched and processed for RNA-sequencing. To study the 

effects of fear conditioning, we compared gene expression data from the fear-conditioned 

group with the tone-only group. There were approximately 27 million uniquely mapped 

reads generated and 11,970 genes sequenced per sample. Figure 6C shows that 24 h after 

cued fear conditioning, the BLA transcriptome is uniquely altered. Gene ontology and 

pathway analyses of significantly altered genes (p < 0.05) further revealed processes and 

pathways that are important for normal synaptic function (Figure 6D). Several of these 
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processes, like response to glucocorticoid (p = 0.03), behavioral fear response (p = 

0.003), and multicellular organismal response to stress (p = 2.92 x 10-5), are expected in 

our behavioral paradigm, as it activates the body’s stress response. Several other 

processes illustrate the importance of the glutamatergic synapse in fear responses, such as 

glutamate receptor signaling pathway (p = 002), NMDA glutamate receptor clustering (p 

= 0.01), and calcium signaling pathway (p = 0.01). Finally, we found a subset of 

molecular functions, biological processes, and canonical pathways from significantly 

regulated genes that indicate that the PSD95-nNOS pathway, downstream of NMDAR 

signaling, is important for consolidation of cued fear memory (scaffold protein binding, p 

= 0.01; calmodulin binding, p = 2.96 x 10-5; PDZ domain binding, p = 4.40 x 10-5; cGMP 

effects, p = 0.04; cGMP-PKG signaling pathway, p = 9.20 x 10-4). These results show 

that, in addition to general stress responses, cued fear consolidation also enriches 

biological pathways that include NMDAR function and downstream signaling of PSD95 

and nNOS. 
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Figure 6. Effects of fear conditioning on the basolateral amygdala transcriptome. A) 

Outline of Experimental Design. Rats were habituated to both experimental contexts 24 h 

before fear acquisition. For fear acquisition, rats were exposed to 3 tone-shock pairs. Rats 

were tested for fear expression 24 h later in the second context. Brains from rats were 

collected, and BLA micro-punches were processed for RNA-sequencing. B) Fear 
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Conditioning Behavioral Output. Rats exposed to tone-shock pairs showed normal 

acquisition (Trial: F2,12 = 10.11, p < 0.01). During consolidation testing, rats showed 

freezing responses similar to end-of-acquisition levels. Rats given tone and shocks (n = 4) 

showed consistently and significantly higher freezing compared to tone only control rats 

(n = 4) (Treatment: F1,6 = 853.6, p < 0.0001).*p < 0.0001 relative to tone only control 

group. C) Heatmap showing the expression levels of differentially expressed genes from 

the BLA of fear-conditioned and control rats (p < 0.05). D) Gene ontology functional 

analyses using DAVID and KEGG provided the most significantly enriched biological 

processes, molecular functions, and canonical pathways. All statistical values were 10-

base log-transformed. 
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Disruption of the PSD95-nNOS protein-protein interaction immediately after cued fear 

conditioning reduces fear response 24 h later 

In light of the results from gene ontology and pathway analyses, we evaluated the 

specific role of the PSD95-nNOS-NO axis in behavioral and amygdala transcriptomic 

changes after cued fear conditioning. We used a 2x2 behavioral paradigm with the 

following groups: 1) rats that received shocks paired with tones during fear conditioning 

and an intraperitoneal (i.p.) injection of vehicle after fear acquisition (FC + vehicle), 2) 

rats that received shocks paired with tones during fear conditioning and an i.p. injection 

of ZL006 after fear acquisition (FC + ZL006), 3) rats that received only tones during fear 

conditioning and an i.p. injection of vehicle after fear acquisition (tone + vehicle ), and 4) 

rats that received only tones during fear conditioning and an i.p. injection of ZL006 after 

fear acquisition (tone + ZL006) (Figure 7). Prior to drug treatments, both FC + vehicle 

and FC + ZL006 groups acquired cue-induced fear to an equal degree, reflected in the 

gradual increase in freezing during tone presentations (average by the end of acquisition 

training is 82.0 ± 4.5% freezing in FC + vehicle and 71.3 ± 11.9% freezing in FC + 

ZL006 groups) (Figure 7B). When tested for fear consolidation (presented with only 

tones) 24 h later in a cued fear expression test, the FC + vehicle group displayed freezing 

levels similar to their previously acquired % freezing (76.4 ± 8.1%, first tone). However, 

the FC + ZL006 group showed significantly decreased freezing during the cued fear 

expression test (30.6 ± 8.6%, first tone). The FC + vehicle group had significantly higher 

freezing levels for the duration of the fear expression test compared to the FC + ZL006 

group (p < 0.0001). The tone + vehicle and tone + ZL006 groups showed neither fear 

acquisition nor consolidation. Our results validate previous findings that systemic ZL006 
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delivery directly after cued fear acquisition can disrupt cued fear memory consolidation 

in rats (Figure 7B)162. 

 

 

Figure 7. Fear conditioning and ZL006 treatment schematic and behavioral output. 

A) Outline of Experimental Design. Rats were habituated to both experimental contexts 

24 h before fear acquisition. For fear acquisition, rats were exposed to 3 tone-shock pairs. 

Immediately after acquisition, rats were given an i.p. injection of vehicle or ZL006 (10 

mg/kg). Rats were tested for fear expression 24 h later in the second context. Brains from 

rats were collected, and BLA micro-punches were processed for RNA-sequencing. B) 

Fear Conditioning Behavioral Output. Rats that were exposed to tone-shock pairs showed 

normal acquisition (Trial: F2,32 = 31.96, p < 0.0001). During consolidation testing, rats 

from the FC + vehicle group (n = 4) displayed freezing responses similar to end-of-

acquisition levels. Rats from the FC + ZL006 group (n = 4), however, showed 

consistently and significantly lower freezing compared to FC + vehicle group 

(Treatment3,16 = 112.3, p < 0.0001). *p < 0.0001; **p < 0.001; #p < 0.01 relative to FC + 

vehicle group. 
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Cued fear conditioning with or without ZL006 induces unique gene expression patterns in 

the basolateral amygdala 

Previous transcriptomic studies of the BLA have revealed several molecular 

pathways underlying BLA-driven fear and stress responses254-256. However, little is 

known about specific molecular mechanisms regulated by the PSD95-nNOS interaction 

within the BLA during cued fear consolidation. Thus, we used RNA-sequencing in our 

model to investigate how PSD95-nNOS disruption (via ZL006 treatment) immediately 

after cued fear conditioning alters the BLA transcriptome. To study the effects of fear 

conditioning, we first compared gene expression data from the FC + vehicle group with 

the tone + vehicle group. Next, to understand the mechanisms underlying the attenuating 

effects of ZL006 on cued fear consolidation, we compared gene expression data from the 

FC + ZL006 group with the FC + vehicle group. There were approximately 30 million 

uniquely mapped reads generated and 12,129 genes sequenced per sample. By mapping 

the fold changes of the 12,129 genes in the FC + ZL006 group against the fold changes in 

the FC + vehicle group, we discovered a negative correlation (R = -0.667) with 65% of 

genes (7,880 out of 12,129) showing inverted expression in the FC + ZL006 group 

compared to the FC + vehicle group (Figure 8A). In other words, expression levels of 

65% of genes in fear-conditioned rats were reversed with ZL006 treatment, indicating 

that ZL006 treatment after fear conditioning directionally changed the BLA 

transcriptome. 

To further parse the effects of fear conditioning and ZL006 treatment, we 

identified differentially expressed genes (DEGs) in all groups using a cutoff of FDR < 

0.05. Summarized in the volcano plots in Figure 8B, which plot -log10FDR against 
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log2fold-change, we observed a trend of downregulated DEGs (blue and red dots) in FC + 

vehicle and upregulated DEGs in FC + ZL006 groups. Specifically, among 516 DEGs in 

the FC + vehicle group, 88% were downregulated (456 of 516 genes). The FC + ZL006 

group revealed 93 DEGs, of which 96% were upregulated (89 out of 93 genes). A 

comparative analysis of the DEGs showed overlap in 83 DEGs from the FC + vehicle and 

FC + ZL006 groups. From these 83 DEGs, we observed an interesting pattern of 4 

upregulated and 79 downregulated DEGs in the FC + vehicle group and 79 upregulated 

and 4 downregulated DEGs in the FC + ZL006 group. This information is summarized in 

Figure 8C. In other words, amongst the overlapping 83 DEGs between the FC + vehicle 

and FC + ZL006 groups, all were changed in the opposite direction between the two 

groups. Therefore, these DEGs that overlap may be key in understanding the mechanism 

via which the ZL006-treated group exhibited decreased consolidation of cued fear. 
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Figure 8. Differentially expressed gene patterns associated with fear conditioning 

and ZL006 treatment. A) Correlation analysis of fold changes of all genes in FC + 

vehicle and FC + ZL006 groups. B) Volcano plots showing a comparison of significance 

(-log10FDR) vs. fold change (log2FC). Red dots represent genes with FDR < 0.05; blue 

dots represent genes with FDR < 0.05 and an absolute fold change greater than 1. C) 

Gene patterns observed from volcano plots. 
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In comparing the expression levels of the 83 overlapping DEGs between the FC + 

vehicle and FC + ZL006 groups, we discovered that each of the 83 overlapping DEGs is 

transcriptionally regulated in the opposite direction. These data indicate that each 

downregulated DEG in the FC + vehicle group is upregulated in the FC + ZL006 group. 

In contrast, each upregulated DEG in the FC + vehicle group is downregulated in the FC 

+ ZL006 group (Figure 9A-B). Most importantly, we found that gene expression of 

DEGs in the FC + ZL006 group was closer to the tone + vehicle group's expression 

levels, suggesting that ZL006 treatment immediately following fear conditioning reverts 

gene expression within the BLA closer to control levels. This is particularly important as 

it implies that ZL006 alters transcriptional machinery in the BLA. As such, it may help 

identify pathways or genes that would serve as effective therapeutic targets for fear 

disorders. 
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Figure 9. Heatmaps and gene enrichment analyses of 83 DEGs common between 

fear conditioning and ZL006-treated groups. A) Heatmap showing the expression 

levels of 83 DEGs across all four experimental groups. B) Heatmap of averaged 

expression levels of the same 83 genes. C) Gene ontology functional analyses using 

DAVID and KEGG provided the most significantly enriched biological processes, 

molecular functions, and canonical pathways. All statistical values were 10-base log-

transformed. 
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Gene enrichment analysis indicates key processes that are important for cued fear 

consolidation 

Given that ZL006 treatment appears to alter the BLA transcriptome by restoring 

gene expression to baseline levels, we next analyzed DEGs from the FC + vehicle and FC 

+ ZL006 groups for enrichment in biological processes, molecular functions, and 

canonical pathways. We identified numerous significantly enriched processes, many 

related to memory formation and consolidation, and some related to nNOS function 

(Figure 9C). Interestingly, downregulated genes in the FC + vehicle group showed 

enrichment in several processes that were enriched in upregulated genes in the FC + 

ZL006 group. For example, genes involved in insulin-like growth factor binding protein 

pathways (Esm1, Igfbpl1, Igfbp2) were downregulated in FC + vehicle and upregulated in 

FC + ZL006 (Esm1, Igfbp2). These overlapping but contrasting processes may be 

fundamental to the mechanism of action of ZL006 and the downstream mechanism of 

NO-mediated fear consolidation. Next, we looked at enrichment specific only to the FC + 

vehicle or FC + ZL006 groups to distinguish processes and canonical pathways altered 

with fear conditioning and ZL006 treatment (Figure 9C). We observed enrichment in the 

FC + vehicle group of the behavioral fear response, which validates our behavioral 

model. We also found enrichment of the cyclic guanosine monophosphate (cGMP) 

biosynthetic process, nitrogen metabolism pathway, and cGMP effects pathway (Figure 

9C) in the FC + vehicle group. Additionally, gene ontology and pathway analyses of the 

FC + vehicle group revealed enrichment of D3 and D4 dopamine receptor binding, 

dopaminergic synaptic transmission, and mu-type opioid receptor binding. Finally, we 

found enrichment of positive regulation of protein phosphorylation in the FC + vehicle 
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group but negative regulation of phosphorylation in the FC + ZL006 group, indicating 

that the direction of phosphorylation may be key in cued fear consolidation and the 

mechanism via which ZL006 attenuates it. 

