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A. CALCULATION OF THE CROSS SECTION FOR He 3 -ROTON

SCATTERING IN SUPERFLUID HELIUM

1. Introduction

We have found from our measurements of diffusion in dilute He 3 - He 4 solutions that

the cross section for the He 3 -roton interaction is energy-dependent, and increases

with temperature over the temperature range of our experiment.1 The magnitude of

the cross section can be approximated from our measurements and we find that it ranges
-14 2 -14 2

from 1. 6 X 10 cm to 2. 3-2. 4 X 10 cm as the temperature increases from

1. 27 ° to 1. 690 K. To understand these results, we have analyzed a possible model for

the interaction.

2. Model for the Interaction

In the picture developed by Feynmann and Cohen 2 a solute He3 atom in liquid He II

can be thought of as a sphere moving in an inviscid background fluid, and the Feynmann-
3

Cohen wave function for the He quasi particle includes the velocity potential of the

dipole flow pattern of a sphere. The energy spectrum3 of a solute He3 quasi particle

is consistent with this hydrodynamic picture:

2 2
E3 - k /2m 3 , (1)

where E represents a binding energy to the liquid, and m 3 is an effective mass which

takes into account the backflow pattern around the sphere. Specific heat measurements

in dilute solutions verify this picture, and measurements of the normal fluid frac-

tion4 in solutions indicate that m 3  2. 7 m 3 .

The roton excitation involves many atoms of the fluid. In the Feynmann-Cohen
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picture, it arises from the backflow pattern of each atom in the liquid in the presence

of the hydrodynamic continuum formed by all of the other identical He4 atoms. At a

given atom, the exact velocity will depend on the pair correlation function, and corre-

lation effects involving many atoms. At distances greater than an interatomic distance,

however, the dipole form should give a good approximation

V(R) = (-A/ i4) v(kr

where kr determines the strength of the dipole and is nearly independent of energy, and

the quantity m 4 /A is approximately 4Twp, where p is the liquid density.

Thus, the situation is similar to that of two spheres moving in an inviscid background

fluid where the dipole flow pattern of each moving sphere produces an added pressure on

the other. To lowest order in 1/R (neglecting terms of 1/R 6 and higher) this interaction

is

U = 4rP*l1 .2-3(Pl R)(2 t ) ,

where = 1/2 a3 u is the dipole moment, with a the radius, and u the velocity of the

sphere. For the case of the He -roton interaction, we use the same form for U, with

m -m hk
4 3  mk3  3 = hk (3)3 4Tp 3' m 4  r 4Trp

At very small distances, the higher order terms are important, and in addition, the

dipole approximation for the roton will probably not be valid, To take account of these

effects in a crude way, the wave function will be cut off at a small distance a, and U

will be taken as c for U < a.

3. Method of Solution

The problem is to calculate the cross section of the velocity-dependent interaction (2)

for two particles, one having the classical energy spectrum (1), the other having the

spectrum Er = A + (h 2/2[)(k r-k )2. Putting the problem into the center-of-momentum

system does not reduce the Hamiltonian function to a one-body problem as is usually the

case. A partial wave expansion, then, does not seem appropriate. Instead, we use

first-order perturbation theory, with two-particle wave functions. A perturbation theory

calculation of the He 3 - roton interaction has been previously derived in the well-known

work of Khalatnikov and Zharkov, who took U(R ) = V 6(R) and found that o was inde-

pendent of energy. In the calculation presented here, the dipole-dipole interaction (2)

will be used with the cutoff described above. The initial roton velocity will also be taken
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into account. (The roton was assumed to be initially at rest by Khalatnikov and
6

Zharkov. ) It should be noted that the dipole-dipole interaction (2) has been recently
7, 8

used in connection with the roton-roton interaction.

The He 3 diffusion cross section is the transition rate divided by the input tie 3 cur-

rent, which for a single particle is Vrelative /N. The expression for the cross sec-

tion is

do- = K 3 U( 1'3 ) 21 6(E3+Er- ' -E'

(1 -cos ) d 3 k d3 k
x (4)

2 2'
rel (2?)3 "

where f is a factor involving the change in variable to be made in the delta function from

E to k', and y is the scattering angle of the He3 quasi particle.

The solution will involve determination of the matrix element and integration of

expression (4) over the allowed phase space. Since two-particle wave functions are

used, momentum conservation is not implicit as with the usual one-body case derived

in the CMI frame. The three equations from momentum conservation, plus the energy

delta function, impose 4 constraints on the integration so that the phase space of

allowed states will be two-dimensional. The problem is simplified by changing vari-

ables for the final states to d Akd Ak', where Ak k' - k k= k - k and, by
3 33  r = - , and, by

conservation of momentum, Ak -k' . After adding the appropriate delta functions
o3

to take this into account, and integrating over d3Ak', we are left with a single integral

over d3 k. The relation between iA! and (0, ' ), the angles defining Ar, determines

a surface in phase space over which the integration proceeds.