Novel target genes and potential mechanisms for cued fear consolidation 

With a better understanding of functional processes and pathways in the FC + 

vehicle and FC + ZL006 groups, we next focused on the 83 overlapping DEGs to identify 

and investigate candidate genes for further study. After performing a thorough literature 

search of the 83 DEGs, we determined a list of eight genes that have previously been 

implicated in learning and memory257-264. The gene expression of these eight candidate 

genes was downregulated in the FC + vehicle group and upregulated in the FC + ZL006 

group (Figure 10A). Among these, recent studies report that Igf2 and Igfbp2 are 

important molecules in fear memory consolidation258,259. To subsequently investigate the 

roles of Igf2 and Igfbp2, we examined protein expression levels of IGF2 and IGFBP2 in 

our 2x2 design. We found directionally consistent differences in the protein levels of both 

IGF2 and IGFBP2 between the FC + vehicle group (decreased IGF2 and IGFBP2: IGF2: 

75%; IGFBP2: 53% compared to 100% for tone + vehicle; p < 0.05) and the FC + ZL006 

group (increased IGF2: 1462%; IGFBP2: 692%, compared to 100% for tone + ZL006; p 

< 0.01) (Figure 10B). To gain further insight, we used the RNA-sequencing results to 

determine upstream transcription factors in the FC + vehicle and FC + ZL006 groups 

(Figure 10C). Of these, we discovered two important transcription factors in the FC + 

vehicle group that are not significantly affected in the FC + ZL006 group: Nfkb1 and 

Hif1a. Both transcription factors regulate IGF2 and IGFBP2 transcription265-267. 

Remarkably, nNOS negatively regulates Nfkb1, Hif1a, and IGF1-receptor (IGF1R) 
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activity, while IGF1R positively regulates Nfkb1 and Hif1a268-272. Additionally, IGF2 has 

differing downstream effects based on the receptor it binds. While IGF2 binding to 

IGF1R activates intracellular signaling cascades, IGF2 binding to IGF2R results in IGF2 

internalization and degradation, in addition to possible downstream signaling273-276. Thus, 

IGF2 and IGFBP2 expression patterns were distinctly regulated during fear conditioning 

and affected by ZL006 treatment, possibly via transcriptional and post-translational 

machinery and degradation dynamics. Using this information, we propose a potential 

mechanism involving the NMDAR-PSD95-nNOS-NO axis and IGF2/IGFBP2 in Figure 

10E. 

We also explored protein-protein interactions (PPI) of IGF2 and IGFBP2 using 

immediate-neighbor clusters of IGF2 and IGFBP2. With this, we showed that IGF2 

interacts with a complex network of proteins in the FC + vehicle group, including 

IGFBP2, but that the complexity of the IGF2 PPI greatly diminishes in the FC + ZL006 

group (Figure 10D). Therefore, Igf2 and Igfbp2 gene and protein expressions were 

significantly and differentially altered in the FC + vehicle and FC + ZL006 groups, 

suggesting that these molecules likely play pivotal roles in the NMDAR-PSD95-nNOS-

NO axis regulation of fear consolidation in the amygdala. 
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Figure 10. Key genes, proteins, and transcription factors: putative role of the 

NMDAR-PSD95-nNOS-NO axis and IGF2/IGFBP2 in cued fear consolidation. A) 

Gene expression levels from RNA-sequencing of multiple learning and memory-related 

genes. B) Protein expression levels of IGF2 and IGFBP2, two proteins important for fear 

memory. Values for FC + vehicle are percent of tone + vehicle; values for FC + ZL006 

are as percent of tone + ZL006. *p < 0.05; **p < 0.01 relative to tone + vehicle and FC + 
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vehicle groups C) DEGs in FC + vehicle and FC + ZL006 groups were used to identify 

significantly altered transcription factors, using TRANSFAC and JASPAR. Transcription 

factors common between the groups are highlighted in blue, while two important 

transcription factors found in the FC + vehicle group but not in the FC + ZL006 group are 

in red. D) Gene networks showing a cluster of all genes correlating with Igf2 and Igfbp2 

expression in FC + vehicle and FC + ZL006 groups. Each node represents a gene, and 

each line represents an interaction. E) Based on RNA-sequencing, protein expression 

levels, and transcription factor analysis, a suggested mechanism of how nNOS mediates 

the IGF system in cued fear conditioning (left panel). With ZL006 blocking nNOS-

mediated inhibition of NF-kB and HIF-1a, IGF2 and IGFBP2 transcription and 

IGF2/IGF1R signaling increases, which could be key in attenuating cued fear 

consolidation (right panel). 
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2.4 Discussion 

Numerous studies have found that NMDAR signaling in the BLA regulates the 

consolidation of cued fear memory45,162,277,278. Our initial RNA-sequencing data showed 

distinct transcriptomic changes in the BLA following cued fear consolidation (i.e., 24 h 

after cued fear conditioning). Upon gene ontology and pathway analyses of significantly 

regulated genes, we found three distinct clusters of biological processes, molecular 

functions, and canonical pathways: response to stress, NMDAR/glutamatergic signaling, 

and intracellular signaling downstream of NMDAR activation. Specifically, upon 

evaluating the genes involved in these pathways, we found that 7 out of 12 pathways 

included nNos. 

This is a potentially important clue towards therapeutic approaches to treat fear-

related disorders. Approaches that target NMDAR function to ameliorate fear memory 

utilize antagonists like MK-801 and ketamine but are limited by these drugs also 

affecting motor, cognitive, and memory functions279-281. However, nNOS is downstream 

of NMDAR activation, and we previously reported that inhibiting nNOS activation by 

disrupting PSD95-nNOS interaction attenuates cued fear consolidation without affecting 

other memory or motor functions162. Validating our previous results, Figure 6 shows that 

disrupting the NMDAR-PSD95-nNOS-NO axis plays an important role in cued fear 

memory consolidation. We have previously also demonstrated that site-specific blockade 

of this axis within the BLA fully disrupts fear consolidation 24 h later8. However, the 

molecular mechanism by which the NMDAR-PSD95-nNOS-NO axis in the BLA affects 

cued fear consolidation remains largely unexplored. As a first step in elucidating these 

molecular mechanisms, we applied a transcriptomic-wide approach in a 2x2 design and 
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utilized ZL006, a small molecule protein-protein inhibitor of the PSD95-nNOS 

interaction that was previously shown to decrease consolidation of cued fear memory162. 

Understanding the BLA transcriptome post-fear consolidation in normal versus fear-

attenuated animals will help identify potential molecular pathways and specific 

therapeutic targets. 

By disrupting the PSD95-nNOS interaction using ZL006, we impaired cued fear 

consolidation (Figure 7), as previously reported.162 Using RNA-sequencing, we cross-

evaluated gene expression patterns in rats with normal fear consolidation and rats with 

impaired fear consolidation to determine pathways and genes uniquely important in the 

consolidation of cued fear. 

In doing so, we observed distinct gene expression patterns (Figures 8 and 9), 

indicating that by inhibiting the PSD95-nNOS-NO axis, ZL006 could modify 

transcriptional machinery in the BLA that is required for the consolidation of cued fear.  

After finding that cued fear conditioning and ZL006 treatment alter gene 

expression in the BLA in a unique, mutually opposing pattern, we turned to the 

mechanistic pathways and functional changes in the FC + vehicle and FC + ZL006 

groups. We performed a broad analysis of gene enrichment from all DEGs in the FC + 

vehicle and FC + ZL006 groups. Overall, we found enrichment in processes and 

functions consistent with conditioned fear (Figure 9C). For example, fear conditioning 

resulted in enrichment of the behavioral fear response, response to corticosterone, and 

regulation of glutamate; this substantiates studies reporting on the importance of 

corticosterone and glutamate in the BLA for fear memory consolidation282,283. 

Importantly, fear conditioning also resulted in enrichment of nitrogen metabolism and 
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cGMP effects pathways in the BLA. This effect was subsequently eliminated with ZL006 

treatment after fear conditioning. Nitrogen metabolism is the cycle that produces 

nitrogenous compounds, and notably, nNOS is a source of endogenous nitric oxide284. 

The production of nitric oxide in the brain further activates cGMP, a second messenger 

that plays a role in long-term potentiation and depression and is also required for fear 

memory consolidation204,285-287. Observing enrichment of the nitrogen metabolism and 

cGMP effects, both pathways downstream of nNOS activation, in the FC + vehicle group 

alone reveals that a primary mechanism for cued fear consolidation is via nNOS activity 

in the BLA. These enriched processes validate our use of the PSD95-nNOS disruption as 

a tool to further elucidate molecular mechanisms underlying fear consolidation in the 

amygdala. 

Next, we found several biological processes and molecular functions that were 

enriched in downregulated gene sets of the FC + vehicle group and upregulated gene sets 

of the FC + ZL006 group. This suggests that fear conditioning and ZL006 treatment 

enrich these pathways, but via different mechanisms. One important pathway that 

emerged in this analysis is the regulation of insulin-like growth factor (IGF) transport and 

uptake by IGF binding proteins (IGFBPs), a pathway shown to be important in fear 

learning and memory.258,259 

Focusing on genes within the IGF pathway, insulin-like growth factor 2 (Igf2) and 

insulin-like growth factor-binding protein 2 (Igfbp2) were both significantly 

downregulated in the FC + vehicle group and upregulated to control levels in the FC + 

ZL006 group (Figure 10A). Recent studies of contextual fear memories show that IGF2 

and IGFBP2 in the hippocampus play a role in regulating fear responses, and its potential 
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as a therapeutic target is emerging258,259. Thus, we further explored IGF2 and IGFBP2 by 

quantifying protein expression levels in our 2x2 design. We found that relative to control 

groups, protein levels of IGF2 and IGFBP2 decreased in the FC + vehicle group and 

increased well beyond control levels in the FC + ZL006 group, correlating with gene 

expression data (Figure 10B). One explanation for the significant upregulation in protein 

levels in the FC + ZL006 group is that blocking nNOS signaling not only increases Igf2 

and Igfbp2 gene transcription, but it may also regulate IGF receptor affinity for IGF2 and 

IGFBP2, in such a way that there is less IGF2 and IGFBP2 degraded and therefore more 

soluble protein available.  

To further explain the relationship between gene and protein expression levels of 

IGF2 and IGFBP2, we generated a list of upstream transcription factors from the FC + 

vehicle and FC + ZL006 groups (Figure 10C). We identified two transcription factors, 

Nfkb1 and Hif1a, that are relevant for IGF2 and IGFBP2 function. It is reported that 

nNOS negatively regulates Nfkb1 and Hif1a; nNOS also inhibits IGF1R activity, which 

binds IGF2 and initiates downstream signaling cascades268-270,273-275. On the other hand, 

IGF1R positively regulates Nfkb1 and Hif1a271,272. Additionally, Igf2 and Igfbp2 are both 

target genes of Nfkb1 and Hif1a265-267. 

Thus, we hypothesize that cued fear consolidation involves NMDAR-PSD95-

nNOS-NO-mediated transcriptional regulation of the IGF system, which, in addition to 

regulating transcription, may also regulate intracellular signaling and degradation of 

IGF2 and IGFBP2. Figure 10E proposes that nNOS activation after fear conditioning 

leads to cGMP signaling and negative regulation of NF-kB, HIF1a, and IGF1R. With 

IGF1R no longer able to bind IGF2 and activate downstream signaling, IGF2 primarily 
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binds to IGF2 receptor (IGF2R), which is reported to internalize and degrade IGF2 upon 

binding276. As a result, there is reduced overall Igf2 and Igfbp2 transcription and 

extracellular IGF2 and IGFBP2 protein. Additionally, the IGF2/IGF2R complex is 

reported to enhance spine maturation and synapse formation265. Thus, after fear 

conditioning, the nNOS-activated cGMP pathway and IGF2/IGF2R-activated 

downstream signaling may play a role in increased fear memory consolidation. In 

contrast, with ZL006 treatment, nNOS activity is inhibited, and IGF1R can now 

positively regulate NF-kB and HIF1a. As a result, there is increased Igf2 and Igfbp2 

transcription. Thus, it appears that cued fear consolidation is a process mediated by the 

NMDAR-PSD95-nNOS signal transduction pathway, with IGF2 and IGFBP2 as potential 

downstream target molecules. Meanwhile, with ZL006 administration, nNOS may no 

longer inhibit IGF1R activity, allowing for distinctly separate regulation of the IGF 

system compared to cued fear conditioning. Further validating their diverse roles, the 

protein-protein interaction networks of Igf2 and Igfbp2 varied greatly between the FC + 

vehicle and FC + ZL006 groups (Figure 10D). Importantly, this indicates that IGF2 and 

IGFBP2 interact with different sets of proteins during fear conditioning and that those 

interactions are greatly diminished with ZL006 treatment. Ultimately, while there are 

certainly numerous pathways activated during fear conditioning, IGF2- and IGFBP2-

mediated plasticity may be one of the key mechanisms explaining the downstream effects 

of NMDAR-PSD95-nNOS-NO activity in cued fear consolidation. 