4. Kinetics - Conservation of Energy and Momentum in Collisions

To first order, kr is constant, equal to ko, and an elementary calculation shows

that Ak = 2kr cos , where is the angle between kr and Ak (see Fig. I-la). To second

order, let (Ak - 2kr cos ) be a small quantity. With this approximation, conservation

of energy leads to

2(V cos - V cos 0)

cakosO k, (5)
V + k /m

r r 3

A A A A

where V r  (k -k )/, V3 - k 3/m , and cos 0 - k Ak, cos -kr Ak. With a

angle of incidence between k3 and kr' and ¢' the azimuthal angle between Ak and
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the plane formed by k 3 and kr, we have

cos c = cos 0 cos a + sin 0 sin a cos 4'.

(See Fig. I-lb.)

To perform the integration, the argument of the delta function expressing energy

Tr/2 -0 Kr

()/2-

(a)

Fig. I-i.

(a) Lowest order approximation, Ak= 2kr cos P.

(b), (c) Angles defining the orientation of the
various momentum vectors.

conservation

(c)
d(arg)k since

must be written in terms of Ak with an added factor 1 dAk since

the energy delta function is of the form 6(f(Ak)). This turns out to be

d(arg)

d(Ak)
=1 2[(kr-ko) cos /L- k3 cos 0/ m3

or just Zkr/(numerator in the IAkJ expression) (Eq. 5).
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5. Evaluation of the Matrix Element

The initial and final wave functions are plane waves

i5 . r3 ik r ik r ik' .r1 33 r r 1 3 3 r ri =-- e e f =-- e e

V V

To evaluate (Ui U)Lf) (where U = oc, for r < a, and U is the expression in Eq. 2 for

r > a), it is simple to show that what is needed is

1 -ia - R (8)
V ka

with R = r 3 - rr. The integral can be shown to be

m [3(k3 Ak)(k , Ak)- k k ]  " (9)

rrp 3 r 3 r Aka

If we put A i as a function of (0, 4') in (9), we get a clumsy complicated expres-

sion. For Aka < 1, however, 3/ l(Aka)/(Aka) z 1, and the expression is greatly sim-

plified. The assumption made in this simplification is that the "hard core" radius

multiplied by the momentum change in the collision is small. (For Ak of the order

of k 3 , and a of the order of a fraction of an angstrom, the approximation is seen to

be valid.)

6. Diffusion Cross-Section Factor 1/2 (1-cosy)

The main purpose of this factor is to eliminate the effect of small-angle scattering

and emphasize large-angle scattering in the integral. The problem is being solved by
A

using 0, the angle between Ak and k 3 , rather than 4, the angle between k3 and k 3,
so an approximation will be used. From Fig. I-1 it is seen that

cos = (k + A k cos 0)/k .  (10)

A simple calculation shows that the average thermal energy of a roton is 1/2 kT, while

that of a He 3 atom is 3/2 kT, so that on the average the energy transferred to a He 3 atom

in a collision will not be large, and i 3i will not be too different from l . Then

1 Ak
cos4) 1 + (Ak/k3) cos 0 or - (- cos )= - kcos . (11)

3

Note that the cos 0 factor eliminates small-angle scattering and increases the

amplitude for large-angle scattering, as desired.
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7. Evaluation of the Phase Space Integral

We have previously derived a relation between Akjl and (0, ' ). The differential

area of the surface defined by this relation is

dA = (Ak)2 sin Odod '/cos y, (12)

where y is the angle between the normal to the surface and Ak. If the surface defined

by (5) is written as g(Ak, 0, 6 ) = 0, then cosy = Vg - Ak/ vg I and,

dA = Ak 2 sin Odd' 1 + + (13)
Ak 2  sin Aki 8 d

By using (5) and evaluating (13), we find that

2k
dA - -- V3 Ak sin @d0d'. (14)

(VTr +k /m)

Note that the factor of the relative velocity in the input current is canceled by a similar

factor in the differential area of the allowed phase space.

The cross section can now be evaluated by substituting the various factors in (4)

from (7), (8), (9), (11), and (14), using (5) and (6), and the approximation of our eval-

uation of the matrix element. The result is

Scr (2/T 3 ) 2 k 5 k k / +Vr I,

and I is a somewhat involved angular integral. After evaluating the integral, the cross

section is determined for a given k 3 and k r. By integrating the result over all angles

of incidence a, and substituting the average values of k 3 and kr at a given tempera-

ture, we determine - (T). \We now use

8 1/2 -1
k3 = 0. 71 x 108 T cm

(k -k )/k = 0. 0 60 T

n 3 = 2. 7 m 3

S= 0. 1 6 ni4 (curvature parameter in the roton spectrum)
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k = 1. 92 x 108 crn

p = 0. 141 gm cm 3 (He 4 density).

The result is

125
- 14 (1+.06 T1 ) 2

cr = 2.7 X 10 T crnm
12 3

(1+.82 T1/2

To compare this result with the values for o- derived from our diffusion measure-

ments, we evaluate 0- at the end points of our experimental temperature range:

-14 2
T 1. 27 o = 0. 67 X 10 cm

-14 2
T = 1. 690 a = 0. 76 X 10 cm .

-14 '

Thus cr increases with energy and is of order 10- cm . The experimental and

calculated values for a- agree within a factor of two and a half to three in magnitude

and the calculated values increase less rapidly with temperature. Note that the short-

range part of the interaction has been dealt with very crudely, and only first-order per-

turbation theory has been used. Nevertheless, a plausible model has been presented

which leads to an expression for the cross section which increases with energy, and

is of the correct order of magnitude, without containing adjustable parameters.

G. A. Herzlinger
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