In addition, Fos, Nfe2, and Elf3 were three key transcriptional regulators that were 

also implicated in both FC + vehicle and FC + ZL006 groups (Figure 10C). While Fos 

has been well-characterized in the BLA and is specifically important for fear learning, 
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Nfe2 and Elf3 are novel findings here288,289. These transcription factors may be working 

in concert to regulate genes within both the FC + vehicle and FC + ZL006 groups. 

Finally, we identified several enriched pathways and processes that can be further 

explored in future studies. Our results revealed enriched D3 receptor (D3R) and D4 

receptor (D4R) activity and dopaminergic synaptic transmission in the FC + vehicle 

group. Previous studies have shown that blocking D3R and D4R in the lateral amygdala 

reduces anxiety and freezing behavior290-292. We also found enrichment of mu-type opioid 

receptor (MOR) binding. The role of MORs in the BLA has been limited to studies on 

pain and addiction293,294. However, Blaesse et al. show that MOR activation can mitigate 

intercalated cells-mediated inhibition of the medial central nucleus of the amygdala 

(CeM)295. The CeM regulates the expression of conditioned fear, and as such, attenuated 

CeM inhibition would result in increased CeM output and, therefore, greater expression 

of conditioned fear, as observed in the FC + vehicle group296. This makes MORs in the 

BLA another potentially exciting target to explore further for its role in cued fear 

consolidation. 

In conclusion, these data provide a transcriptomic-wide analysis of the molecular 

pathways regulated by the NMDAR-PSD95-nNOS-NO axis within BLA and its role in 

cued fear consolidation. Using a pharmacological approach to disrupt the PSD95-nNOS 

interaction and impair fear consolidation, we identified gene expression patterns, 

functional and transcriptional enrichment, and key genes and transcription factors in the 

BLA that may be crucial for fear consolidation. Of particular note is the role of IGF2 and 

IGFBP2 as key molecular mediators downstream of the NMDAR-PSD95-nNOS-NO axis 

within the amygdala during fear consolidation. These results provide additional insight 
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into the complex mechanisms of fear consolidation. By studying the indicated processes, 

pathways, and target genes further, we hope to elucidate a complete understanding of the 

transcriptional and molecular basis of fear consolidation and identify novel target 

therapeutics that may further impact and improve treatment of fear disorders such as 

PTSD. 
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CHAPTER 3 

Fear Consolidation Requires nNOS-Dependent, Sequentially Orchestrated Changes 

in AMPA and NMDA Mediated Glutamatergic Neurotransmission in the 

Basolateral Amygdala 

3.1 Introduction 

 

Persistent aversive memories is a one of the key mechanisms in the 

pathophysiology of several severe psychiatric disorders such as post-traumatic stress 

disorder, phobias, and anxiety disorders247. In classical Pavlovian conditioning, fear 

consolidation is the process that encodes the long-term association of an intensely 

aversive experience (unconditioned stimulus) with concomitant non-aversive cues (such 

as spatial context, visual, auditory, olfactory cues etc., called conditioned stimuli)243,297. 

Consolidation of fear requires the release of the excitatory neurotransmitter glutamate, 

resulting in the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPAR) and N-methyl-D-aspartate (NMDAR) receptors, and eventual increases in 

AMPA and NMDA receptor surface expression and function298-300. This cascade begins 

with activation of AMPARs, which depolarizes the cell65. NMDARs function as 

coincidence detectors of excitatory activity; under basal conditions, there is a magnesium 

block in the receptor pore65,301. As increased AMPAR activity depolarizes the neuron, the 

magnesium block is removed, and NMDAR activation permits influx of Na+ and Ca2+ 

ions65,301. Calcium signaling promotes many intracellular signaling mechanisms, 

including neuronal nitric oxide synthase (nNOS) interaction with postsynaptic density 

protein-95 (PSD95), an NMDAR scaffolding protein, at the plasma membrane249,250,302. 
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This organization promotes nNOS activity and nitric oxide (NO) production in a synapse-

specific manner. 

Previous experiments antagonizing NMDAR activity during critical periods of 

consolidation further highlight the requirement of NMDAR-dependent synaptic plasticity 

for consolidation to occur303-305. Several studies have demonstrated that NMDAR-

PSD95-nNOS interaction is a critical step in fear memory and plasticity in the 

hippocampus and cortex231,251. A recent study from our group found that there is a 

specific pattern of PSD95-nNOS interaction immediately following fear acquisition in the 

basolateral amygdala (BLA), a brain region that plays a critical role in acquisition and 

consolidation of fear162. The interaction between PSD95 and nNOS is initiated upon fear-

conditioning and increases 1-2 hours after fear acquisition. When the interaction is 

disrupted, both globally and locally in the BLA, using a small molecule protein-protein 

interaction inhibitor [ZL006 (4-(3,5-Dichloro-2-hydroxy-benzylamino)], cued fear 

consolidation is attenuated162. Additionally, ZL006 is able to prevent high frequency 

stimulation-induced long-term potentiation (LTP) in BLA neurons162. The mechanism 

underlying these changes, however, remain unknown. 

In the present study, we hypothesized that there are time-dependent changes in 

AMPAR and NMDAR signaling in the BLA initiated by cued fear conditioning, and that 

these sequential changes are critical for the consolidation of fear responses. Furthermore, 

we hypothesized that some aspects of these sequential glutamatergic molecular 

mechanisms underlying fear consolidation were dependent on the activity of nNOS. 

Therefore, we first reconfirmed that pharmacologically blocking PSD95-nNOS binding 

(with ZL006) blocked cued fear consolidation in rats. Next, we studied AMPAR- and 
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NMDAR-mediated current changes in the BLA after acquisition of fear and the role of 

nNOS in synaptic plasticity using brain slice electrophysiology. Specifically, we 

performed fear conditioning, administered either vehicle or ZL006 (intraperitoneal, i.p.), 

and examined AMPAR- and NMDAR-mediated current in the BLA of the rats at two key 

timepoints – immediately after fear conditioning and 24h after fear conditioning. We also 

evaluated the synaptosomal expression of GluR1 and NR2B subunits and 

phosphorylation of these receptor subunits at well described sites during fear 

consolidation. Our findings reported here suggest that there is a rapid (within 4-6 hours) 

activation of AMPAR-mediated currents and elevated GluR1 synaptosomal levels in the 

BLA, followed at 24 hours by sustained AMPAR-mediated current and increased 

NMDAR-mediated currents, accompanied by increases in not only GluR1 but also NR2B 

synaptosomal levels. Furthermore, levels of phosphorylated GluR1 and NR2B subunits 

were increased only after 24h following fear conditioning. All of these synaptic changes 

were blocked by pretreatment with ZL006 treatment. In conclusion, we use biochemical 

and electrophysiological methods to reveal a sequential molecular mechanism underlying 

cued fear consolidation in the amygdala and demonstrate that this sequence is nNOS 

dependent. 

3.2 Materials and Methods  

Animals: Adult male Sprague-Dawley rats (250-300 g, Harlan, IN) were used for 

all experiments. Rats were housed in a temperature-controlled vivarium (22 ⁰C) on a 

12:12h light-dark cycle with food and water provided ad libitum. All rats were single-

housed and given at least seven days to acclimate to new housing environment before 

handling and behavioral testing. Animal care was in accordance with NIH Guidelines for 
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the Care and Use of Laboratory Animals, and all procedures were approved by the IUPUI 

Institutional Animal Care and Use Committee.  

Fear conditioning test: Rats were handled for five mins/day in the five days 

leading up to fear conditioning. On the first day of testing, rats were habituated to two 

contexts for 10 min. Both contexts were a 25.5 x 25.5 x 39.5 cm box, placed in a larger, 

soundproof Ugo Basile box with white 15-lux light and white noise at 4% volume (55 

dB). Context A had transparent walls and a metal grid floor connected to a shock 

generator (Stoelting Co., Wood Dale, IL, USA) and was cleaned with 70% ethanol 

between all trials. Context B had patterned wall inserts, a plexiglass floor insert, and was 

cleaned with 1% acetic acid between all trials. Next, 24h after habituation, for fear 

conditioning, rats were placed in context A for a 100s habituation followed by three tones 

(20s, 4kHz, 80dB) that co-terminated with a shock (0.5s, 0.8mA). The inter-trial interval 

(ITI) was 100s, and the rat remained in the box for 60s after the last trial. The “tone-only” 

control group experienced the same protocol but without receiving foot-shocks. All rats 

received drug or vehicle intraperitoneal (i.p.) injections immediately after fear 

conditioning. After 24h, we tested for fear responses by placing rats in context B with the 

same protocol, without foot-shocks. Animal movement was tracked using an automated 

video recording and tracking system (ANYmaze, Stoelting Co., Wood Dale, IL, USA). 

Fear responses were calculated as percent time spent freezing during tones; freezing was 

defined as full immobility excluding respiration. A two-way ANOVA was used, with 

treatment as a between-subjects factor and tones as a within-subjects factor. Post hoc 

Fisher’s LSD test was used when p < 0.05. 
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Drugs and chemicals: For i.p. injections, ZL006 (Sigma Aldrich, St. Louis, MO, 

USA) was dissolved in a vehicle of 10% DMSO (Sigma Aldrich):90% of 100% ethanol 

(Fisher Scientific, Rockford, IL, USA), emulphor (Alkamuls EL-620, Solvay, Brussels, 

Belgium), and sterilized saline (1:1:8). Rats were injected with either the drug 

formulation (10 mg/kg) or vehicle alone at an injection volume of 1 ml/kg.  

Electrophysiology: Either after fear acquisition or fear consolidation testing, rats 

were deeply anesthetized with isoflurane and trans-cardially perfused with protective 

artificial cerebrospinal fluid (aCSF) of the following composition (in mM): 93 N-methyl-

D-glucamine (NMDG), 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 2 

thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl2·4H2O, and 10 MgSO4·7H2O [30]. 

Brains were rapidly dissected and sectioned coronally (350 μm) on a Campden 7000smz-

2 vibratome (Lafayette Instrument Co). For the initial recovery, slices were immersed in 

an oxygenated (mixture of 95% O2/5% CO2) NMDG-based aCSF at 30 °C for ≤11 min 

and then transferred to room temperature (RT) oxygenated aCSF of the following 

composition (in mM): 130 NaCl, 3.5 KCl, 1.1 KH2PO4, 1.3 MgCl2, 2.5 CaCl2, 10 

glucose, 30 NaHCO3. The osmolality of all aCSF solutions used was adjusted to 

~315 mOsm. Once transferred to a submersion-type slice chamber and perfused at a rate 

of 2–3 ml/min with oxygenated aCSF heated to 30 °C, individual BLA principal neurons 

were visualized using a Scientifica SliceScope Pro 6000 (Scientifica) upright microscope 

connected to the Hamamatsu ORCA-Flash4.0 digital CMOS camera (Hamamatsu, 

Japan). Whole-cell patch-clamp recordings were obtained using standard techniques with 

borosilicate glass electrodes (resistance 3–6 mΩ, WPI, Sarasota, FL) filled with a cesium 

methanesulfonate-based recording solution with the following composition (in mM): 120 
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CsMethanesulfonate, 15 HEPES, 0.4 EGTA, 2.9 NaCl, 5 TEA-Cl, 5 phosphocreatine, 2.5 

Mg-ATP, 0.25 Na-GTP adjusted to pH 7.3 with KOH, and having an osmolality of 270–

280 mOsm. 

Individual neurons in the BLA were visualized using differential interference 

contrast microscopy with a 40x water immersion objective and displayed in real time on a 

monitor. Whole-cell recordings were made with a Multiclamp 700B amplifier using 

pClamp 10.3 software and a Digidata 1322A interface (Molecular Devices). To 

evoke postsynaptic currents, a concentric stimulating electrode (FHC) was placed 

~500 μm from the internal capsule to stimulate thalamic inputs to the BLA306. A stimulus 

of ~270 pA was repeated 15 times at a frequency of 0.2 Hz and then averaged for 

subsequent data analysis. The evoked excitatory post-synaptic potentials (eEPSPs) were 

recorded at -70 mV and measured at peak current to estimate AMPA currents, and then 

the holding potential was shifted to +40 mV and measured 50 ms after the initiation of 

current to estimate NMDA currents within the same cell. The time point of 50 ms after 

current initiation was chosen because NMDA currents are present at this time point, but 

AMPA currents have completely inactivated before 50 ms172,188. Access resistance was 

continuously monitored; recordings were excluded from analysis if resistance exceeded 

20 MΩ or shifted by more than 15% during the experiment. A one-way ANOVA was 

used for statistical analysis. Post hoc Fisher’s LSD test was used when p < 0.05. 

Western Blotting: Rats were deeply anesthetized with isoflurane, followed by 

rapid decapitation. Brains were removed and rapidly frozen in iso-pentane (Fisher 

Scientific) on dry ice and stored in -80°C until ready to process. Brains were sectioned on 

a Leica CM1950 cryostat at 300 μm, and punches of the BLA were collected using a 1 
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mm diameter Harris micro-punch (Electron Microscopy Sciences). The punches were 

homogenized in 10% w/v 0.32M HEPES sucrose and centrifuged for 500 g for 10 min. 

The supernatant was centrifuged at 12,500 g for 15 min and the resulting pellet contained 

synaptosomal membrane. The pellet was resuspended in 10% w/v of lysis buffer and Halt 

protease and phosphatase inhibitors cocktail (Thermo Scientific). A BCA assay (Thermo 

Scientific) was used to determine protein concentration, and 10 ug protein was loaded on 

12% Bis-Tris Protein Gels (Bio-Rad) and transferred to nitrocellulose membrane 

(Amersham). After blocking, blots were incubated overnight at 4°C with anti-Glur1 

(1:1000, ab109450, Abcam), anti-pGluR1 (S831, 1:500, 04-823, Millipore Sigma), anti-

pGluR1 (Ser845, 1:500, OPA1-04118, Invitrogen), anti-NR2B (1:1000, ab65783, 

Abcam), anti-pNR2B (Ser1303, 1:500, 07-398, Millipore Sigma), anti-pNR2B (Tyr1472, 

1:500, AB5403, Millipore Sigma), anti-pNR2B (Ser1480, 1:500, ab73014, Abcam), anti-

nNOS (1:500; sc-5302, Santa Cruz Biotechnologies), and anti-β-actin (housekeeping 

gene) (1:1000, sc-47778, Santa Cruz Biotechnology). Blots were washed, incubated 1h 

with secondary antibodies, and washed again. Blots were scanned using Odyssey CLx 

scanner (Li-cor), and Li-cor Image Studio software were used to perform densitometry. 

The densities of each protein of interest were normalized to the loading control (β-actin). 

A one-way ANOVA was used for statistical analysis. Post hoc Fisher’s LSD test was 

used when p < 0.05. 
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3.3 Results 

Cued fear acquisition results in immediate enhancement of AMPAR but not NMDAR 

subunit expression and function in the BLA and is blocked with systemic ZL006 

treatment  

In our fear conditioning paradigm, rats that received shocks paired with tones 

acquired cue-induced fear, observed by the increased freezing by the end of fear 

acquisition testing (average by tone/shock is 62% in vehicle treated and 49% in ZL006 

treated groups) (Figure 11). Immediately after fear acquisition, rats were given an i.p 

injection of vehicle or ZL006. After 24h, rats were placed in a different context and 

presented with just tones to test for cued fear expression. The vehicle-treated group 

displayed freezing levels similar to their acquired freezing levels (75%). However, the 

ZL006-treated group expressed significantly lower freezing throughout the duration of 

the fear expression test (37%), compared to their respective acquired freezing levels 

(Figure 11). Rats that received tones without shocks during fear acquisition showed no 

gradual increases in freezing by end of fear acquisition nor during consolidation, as 

expected. These results corroborate our previous findings showing that administering 

ZL006 systemically immediately after cued fear acquisition disrupts cued fear memory 

consolidation in rats162. 
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Figure 11. Fear conditioning experimental schematic and behavior. After habituation 

to both experimental contexts, rats were exposed to 3 tone-shock pairs for fear 

acquisition. Rats that were exposed to tone-shock pairs show normal acquisition, with 

freezing increasing up to 55.8 ± 10.3% by the end of acquisition testing (Trial: F2,232 = 

65.67, p < 0.0001). Immediately after acquisition, rats were given an i.p. injection of 

vehicle or ZL006. After 24h, during consolidation testing, rats given vehicle injections 

show freezing responses similar to end-of-acquisition responses. Rats given ZL006 

treatment, however, show consistently and significantly lower freezing compared to 

vehicle-treated rats (37.4 ± 5.2%, averaged) compared to tone only control rats (3.0 ± 

1.2%, averaged) (Treatment: F3,26 = 18.23, p < 0.0001).*p < 0.0001 relative to tone only 

control group. (*p < 0.02, **p < 0.01). 
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In our previous study, we showed BLA neurons treated with ZL006 exhibited 

impaired high-frequency stimulation induced LTP; we also showed that intra-BLA 

infusion of ZL006 impairs cued fear consolidation162. Thus, we sought to better 

understand selective AMPAR- and NMDAR-mediated synaptic transmission dynamics in 

the BLA following cued fear conditioning and systemic ZL006 treatment. To do this, we 

collected rat brains within 15 minutes of i.p injection (timepoint t0) and recorded 

amplitude of evoked and recorded AMPAR- and NMDAR-mediated currents in the BLA. 

We observed a significant increase in AMPAR-mediated currents in fear-conditioned 

animals, compared to the tone-only control group (Figure 12A). Surprisingly, AMPAR-

mediated currents were restored to baseline levels in BLA neurons of ZL006-treated rats 

(p < 0.01). Studies report that the AMPAR subunit, GluR1, is increasingly trafficked to 

the synaptosome in the BLA during the early stages of fear conditioning307-309. 

Additionally, loss of GluR1 function impairs consolidation of fear memories101,303,310,311. 

To understand if our findings were due to higher membrane expression of AMPARs, we 

next probed for GluR1 in BLA synaptosomes using Western blotting. We found 

increased expression of GluR1 on the synaptic membranes from the BLA in fear-

conditioned rats (p < 0.01), but ZL006 treatment did not significantly block this increase 

(Figure 12C). 

In contrast to AMPAR, at t0, we did not observe any changes between the groups 

examined shortly after fear conditioning in either NMDAR-mediated currents or synaptic 

membrane expression of NR2B, an NMDAR subunit that is considered vital for fear 

consolidation (Figure 12B,D)304,312. 
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Figure 12. AMPAR and NMDAR protein expression and function after fear 

acquisition. A) AMPAR-mediated currents and representative traces recorded at a 

holding potential of -70 mV from BLA neurons in rats (p = 0.0007). B) NMDAR-

mediated currents and representative traces recorded at a holding potential of +40 mV 

from BLA neurons in rats. C) Synaptosomal GluR1 protein expression and representative 

bands obtained from BLA of rats (p = 0.01). D) Synaptosomal NR2B protein expression 

and representative bands obtained from BLA of rats. ** < 0.01; ***p < 0.001. Note: Dr. 

Erik Dustrude collected the electrophysiological data.  
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Increased NMDAR surface expression and enhanced NMDAR-mediated synaptic 

transmission in the BLA 24 hours after cued fear acquisition, which is blocked with 

systemic ZL006 treatment  

Noting the increases in AMPAR-mediated current and membrane expression after 

fear acquisition, we sought to understand if these changes were plastic and change over 

time. Since we test for fear expression 24h after training to confirm fear consolidation 

(t24), we hypothesized that there are differences in AMPAR and NMDAR surface 

expression and function immediately after training (acquisition) versus 24h after fear 

expression (consolidation) acquisition. To test this, we prepared brain slices immediately 

after the second day fear testing and again recorded AMPAR- and NMDAR-mediated 

synaptic transmission from BLA neurons. 

Interestingly, the increase in AMPAR-mediated currents was sustained 24h after 

fear acquisition in the fear-conditioned and vehicle-treated group as was the blockade of 

AMPAR-mediated currents in the ZL006-treated group (Figure 13A). However, there 

were no significant differences in synaptosomal GluR1 expression in the BLA of any 

groups (Figure 13C). In other words, 24h after fear conditioning, AMPAR-mediated 

currents were increased in the BLA of fear-conditioned animals and restored to baseline 

in ZL006-treated rats. However, these changes could not be attributed to simply an 

increase in synaptosomal GluR1 levels.  

Most interestingly, we found a significant increase in NMDAR-mediated currents 

in the BLA of fear-conditioned animals at t24, compared to tone-only controls (p < 

0.0001) (Figure 13B). This significant increase was mirrored in synaptosomal NR2B 

expression (Figure 13D) (p < 0.001). In addition, in the BLA of ZL006-treated rats, 
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NMDAR-mediated currents and NR2B surface membrane expression remained at 

baseline levels, suggesting an important role for the PSD95-nNOS interaction in the 

temporal regulation of NMDAR-mediated glutamatergic signaling in the BLA after fear 

conditioning. 
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Figure 13. AMPAR and NMDAR protein expression and function 24h after fear 

acquisition. A) AMPAR-mediated currents and representative traces recorded at a 

holding potential of -70 mV from BLA neurons in rats (p = 0.003). B) NMDAR-

mediated currents and representative traces recorded at a holding potential of +40 mV 

from BLA neurons in rats (p < 0.0001). C) Synaptosomal GluR1 protein expression and 

representative bands obtained from BLA of rats. D) Synaptosomal NR2B protein 

expression and representative bands obtained from BLA of rats (p = 0.003). *p < 0.05; 

A. AMPA (-70 mV)

NMDA (+40 mV)B. NR2BD. 
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**p < 0.01; ***p < 0.001; ****p < 0.0001. Note: Dr. Erik Dustrude collected the 

electrophysiological data.  
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Expression levels of key phosphorylated sites on GluR1 and NR2B increase 24 hours 

after fear acquisition  

At t24, although the changes in synaptosomal NR2B expression reflect changes in 

NMDAR-mediated currents, synaptosomal GluR1 expression does not reflect the same 

patterns as AMPAR-mediated currents. It appeared that total GluR1 levels were 

unchanged, yet we saw a clear functional increase in AMPAR-mediated currents. While 

receptor number is one explanation for receptor-mediated current alterations, 

phosphorylation of AMPAR and NMDAR subunits at specific sites is also reported to 

regulate receptor efficiency and conductance. Multiple phosphorylation sites on GluR1 

and NR2B are known to be required for AMPAR and NMDAR synaptosomal trafficking 

and enhanced function, and as a result, are heavily implicated in synaptic plasticity and 

fear memory85,93,108,109,313-316. Using this information, we probed for five phosphorylation 

sites on the GluR1 and NR2B subunits – Ser831 and Ser845 on GluR1 and Tyr1472, 

Ser1480, and Ser1303 on NR2B.  

At t0, we detected no significant differences in phosphorylation levels at any sites 

in our groups (Figure 14). At t24, however, we observed significant upregulation of 

phosphorylation at both sites of the GluR1 and two of the three sites, except for Tyr1472, 

of the NR2B subunit (p < 0.01) (Figure 15). In comparison to the vehicle-treated group, 

increases in phosphorylation levels of these sites were not observed with ZL006 pre-

treatment. This suggests that cued fear memory consolidation depends on the temporally 

concerted changes of not only absolute numbers but also phosphorylation of GluR1 and 

NR2B subunits. Remarkably, systemic ZL006 treatment blocked phosphorylation at all 

the sites we tested, indicating that the PSD95-nNOS interaction and presumably 



 

75 

downstream NO signaling is required for initiating these concerted changes in numbers 

and phosphorylation of GluR1 and NR2B. Figure 16 summarizes the levels of AMPAR 

and NMDAR-mediated currents, GluR1 and NR2B subunits, and phosphorylation after 

fear conditioning and shows that ZL006 blocks all the changes. Keeping this in mind, we 

provide a graphical mechanism in Figure 17, which suggests that mechanisms 

downstream of the PSD95-nNOS interaction are critical for regulation of AMPAR and 

NMDAR function and expression in the BLA.  
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Figure 14. Alterations in phosphorylation of key sites on the synaptosomal GluR1 

and NR2B subunits after fear acquisition. A) Expression levels of phosphorylated 

Ser831 on synaptosomal GluR1 in the BLA of rats after fear acquisition. B) Expression 

levels of phosphorylated Ser845 on synaptosomal GluR1 in the BLA of rats after fear 

acquisition. C) Expression levels of phosphorylated Ser1303 on synaptosomal NR2B in 

the BLA of rats after fear acquisition. D) Expression levels of phosphorylated Tyr1472 

on synaptosomal NR2B in the BLA of rats after fear acquisition. E) Expression levels of 

phosphorylated Ser1480 on synaptosomal NR2B in the BLA of rats after fear acquisition. 

NO significant differences found between groups.  
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Figure 15. Alterations in phosphorylation of key sites on the synaptosomal GluR1 

and NR2B subunits 24h after fear acquisition. A) Expression levels of phosphorylated 

Ser831 on synaptosomal GluR1 in the BLA of rats 24h after fear acquisition (p = 0.02). 

B) Expression levels of phosphorylated Ser845 on synaptosomal GluR1 in the BLA of 

rats 24h after fear acquisition (p = 0.009). C) Expression levels of phosphorylated 

Ser1303 on synaptosomal NR2B in the BLA of rats 24h after fear acquisition (p = 0.001). 

D) Expression levels of phosphorylated Tyr1472 on synaptosomal NR2B in the BLA of 

rats 24h after fear acquisition (p = 0.06). E) Expression levels of phosphorylated Ser1480 

on synaptosomal NR2B in the BLA of rats 24h after fear acquisition (p = 0.005). *p < 

0.05; **p < 0.01; ***p < 0.001. 
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Figure 16. Summary of AMPAR and NMDAR-mediated currents and GluR1 and 

NR2B total and phosphorylated expression levels immediately after and 24h after 

0 24

0

200

400

600

800

0

200

400

600

800

Time (h)

C
u

rr
e
n

t 
d

e
n

s
it

y
 (

p
A

)

NMDA

AMPA

C
u

rre
n

t d
e
n

s
ity

 (p
A

)

0 24

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Time (h)

p
ro

te
in

 l
e
v
e
ls NR2B

GluR1

p
ro

te
in

 le
v
e
ls

0 24

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Time (h)

p
ro

te
in

 l
e
v
e
ls S831

S845

p
ro

te
in

 le
v
e
ls

0 24

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Time (h)

p
ro

te
in

 l
e
v
e
ls S1303

T1472

p
ro

te
in

 le
v
e
ls

S1480

0 24

0

200

400

600

800

0

200

400

600

800

Time (h)

C
u

rr
e
n

t 
d

e
n

s
it

y
 (

p
A

)

NMDA

AMPA

C
u

rre
n

t d
e
n

s
ity

 (p
A

)

0 24

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Time (h)

p
ro

te
in

 l
e
v
e
ls

NR2B

GluR1

p
ro

te
in

 le
v
e
ls

0 24

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Time (h)

p
ro

te
in

 l
e
v
e
ls

S831

S845

p
ro

te
in

 le
v
e
ls

0 24

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Time (h)

p
ro

te
in

 l
e
v
e
ls

S1303

T1472

p
ro

te
in

 le
v
e
ls

S1480

Fear conditioning

+ Vehicle

Fear conditioning

+ ZL006
Fear 

acquisition

Fear 

acquisition



 

79 

fear acquisition. Time-course summary of our findings, showing that there are unique 

changes in AMPAR- and NMDAR-mediated current densities and total and 

phosphorylated synaptosomal GluR1 and NR2B expression patterns in the BLA of rats 

over the first 24h after fear conditioning. These patterns are disrupted with ZL006 

treatment after fear conditioning.  
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Figure 17. Graphical summary of molecular changes occurring in the BLA during 

fear consolidation. Based on our findings here, a suggested mechanism of how nNOS 

mediates synaptic function in the BLA during fear conditioning. The early stage of fear 

consolidation is marked by enhanced GluR1 subunit expression and AMPAR channel 

conductance. The late stage of fear consolidation is marked by enhanced AMPAR- and 

NMDAR-mediated currents, NR2B subunit expression, and phosphorylation of GluR1 

and NR2B. These changes are mediated by nNOS activity, as evidenced by the 

significant reduction in currents, subunit expression, and phosphorylation of AMPARs 

and NMDARs with ZL006 administration. PSD95 = postsynaptic density 95; nNOS = 

neuronal nitric oxide synthase; NO = nitric oxide; sGC = soluble guanylyl cyclase; cGMP 

= cyclic guanosine monophosphate; cGKII = cGMP-dependent protein kinase II; 

CaMKII = calcium/calmodulin-dependent protein kinase II; CKII = casein kinase II.  

  

Immediately after fear conditioning 24 hours after fear conditioning
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3.4 Discussion 

Previous studies by us and other groups have reported on the importance of the 

PSD95-nNOS interaction in modulating fear responses162,231,251. However, which synaptic 

and molecular mechanisms are regulated by the PSD95-nNOS interaction is still poorly 

understood. In previous studies, we have shown that both systemic and intra-BLA 

delivery of a small molecule inhibitor of PSD95-nNOS interaction, ZL006, sufficiently 

attenuates cued fear consolidation162. Additionally, we showed that ZL006 application 

impairs LTP in BLA neurons162. Using this information, we aimed to further elucidate the 

sequential synaptic function and receptor composition mechanisms within the BLA 

underlying cued fear conditioning that are modulated by PSD95-nNOS interaction-

mediated signaling. To do this, we focused on two timepoints – immediately after fear 

conditioning (t0) and 24h after fear conditioning (t24), when fear consolidation is 

observed. In addition to parsing out AMPAR- and NMDAR-mediated synaptic currents 

at these timepoints, we also reasoned that any changes we observe in these specific 

glutamate receptor currents might be due to a unique pattern of total synaptosomal 

AMPAR and NMDAR expression and phosphorylation patterns of subunits of these 

receptors at specific sites that allow enhanced function at their respective ionophores. 

Thus, based on prior work, we chose to test for total levels of synaptosomal GluR1 and 

NR2B expression, phosphorylation at Ser831 and Ser845 for GluR1, and phosphorylation 

at Tyr1472, Ser1480, and Ser1303 for NR2B85,93,108,109,304,313-316. 

Immediately after fear conditioning (t0) we observed an increase in AMPAR-

mediated currents in BLA neurons of fear-conditioned and vehicle-treated animals 

compared to behavioral controls. However, this increase was mitigated when PSD95-
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nNOS binding was inhibited in animals via ZL006 pre-treatment (Figure 12A). No such 

differences were found in NMDAR-mediated current in BLA neurons when recorded at 

t0 (Figure 12B). We also found increased synaptosomal GluR1 expression in the BLA of 

fear-conditioned animals at t0, regardless of ZL006 treatment (Figure 12C). Additionally, 

there were no differences in phosphorylation of the Ser831 and Ser845 sites on GluR1 at 

t0 (Figure 14A, B). First, this indicates that the initial spike in AMPAR-mediated current 

observed after fear conditioning is due primarily to increased synaptosomal GluR1 

expression. Second, since ZL006-treatment did not block GluR1 expression nor 

phosphorylation levels on GluR1, and yet blocked the increase in AMPAR-mediated 

currents, it indicates that there are alternative mechanisms underlying ZL006-mediated 

blockade of AMPAR in the early stages after fear conditioning. These mechanisms could 

include nitrosylation, phosphorylation at alternative GluR1 sites, or effects on other 

AMPAR subunits. 

When tested for cued fear expression 24h after fear conditioning, we observe 

attenuated cued fear consolidation in animals treated systemically with ZL006, validating 

a previous study (Figure 11)162. Investigating AMPAR and NMDAR function and 

expression patterns at t24, we found persistent increases in AMPAR-mediated current at 

t24, compared to tone only controls. These increases were blocked, however, in fear-

conditioned animals given ZL006 treatment (Figure 13A). As noted before, AMPAR-

mediated neurotransmission remained elevated to the same levels 24h after fear 

conditioning as they were immediately after fear conditioning, while inhibition of the 

PSD95-nNOS interaction blocked this increase. Importantly, unlike at t0, we also 
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observed a significant increase in NMDAR-mediated current in fear-conditioned animals 

at t24, which was also blocked with ZL006 treatment (Figure 13B).  

Unlike t0, at t24, the total synaptosomal GluR1 levels were not altered in the BLA 

of fear-conditioned animals, suggesting that while acute increase in AMPAR function 

was accomplished by increasing total number of synaptic AMPARs, the functional 

increase in AMPAR function at t24 had a different molecular mechanism. Consistent 

with this assumption, we found that both p-Ser831 and p-Ser845 GluR1 levels in the 

BLA increased with fear conditioning and were subsequently blocked with ZL006 

treatment (Figure 15A, B). This importantly suggests that phosphorylation at Ser831 and 

Ser845 plays a significant role in enhancing AMPAR function 24h after fear 

conditioning., and this role is likely mediated via the PSD95-nNOS interaction.  

In studying the molecular mechanism underlying the NMDAR-mediated current 

increases in the BLA at t24 following fear conditioning, we found that the synaptosomal 

levels of NR2B also increased in vehicle treated fear-conditioned animals which were 

blocked in ZL006-treated animals (Figure 13D). Surprisingly, we found unique 

expression patterns of phosphorylation at our sites of interest in NR2B at t24. 

Phosphorylation levels of both Ser1303 and Ser1480 at t24 were elevated in fear-

conditioned animals, but blocked in ZL006-treated animals, indicating the importance of 

these sites in enhancing and supporting NMDAR function in the late stages of fear 

memory consolidation (Figure 15C, E). In contrast, phosphorylation of Tyr1472 was 

unaltered in fear-conditioned animals, but significantly downregulated in ZL006-treated 

animals, suggesting that Tyr1472 does not necessarily play a role in the increase of 

NMDAR-mediated current we observed at t24 (Figure 15D). Phosphorylation of Tyr1472 
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may nonetheless be regulated in an activity-dependent manner, which could explain the 

downregulation of expression in fear-conditioned, ZL006-treated animals. 

Our pharmacological approach here investigates nNOS-mediated effects on 

glutamatergic signaling within the BLA, a mechanism that appears critical to 

consolidation of cued fear. The interaction between PSD95 and nNOS activates nNOS 

and results in the production of nitric oxide (NO), which activates several downstream 

mechanisms enhancing plasticity, including S-nitrosylation via NO317. Fyn, a Src kinase 

that phosphorylates Tyr1472 on NR2B, requires S-nitrosylation for its kinase activity186. 

Another kinase whose activity is mediated by NO is calcium/calmodulin-dependent 

protein kinase II (CaMKII), which phosphorylates Ser1303 on NR2B as well as Ser831 

on GluR188,104,318. CamKII also activates casein kinase 2 (CK2), which further 

phosphorylates Ser1480 on NR2B91,92. Upon production, NO also activates soluble 

guanylate cyclase (sGC), which then catalyzes production of cGMP, a second messenger 

signaling molecule192,319. cGMP-dependent activation of cGMP-dependent protein kinase 

II (cGKII) is vital for phosphorylation of Ser845 on GluR1198. This suggests that nNOS is 

crucial for regulation of activity of multiple kinases. In addition to these studies, we 

found that blocking nNOS activity, whether pharmacologically or genetically, inhibits 

activity-dependent increases in phosphorylation of most of our tested sites on GluR1 and 

NR2B in the BLA. Our findings further support and elucidate the details of nNOS-

mediated downstream mechanisms that ultimately control GluR1 and NR2B trafficking 

and conductance following fear conditioning. 

Our findings specify a time- and experience-dependent NMDAR-PSD95-nNOS 

signaling mechanism underlying cued fear memory consolidation and show that a 



 

85 

pharmacological and genetic blockade of nNOS activity is able to inhibit this mechanism. 

We provide evidence for the role of nNOS in the BLA in the rapid increases in total 

synaptic AMPAR levels in the acute stage of fear conditioning, and phosphorylation of 

Ser831 and Ser845 of GluR1 and Ser1303 of NR2B for the sustained increases in 

AMPAR and NMDAR conductance during the late stages of fear memory consolidation. 

Moreover, we show that blocking nNOS activity within the BLA is able to prevent the 

phosphorylation of these sites at 24h after fear conditioning, sufficient to inhibit the 

increases in AMPAR- and NMDAR-mediated currents and attenuate cued fear 

consolidation.  

There appears to be further nuances to the phosphorylation of the various sites on 

the NR2B subunit. For example, while we do not see a significant increase in 

phosphorylation of Tyr1472 on NR2B at t24, this may be because S-nitrosylation of Fyn 

kinase, which phosphorylates Tyr1472, has been shown to peak in activity 6h after 

stimulation of NO186. Importantly, though, we observe that ZL006 treatment reduced the 

phosphorylation of Tyr1472. Thus, it is possible that Tyr1472 levels changed between 0 

and 24h after fear conditioning but were returned to normal by 24h. This would indicate 

that ZL006 treatment possibly blocked phosphorylation of Tyr1472 at some point after 

fear conditioning, which was sustained and later observed at t24.  

The other phosphorylation site that showed unexpected expression patterns is 

Ser1480 on NR2B. Interestingly, it is reported that phosphorylation of Ser1480 on NR2B 

localizes it to the extrasynaptic membrane, where it may be endocytosed93. However, we 

observed an increase in synaptosomal NR2B levels and NMDAR-mediated currents at 

t24 that correlated with increased p-Ser1480 levels in our fear-conditioned and vehicle-
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treated animals at t24, all of which were blocked with ZL006 treatment. This suggests 

that phosphorylation at NR2B at Ser1480 ensures a pool of extrasynaptic NR2B that is 

readily available to be trafficked to the synapse. As ZL006 blocked phosphorylation at 

Ser1480, nNOS may also modulate the availability of an extrasynaptic pool of NR2B. 

In summary, our findings identify an NMDAR-PSD95-nNOS axis-regulated 

pattern of time-dependent changes in AMPAR and NMDAR functions, surface 

expressions, and phosphorylation states that appears to be critical for the molecular 

mechanism in the BLA underlying cued fear acquisition. We were able to impair cued 

fear consolidation and block most of the synaptic and molecular changes via systemic 

administration of a small molecule inhibitor of the PSD95-nNOS interaction. These 

findings further demonstrate that activities of synaptic AMPARs and NMDARs within 

the BLA are temporarily orchestrated to ensure proper fear memory formation and 

stabilization. Within the BLA, this concerted activity is largely regulated via activation of 

the NMDAR-PSD95-nNOS axis and its downstream signaling. Our findings reveal a 

series of temporally and spatially specific molecular mechanisms underlying the 

consolidation of cued fear memory, and as such, serves as an important pathway to target 

for developing novel treatment of fear disorders.  
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CHAPTER 4 

Intra-Basolateral Amygdala Knockdown of nNOS Weakens Auditory Fear 

Consolidation and Alters the Synaptosomal Expression and Phosphorylation Levels 

of GluR1 and NR2B 

4.1 Introduction 

Neuronal nitric oxide synthase (nNOS) is an enzyme implicated in regulation of 

fear memory consolidation162. nNOS is expressed abundantly in the central nervous 

system and is activated downstream of N-Methyl-D-aspartic acid receptor (NMDAR) 

activation in neuronal cells118,249,250. Upon presynaptic release, glutamate binds to and 

opens NMDARs, which allows for calcium influx65,301. Postsynaptic density protein 95 

(PSD95) is a scaffolding protein that binds to NMDARs and nNOS to form the 

macromolecular NMDAR-PSD95-nNOS complex118,249,250. nNOS contains a 

calcium/calmodulin (CaaM)-binding domain137,138. When intracellular calcium levels rise 

due to NMDAR activation, CaM binds and conformationally alters nNOS152,153. These 

conformational changes activate nNOS to catalyze the production of nitric oxide (NO), 

which regulates multiple synaptic plasticity mechanisms169,172,175,178,180,192,193. Several 

studies report that inhibiting nNOS activity alters auditory fear consolidation, and I 

showed in chapter 3 that this might be due to the unique effects of the NMDAR-PSD95-

nNOS axis on glutamatergic neurotransmission in the BLA, a central region for fear 

memory consolidation16,162,204,231. 

The results in chapters 2 and 3 are based on a model of systemic administration of 

an inhibitor of PSD95-nNOS interaction; however, we observed transcriptional and 

molecular changes specifically within the BLA. These discoveries support the results 
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from our laboratory’s recent publication, in which we demonstrated that an intra-BLA 

inhibition of PSD95-nNOS interaction sufficiently attenuated fear consolidation162. 

Therefore, we wondered if blocking nNOS altogether in the BLA would also result in the 

same behavioral and synaptic phenotype we observed in chapter 3.  

Here, we injected AAV5-nNOS-siRNA-CMV-GFP into the BLA of rats to 

knockdown nNOS expression. In addition to auditory fear conditioning, we tested 

animals in numerous other behavioral tests to investigate motor function, social and 

anxiety-like behavior, and spatial memory. Finally, in the BLA, we examined the 

synaptosomal expression levels of GluR1 and NR2B as well as the levels of 

phosphorylation at the sites previously probed in chapter 3. We demonstrated that the 

AAV-mediated knockdown of nNOS in the BLA reduces cued fear consolidation, does 

not affect motor function, social and anxiety-like behaviors, or spatial memory, and 

prevents experience-dependent increases of total and phosphorylated levels of 

synaptosomal GluR1 and NR2B in the BLA.  

4.2 Materials and Methods 

Animals: Adult male Sprague-Dawley rats (250-300 g, Harlan, IN) were used for 

all experiments. Rats were housed in a temperature-controlled vivarium (22 ⁰C) on a 

12:12h light-dark cycle with food and water provided ad libitum. All rats were single-

housed and given at least seven days to acclimate to new housing environment before 

handling and behavioral testing. Animal care was in accordance with NIH Guidelines for 

the Care and Use of Laboratory Animals, and all procedures were approved by the IUPUI 

Institutional Animal Care and Use Committee.  
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Fear conditioning test: Rats were handled for five min/day in the five days leading 

up to fear conditioning. On the first day of testing, rats were habituated to two contexts 

for 10 min. Both contexts were a 25.5 x 25.5 x 39.5 cm box, placed in a larger, 

soundproof Ugo Basile box with white 15-lux light and white noise at 4% volume (55 

dB). Context A had transparent walls and a metal grid floor connected to a shock 

generator (Stoelting Co., Wood Dale, IL, USA) and was cleaned with 70% ethanol 

between all trials. Context B had patterned wall inserts, a plexiglass floor insert and was 

cleaned with 1% acetic acid between all trials. Twenty-four hours after habituation, rats 

were placed in context A for a 100s habituation followed by fear conditioning with three 

tones (20s, 4kHz, 80dB) that co-terminated with a shock (0.5s, 0.8mA). The inter-trial 

interval (ITI) was 100s, and the rat remained in the box for 60s after the last trial. After 

24h, we tested for fear responses by placing rats in context B with the same protocol but 

without foot-shocks. Animal movement was tracked using an automated video recording 

and tracking system (ANY-maze, Stoelting Co., Wood Dale, IL, USA). Fear responses 

were calculated as the percentage of time spent freezing during tones; freezing was 

defined as full immobility excluding respiration. A two-way ANOVA was used, with 

treatment as a between-subjects factor and tones as a within-subjects factor. The post hoc 

Fisher’s LSD test was used when p < 0.05. 

Open field (OF) test: Rats were habituated to a dark testing room illuminated with 

a red lightbulb for at least 30 min prior to the beginning of testing. For the OF test, rats 

were placed in the center of the OF box (91.5 x 91.5 x 30.5 cm, open-topped) and 

allowed to explore the box for 5 min. A ceiling-mounted CCD camera was used to record 
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the test, which was later analyzed using the ANY-maze automated tracking system 

(Stoelting Co.). We used distance traveled to measure locomotor activity. 

Social interaction (SI) test: Rats were again habituated to a dark testing room 

illuminated with a red lightbulb for at least 30 min prior to the beginning of testing. For 

the SI test, subject rats and a sex-, age-, and weight-matched partner were placed into the 

OF box together. The fur of subject rats was marked to discern them more easily from the 

partner rat. Testing was conducted for 5 min and was recorded in the same manner as the 

OF test. An observer blinded to the treatment groups manually scored all videos using 

ODlog v2.6.1. All non-aggressive interaction with or investigation of the partner rat 

initiated by the subject rat was scored as SI. This included sniffing, anogenital 

investigation, climbing over or under the partner rat, grooming, or chasing/following the 

partner rat.  

Elevated plus maze (EPM) test: The EPM consisted of 2 sets of perpendicular 

arms elevated 25 inches from the ground; one set of arms was open, and the other was 

closed (55 x 4 in and 55 x 4 x 6 in). For testing, rats were placed in the center area and 

allowed to explore for 5 min. A ceiling-mounted CCD camera was used to record all 

testing. ANY-maze software (Stoelting Co.) was used to analyze the videos and 

determine the timing and number of entries into each arm. 

Y-maze test: The Y-maze consisted of a cylindrical center chamber with 3 

adjacent arms (34 x 8 x 14.5 cm) in the shape of a Y, with visual cues at the end of each 

arm as well as consistent distal cues around the room. Rats were habituated to the room 

for at least 30 min prior to testing. For acquisition training, rats were placed in a start arm 

(the same start arm was used for all rats throughout testing) and allowed to explore the 
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start arm, center, and a familiar arm (which was the same for all rats throughout testing) 

for 10 min. The novel arm was blocked for acquisition training. After 1h, the novel arm 

was opened, and rats were placed in the start arm and allowed to explore all arms for 5 

min. A ceiling-mounted CCD camera was used to record all testing. Videos were 

manually analyzed by an observer blinded to the treatment groups using ODlog v2.6.1 to 

record the number and duration of arm entries for each arm.   

Viral knockdown of nNOS: Rats (~65 g) were anesthetized in a chamber with 5% 

isoflurane and placed in a stereotaxic frame. Isoflurane was maintained at 2.5% 

throughout the surgery. Using sterile technique, the skull was exposed to drill holes for 

targeting the BLA. Using a Hamilton syringe, 400 nL of either AAV5-nNOS-siRNA-

CMV-GFP or AAV5-scrambled-CMV-GFP virus was bilaterally delivered at a rate of 80 

nL/min into the BLA (AP -1.48, ML 4.25, DV -8). The syringe was left in place for 10 

min to minimize off-target leakage and was removed very slowly afterward. Rats were 

tested in behavioral paradigms (order of testing: open field, social interaction, elevated 

plus maze, Y-maze, fear conditioning) 4 weeks after surgery.   

Western blotting: Rats were sacrificed by deep anesthesia with isoflurane 

followed by rapid decapitation. The brains were removed and rapidly frozen in iso-

pentane (Fisher Scientific) on dry ice and stored at -80°C until processing. The brains 

were sectioned on a Leica CM1950 cryostat at 300 μm, and punches of the BLA were 

collected using a 1 mm diameter Harris micro-punch (Electron Microscopy Sciences). 

The punches were homogenized in 10% w/v 0.32M HEPES sucrose and centrifuged at 

500 g for 10 min. The supernatant was centrifuged at 12,500 g for 15 min and the 

resulting pellet contained the synaptosomal membrane. The pellet was resuspended in 
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10% w/v lysis buffer supplemented with the Halt protease and phosphatase inhibitors 

cocktail (Thermo Scientific). A BCA assay (Thermo Scientific) was used to determine 

protein concentration. Ten micrograms of protein per sample were loaded onto 12% Bis-

Tris protein gels (Bio-Rad) and transferred to a nitrocellulose membrane (Amersham). 

The blots were blocked for 1h and then incubated overnight at 4°C with anti-Glur1 

(1:1000, ab109450, Abcam), anti-pGluR1 (S831, 1:500, 04-823, Millipore Sigma), anti-

pGluR1 (Ser845, 1:500, OPA1-04118, Invitrogen), anti-NR2B (1:1000, ab65783, 

Abcam), anti-pNR2B (Ser1303, 1:500, 07-398, Millipore Sigma), anti-pNR2B (Tyr1472, 

1:500, AB5403, Millipore Sigma), anti-pNR2B (Ser1480, 1:500, ab73014, Abcam), anti-

nNOS (1:500; sc-5302, Santa Cruz Biotechnologies), and anti-β-actin (housekeeping 

gene) (1:1000, sc-47778, Santa Cruz Biotechnology) antibodies. Blots were washed, 

incubated for 1h with secondary antibodies, and washed again. Blots were scanned using 

an Odyssey CLx scanner (Li-cor), and Li-cor Image Studio software was used to perform 

densitometry. The densities of each protein of interest were normalized to the loading 

control (β-actin). A one-way ANOVA was used for statistical analysis. Post hoc Fisher’s 

LSD test was used when p < 0.05. 

Immunohistochemistry: The brains from animals injected with nNOS-siRNA or 

scrambled virus were collected ~15 mins after fear consolidation testing ended. Rats were 

deeply anesthetized with isoflurane and perfused trans-cardially with phosphate-buffered 

saline (PBS, pH 7.4) followed by 4% paraformaldehyde (PFA) in PBS (pH 7.4). The 

brains were placed in 30% sucrose in PBS at 4°C until they sank, sectioned coronally at 

35 µm using a freezing microtome, protected from light, and stored in cryoprotectant at -

20°C. Alternate sections containing the BLA were rinsed with PBS (3x, 10 min), 
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incubated with mouse anti-nNOS (1:500; sc-5302, Santa Cruz Biotechnologies) in PBS-T 

overnight, and then rinsed in PBS-T (3x, 10 min). Next, sections were incubated at RT 

for 90 min with goat anti-mouse IgG (1:500; A-11004, Thermo Fisher Scientific) in PBS-

T and then rinsed in PBS-T (3x, 10 min). Sections were mounted on slides, air-dried, and 

cover-slipped. A Leica confocal microscope was used to obtain images of the BLA. 

4.3 Results  

Viral siRNA-mediated knockdown of nNOS in the BLA impairs cued fear consolidation 

Knowing that systemic blockade of the PSD95-nNOS interaction alters AMPAR- 

and NMDAR-mediated currents as well as expression and phosphorylation states of 

GluR1 and NR2B subunits specifically in the BLA, we sought to determine if a BLA-

specific knockdown of nNOS interferes with fear consolidation and the underlying 

molecular sequence of events in a manner similar to ZL006 treatment.  

To do this, rats were bilaterally infused with an AAV, AAV5-nNOS-siRNA-

CMV-GFP, that targeted the nNos gene. Four weeks later, we found that the virus was 

expressed in the BLA and was associated with an overall decrease in BLA-localized 

nNOS protein expression (Figure 18A). The rats were tested in the same cued fear 

conditioning paradigm as in chapters 2 and 3. We observed normal fear acquisition in the 

control and nNOS knockdown rats. However, during the fear expression test 24h later, 

the nNOS knockdown group displayed significantly reduced freezing (Figure 18B). We 

also tested for other behavioral effects of the nNOS knockdown. We found no differences 

between control and nNOS knockdown rats in locomotor activity, social interaction 

behaviors, anxiety-like behavior, and spatial memory (Figure 18C, D). 
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Figure 18. siRNA-mediated knockdown of nNOS in the BLA disrupts cued fear 

consolidation. A) Immunofluorescence images and Western blot results show successful 

localization and knockdown of nNOS in the BLA (*p < 0.05). B) Rats that were exposed 

to tone-shock pairs show normal acquisition, with freezing increasing up to 91.3 ± 14.3% 

by the end of acquisition testing (Trial: F2,50 = 44.98, p < 0.0001). After 24h, during 

consolidation testing, nNOS knockdown animals show consistently and significantly 

lower freezing (45.1 ± 29.1%, averaged) compared to viral control rats (84.9 ± 16.7%, 

averaged) and tone only control rats (2.6 ± 3.4%, averaged) (Treatment: F3,24 = 30.37, p < 

0.0001). C) No significant differences were found between control and nNOS 

knockdown animals in locomotion, anxiety-like behaviors, and social interaction (as 

tested using the open field test, elevated plus maze, and social interaction test, 

respectively). D) In the Y-maze test, the number and duration of novel arm visits were 



 

95 

significantly greater in control and nNOS knockdown rats. *p < 0.05; **p < 0.01; ****p 

< 0.0001. 
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Viral siRNA-mediated knockdown of nNOS in the BLA alters synaptosomal expression 

and phosphorylation of GluR1 and NR2B 

We subsequently tested whether the knockdown of the nNOS gene in the BLA 

disrupted synaptosomal protein expression patterns in a similar manner to the ZL006 

treatment. After testing for cued fear consolidation, we probed for GluR1, NR2B, and the 

phosphorylation sites of interest (Ser831 and Ser845 on GluR1 and Tyr1472, Ser1480, 

and Ser1303 on NR2B) within the BLA. Analogous to t24 (24 hours after fear 

conditioning) in our ZL006-treatment study, we found that the total expression of 

synaptosomal NR2B is significantly decreased in the BLA of the nNOS knockdown 

group, compared to that of the control group (Figure 19B). There were no changes in 

synaptosomal GluR1 expression in the BLA of nNOS knockdown animals, which is in 

agreement with our observations of ZL006-treated groups at t24 (Figure 19A). We 

detected similar trends in the expression levels of all but one synaptosomal 

phosphorylated subunits. Compared with phosphorylation levels in the control group, in 

the nNOS knockdown group, phosphorylation levels of Ser831 and Ser845 on GluR1 and 

Tyr1472 and Ser1303 on NR2B decreased significantly at t24 (Figure 19C-F). However, 

expression levels of Ser1480 on NR2B were not significantly different between the two 

groups (Figure 19G). Overall, our findings show that nNOS activity plays a major role in 

regulating downstream signaling pathways that impact synaptic AMPAR and NMDAR 

functions and expressions in the BLA and that nNOS plays a unique role in the 

consolidation of cue-induced fear without affecting motor or other memory functions. 
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Figure 19. Alterations in phosphorylation of key sites on the synaptosomal GluR1 

and NR2B subunits 24h after fear acquisition in nNOS knockdown animals. A) 

Expression levels of synaptosomal GluR1 in the BLA of rats 24h after fear acquisition. 

B) Expression levels of synaptosomal NR2B in the BLA of rats 24h after fear acquisition 

(p = 0.002). C) Expression levels of phosphorylated Ser831 on synaptosomal GluR1 in 

the BLA of rats 24h after fear acquisition (p = 0.009). D) Expression levels of 

phosphorylated Ser845 on synaptosomal GluR1 in the BLA of rats 24h after fear 

acquisition (p = 0.008). E) Expression levels of phosphorylated Ser1303 on synaptosomal 

NR2B in the BLA of rats 24h after fear acquisition (p = 0.001). F) Expression levels of 

phosphorylated Tyr1472 on synaptosomal NR2B in the BLA of rats 24h after fear 

acquisition (p = 0.02). G) Expression levels of phosphorylated Ser1480 on synaptosomal 

NR2B in the BLA of rats 24h after fear acquisition. *p < 0.05; **p < 0.01; ***p < 0.001. 
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4.4 Discussion 

After determining in chapter 3 that systemic delivery of ZL006 attenuated cued 

fear consolidation in a rat model and uniquely altered glutamatergic neurotransmission 

within the BLA in a time-dependent manner in chapter 3, we next determined whether a 

BLA-specific genetic knockdown of nNOS would have similar outcomes. To do this, we 

injected the BLA of rats with either AAV5-nNOS-siRNA-CMV-GFP or scrambled 

control constructs.  

We found significantly reduced expression of nNOS protein in the BLA of rats 

with AAV-mediated nNOS knockdown. Additionally, we showed that rats with nNOS 

knocked down had diminished consolidation of cued fear memory and no deficits in 

motor function, social and anxiety-like behaviors, spatial memory, and fear acquisition 

(Figure 18). Similar to what we found in the BLA from ZL006-treated animals at t24 in 

chapter 3, the BLA from rats with nNOS knocked down displayed decreased levels of 

total NR2B, p-Ser831, p-Ser845, p-Ser1303, and p-Tyr1472. However, we saw no 

differences in p-Ser1480 levels (Figure 19).  

Interestingly, it has been reported that the phosphorylation of Ser1480 by 

CaMKII-activated CK2 on NR2B localizes it to the extrasynaptic membrane, where it 

may be endocytosed91-93. In contrast with our results in chapter 3, we found that Ser1480 

phosphorylation remained unchanged in scrambled control and nNOS knockdown 

animals. These differences could be due to virus-specific compensatory mechanisms or 

other regulatory mechanisms that modulate Ser1480 phosphorylation in a complex, 

unknown manner. However, since rats with nNOS knocked down were behaviorally 
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similar to the ZL006-treated rats, we conclude that Ser1480 phosphorylation does not 

directly impact the reductions of fear consolidation in the genetic knockdown model.  

Several recent studies have shown that disrupted fear learning is a common 

phenotypic effect of knocking down or knocking out nNOS160,231,320. Our findings in this 

chapter revealed that knockdown of nNOS in the BLA impaired cued fear consolidation, 

which validates existing studies and provides novel data on the importance of nNOS 

activity specifically in the BLA for auditory fear consolidation. We are the first to report 

that an nNOS knockdown in the BLA alters the expression levels and phosphorylation 

states of synaptosomal GluR1 and NR2B in fear-conditioned animals, indicating that 

nNOS is involved in the regulation of glutamatergic receptor trafficking and 

phosphorylation states. Overall, the experiments in this chapter utilized the silencing of 

nNos in the BLA via an AAV-mediated knockdown to substantiate the importance of 

nNOS-mediated signaling in the BLA for auditory fear consolidation.  

The silencing of genes, termed RNA interference (RNAi), has been a successful 

tool to study molecular and cellular mechanisms downstream of a single gene of 

interest321. More recently, the appeal of RNAi drugs in clinical settings has been 

reignited. Three RNAi drugs have been approved in the European Union and the United 

States in the last three years, and seven other RNAi drugs are in Phase 3 clinical trials322. 

RNAi therapeutics offer a way to target and utilize endogenous machinery to silence 

pathogenic genes and can be further localized to specific organs or cell types. Thus far, 

RNAi drugs have been developed to target rare genetic conditions322. However, studies 

using RNAi of nNOS have reported neuroprotective effects in Parkinson’s disease and 

astrocytic brain tumors in pre-clinical models323,324. Adding to our findings in this 
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chapter, targeting nNOS via RNAi holds therapeutic potential that should be explored in 

future studies.  

In summary, our experiments in the nNOS knockdown model recapitulated the 

behavioral and molecular phenotypes we observed in the ZL006-treated animals 24h after 

fear conditioning (chapter 3). Thus, we conclude that BLA-specific nNOS signaling plays 

an important role in auditory fear consolidation, likely via the regulation of glutamatergic 

receptors expression and phosphorylation levels.  
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CHAPTER 5 

Conclusion 

5.1 General Summary 

The research in this dissertation investigated multiple molecular mechanisms 

underlying the NMDAR-PSD95-nNOS axis in the BLA and its role in auditory fear 

consolidation in a rodent model.  

The NMDAR-PSD95-nNOS axis mediates transcriptional regulation in the BLA during 

fear consolidation 

First, we utilized a whole transcriptomic approach to study the BLA 24 hours 

after fear conditioning. We chose this timepoint based on previous studies of fear 

consolidation. In Pavlovian fear behavioral models, 24 hours after fear conditioning, 

animals expressing fear in response to the CS are considered to have consolidated the 

long-term fear memory. This timepoint also allowed us to behaviorally confirm that 

disrupting the NMDAR-PSD95-nNOS axis impaired fear consolidation before we 

evaluated transcriptomic changes in the BLA.  

In chapter 2, we showed that the BLA transcriptome was altered during fear 

consolidation. Additionally, we showed that pathways downstream of the NMDAR-

PSD95-nNOS axis were especially enriched. Due to these findings, we decided to do a 

similar study treating animals with ZL006, a small molecule inhibitor of PSD95-nNOS 

interaction, to determine how disrupting the NMDAR-PSD95-nNOS axis modifies gene 

and pathway enrichment in the BLA during fear consolidation. In doing so, we observed 

that ZL006 treatment restored gene expression to control-like levels. Thus, we revealed 
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that the NMDAR-PSD95-nNOS axis is involved in transcriptional regulation in the BLA 

during fear consolidation.  

There are at least two reported time periods when transcription occurs in memory 

consolidation: one immediately after a learning event and another that begins 3-6 hours 

after a learning event and lasts for more than 24 hours but less than 48 hours after the 

event13,205. As our laboratory has shown, the PSD95-nNOS interaction peaks 1-2 hours 

after fear conditioning, an effect which ZL006 prevents162. Putting this in the context of 

chapter 2, the PSD95-nNOS interaction may regulate at least the second transcription 

event that occurs after initial learning. This hypothesis is further supported by recent 

studies that showed that nNOS interacts with and regulates the activity of transcription 

factors such as HIF-1α, NFκB, SOX2, and PGC-1α268,325-327. 

We also discovered key genes and pathways altered in the BLA during fear 

consolidation with and without treatment of ZL006 and revealed that IGF2 and IGFBP2 

signaling might be a crucial mechanism downstream of nNOS activation. Over the last 10 

years, multiple studies have investigated the roles of IGF2 and IGFBP2 in memory 

consolidation, indicating a new and exciting mechanism that should continue to be 

explored. In summary, IGF2 enhances fear memory consolidation, promotes 

neurogenesis, and is increased in response to fear extinction, indicating the importance of 

IGF2 signaling in memory formation and stabilization258,328,329. Similarly, IGFBP2 plays 

a role in neurodegeneration, spatial learning, mature dendritic spine formation, and early-

life hippocampal LTP259,330,331. IGFBP2 is also reduced in models of depressive-like 

behavior and has therapeutic effects in animal models of PTSD259,332. Taken together, 
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these results show that IGF2/IGFBP2 signaling may be a translationally significant 

pathway to study further. 

In summary, we determined that a unique transcriptomic profile of the BLA 

during fear consolidation was altered with disruption of the NMDAR-PSD95-nNOS axis. 

Therefore, we established that the NMDAR-PSD95-nNOS axis plays an important role in 

fear consolidation via transcriptional regulation of the BLA.  

The NMDAR-PSD95-nNOS axis regulates time-dependent AMPAR and NMDAR 

expression, phosphorylation, and conductance in the BLA during fear consolidation 

Next, we sought to understand the effects of disrupting the NMDAR-PSD95-

nNOS axis on neurotransmission within the BLA. As our laboratory has shown 

previously, ZL006 impairs LTP in BLA neurons. Another study utilizing intra-amygdalar 

infusion of an NOS inhibitor, 7-nitroindazole, and a PKG inhibitor, Rp-8-Br-PET-

cGMPS, showed that these inhibitors blocked fear conditioning-induced increases in 

amygdalar GluR1 levels223. In the fear circuit, NMDAR activity plays an important role 

in neurotransmission, and NMDAR-mediated AMPAR trafficking in the BLA can further 

modulate activity-dependent synaptic potentiation310,333. Therefore, we explored AMPAR 

and NMDAR conductance and surface expression in the BLA after fear conditioning. In 

doing so, we discovered that AMPARs and NMDARs in the BLA worked in concert over 

time after an initial fear learning event to ensure sufficient consolidation of the memory.  

Two recent studies in PSD95-deficient mice showed that AMPAR/NMDAR 

current ratios were decreased in the mPFC and hippocampus, accompanied by correlating 

changes in subunit expression (reduced GluR1 levels and increased NR2B levels)334,335. 

These studies suggest that PSD95 and its downstream signaling may be important for 
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regulating AMPAR- and NMDAR-mediated currents and subunit expression. Moreover, 

multiple studies have reported that NO signaling upregulated the trafficking of AMPARs 

to the surface membrane, specifically of the GluR1 subunit188,189,336,337. Furthermore, a 

study on NO regulation of NMDAR activity showed that NO had no effects on synaptic 

NMDAR-mediated current or expression, although this study, similar to the others 

mentioned above, was performed in tissue slices and did not include an experience-

dependent factor338. Our study showed that disrupting the PSD95-nNOS interaction can 

have similar inhibitory effects on both AMPAR-mediated current and synaptosomal 

GluR1 expression; however, our findings of reduced NMDAR-mediated current and 

expression levels contradict the literature. This contradiction is likely due to differences 

in rodent models, behavioral phenotypes, and the time- and experience-dependent 

changes we focused on. Thus, our work in chapter 3 is novel and concludes that 

AMPAR- and NMDAR-mediated currents and synaptosomal expression levels are 

altered over time after fear conditioning and that the PSD95-nNOS interaction plays an 

important role in regulating these changes. 

Genetic knockdown of the nNos gene in the BLA sufficiently blocks auditory fear 

consolidation and alters GluR1 and NR2B synaptosomal expression and phosphorylation 

levels in the BLA 

The above studies utilized ZL006 as a small molecule inhibitor of the PSD95-

nNOS interaction to study the downstream effects of the PSD95-nNOS interaction in fear 

consolidation. Pharmacological agents that are effective against consolidation of fear, 

such as ZL006, are useful tools to functionally analyze the effects of inhibiting a protein, 

or in this case, a protein-protein interaction and to further analyze the druggability of a 
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therapeutic target. However, systemic administration of a drug can have off-target 

phenotypic effects, form pharmacological intermediates that affect experimental results, 

and alter or inhibit another protein or pathway. Additionally, while ZL006 blocks the 

PSD95-nNOS interaction, nNOS may still bind other proteins and form macromolecular 

complexes. 

Generally, using multiple approaches to answer the same questions is ideal for 

experimental rigor. As such, we decided to utilize a BLA-specific knockdown of the 

nNos gene to validate the behavioral and molecular phenotypes we observed in chapter 3. 

To do this, we used an AAV-siRNA-mediated knockdown, which degrades the nNos 

mRNA and leads to decreased nNOS protein levels. Knocking down nNOS in the BLA 

resulted in impaired auditory fear consolidation and reduced NR2B synaptosomal 

expression, corroborating the results in chapter 3.  

Multiple studies in nNOS-deficient models have displayed impairments in both 

contextual and cued fear learning. The Song laboratory demonstrated deficits in social 

interaction and anxiety-like behaviors, as well as reduced synaptosomal NR2B levels (but 

no changes in GluR1 levels) in a study involving an intra-BLA knockdown of nNOS in 

mice 160,231,339. While our results in chapter 4 substantiated the fear behavioral phenotype 

and changes in synaptosomal GluR1 and NR2B levels, we discovered no effects on social 

or anxiety-like behaviors. Two key differences that may have led to these discrepancies 

are that we studied rats instead of mice and used different testing paradigms for assessing 

social and anxiety-like behaviors.  

It is also interesting to note that while we used the BLA from fear-conditioned 

rats in our biochemical investigation of GluR1 and NR2B levels, the Song group utilized 
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fluorescence-activated cell sorting and thus only studied nNOS-negative interneurons 

from the BLA of behaviorally naïve mice. However, both protocols yielded similar 

results. Therefore, it may be valuable to use the model we established in chapter 4 to 

fluorescently sort and study nNOS-negative neurons in the BLA, as pooling all BLA 

neurons regardless of whether nNOS expression has been successfully knocked down 

could dilute the output of our biochemical assays. 

5.2 Significance  

The work in this thesis provides the novel finding that disrupting the NMDAR-

PSD95-nNOS axis, both pharmacologically and genetically, alters the BLA transcriptome 

and glutamatergic neurotransmission, in addition to specifically mitigating fear memory 

consolidation.  

We chose to study the presented fear conditioning model to study the molecular 

effects of a traumatic event on associative fear learning in the BLA. The more PTSD is 

studied as a neuropsychiatric illness, the greater the variety of causes, risk factors, and 

identified symptoms. Once popularly known as a mental illness affecting soldiers, it is 

now redefined as something that can affect anyone and can be caused by a single 

traumatic incident.   

While traumatic events are not preventable, studies show that treating patients 

immediately after trauma with a β-adrenergic receptor antagonist reduces their likelihood 

of developing PTSD340. However, if the antagonist was given anytime up to 48 hours 

after trauma, there were no effects, providing clinical evidence for a time frame after 

trauma when drug administration can successfully prevent PTSD341. On the other hand, 

patients with PTSD that are well-beyond this narrow time frame still benefit from 
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treatments paired with cognitive behavioral therapy or exposure therapy342. Applying this 

to my research, it is clear that fear memory consolidation requires temporally-regulated 

molecular mechanisms. Studying the effects of these events on focal neural circuits and 

molecular pathways, as I have done here, may help us to understand how and when to 

best treat patients who are high-risk for developing PTSD. It also brings us a step closer 

to developing therapeutics that treat very specific symptoms of PTSD with minimum 

side-effects. Additionally, these treatments could be paired with behavioral therapy to 

have better outcomes in patients with protracted or delayed PTSD symptoms and 

diagnoses.  

5.3 Limitations & Future Directions 

An important limitation of the work presented in this thesis is that it was done in 

male rats. Studies in nNOS knockout females showed impairments in short-term and 

long-term memory after fear conditioning, similar to male counterparts160. However, 

corticosterone levels returned to pre-fear conditioning levels much quicker in females 

than males, and overall synaptic plasticity differed between nNOS knockout male and 

female mice160,343. Thus, while there were no sex-specific differences in behavior, there 

may be sex-specific differences in the nNOS-dependent molecular mechanisms we 

studied in this thesis. Therefore, it is vital to include females in future studies, especially 

considering the differences in PTSD symptomology and pathophysiology between males 

and females344,345. 

Another limitation is that the studies using ZL006 and nNOS knockdown in this 

thesis assumed that both methods reduced NO synthesis in target regions, although it was 

not tested in these animals. Previous studies using ZL006 have determined that ZL006 
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administration does reduce NO levels149,150. However, it would be ideal to confirm this in 

our models using an NO detection assay. This experiment would also help to determine 

whether NO from eNOS or iNOS might be compensating for NO levels in our models.  

The RNA-sequencing study in chapter 2 provided numerous opportunities for 

future studies. Primarily, IGF2/IGFBP2 signaling seems to be, as described in detail in 

chapter 2, a significant pathway in fear learning that is gaining traction in the field and 

could be a potential therapeutic target downstream of nNOS signaling. Since our results 

showed elevated IGF2 and IGFBP2 levels in the BLA with systemic ZL006 treatment, it 

would be interesting, for example, to overexpress IGF2 and/or IGFBP2 only in BLA 

neurons and investigate the effects on fear consolidation and downstream molecular 

mechanisms.  

Additionally, finding novel pathways and gene targets using RNA-sequencing and 

inhibition of nNOS signaling provides value for using similar methods to begin to parse 

out, in more detail, the transcriptional regulation that underlies fear consolidation. In the 

amygdala, histone deacetylase and DNA methyltransferase, both of which mediate 

epigenetic mechanisms via histone deacetylation and DNA methylation, respectively, 

regulate cued fear memory consolidation346. Furthermore, modulating chromatin 

remodeling in the amygdala can alter fear memory formation347. In the BLA specifically, 

inhibiting histone deacetylase enhances memory consolidation348. Overall, there is 

evidence to indicate that epigenetic mechanisms play a role in memory consolidation. 

However, there is a need to understand how the epigenome in the BLA is altered in 

response to fear conditioning. Thus, future studies in our model should utilize tools to 

analyze the epigenome of the BLA.  
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Similarly, singe-cell RNA-sequencing is another tool that would provide a 

comprehensive study of the BLA transcriptome that moves a step beyond what we 

presented in chapter 2. The cell population in the BLA is heterogenous, and as such, 

RNA-sequencing provides a snapshot of gene expression levels in the BLA. With single-

cell RNA-sequencing, we would be able to define cell-type specific gene expression 

levels, as well as define splicing patterns and gene co-expression networks on the single-

cell level. This could be paired with, for example, the nNOS knockdown model in 

chapter 4, to sort and analyze the single-cell transcriptome of nNOS-positive neurons. A 

study like this would also offer cell-type specific information about some of the gene 

targets from chapter 2, like IGF2 and IGFBP2. In summary, future studies in our model 

could utilize epigenomic and single-cell RNA-sequencing analyses to determine more 

detailed, single-cell level information that could be used to define new targets and 

regulatory mechanisms underlying nNOS-mediated cued fear consolidation.  

In chapter 3, we found that the NMDAR-PSD95-nNOS axis altered 

neurotransmission in an experience- and time-dependent manner. This alteration could be 

via cGMP signaling effects, S-nitrosylation, NO retrograde signaling, or a combination of 

all three. These are the primary downstream effects of NO production; however, it is not 

clear whether these pathways compete or work in concert to result in the changes we 

observed in chapter 3. Therefore, it would be worthwhile to do a series of studies where 

each pathway is studied separately. For example, to isolate cGMP-mediated effects, one 

could use an nNOS knockdown model, exogenously apply cGMP, and study its effects. 

Similarly, an informative method to study S-nitrosylation would be a mass spectrometry-

based analysis of S-nitrosylation sites; on a smaller scale, biotin switch assays can be 
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used to study S-nitrosylation of specific proteins. Last, numerous studies have shown that 

NO scavengers disrupt fear conditioning and LTP172,349,350. Thus, future studies in our 

model could use NO scavengers to answer various questions related to the impact of 

retrograde NO signaling. 

Finally, the nNOS knockdown model in chapter 4 successfully recapitulated the 

behavioral phenotype observed with ZL006-treatment, and as such, it can be used to 

study a wide variety of mechanisms downstream of nNOS activity. A simple yet helpful 

experiment using our nNOS knockdown model would be to investigate the effects of fear 

conditioning on LTP and AMPAR and NMDAR conductance in nNOS-negative BLA 

neurons. This experiment would help validate the results in chapter 3 and further justify 

using this model to continue studying nNOS-specific effects on fear consolidation. It 

would also help characterize the electrophysiological properties of nNOS-negative BLA 

neurons. 

5.4 Final Remarks 

This dissertation provides novel evidence to support the importance of the 

NMDAR-PSD95-nNOS axis in the BLA for fear consolidation. We established that the 

pharmacological and genetic manipulation of the NMDAR-PSD95-nNOS axis resulted in 

fear consolidation impairments, transcriptional alterations in the BLA, and time-

dependent changes in glutamatergic neurotransmission in the BLA. It is my hope that this 

research will contribute to the development of more effective therapeutics and ultimately 

the provision of better care and treatment for patients with fear disorders. 
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Homecoming Conference, Oct 2020 

• Facilitated Indiana Sciences event, theme: 'Science Policy, Society, and You', Oct 

2020 

• Facilitated Indiana Sciences event, theme: 'Science: Communication and 

Advocacy', Dec 2019 
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