
VIII. APPLIED PLASMA RESEARCH

A. Active Plasma Systems

Academic Research Staff

Prof. L. D. Smullin Prof. R. R. Parker
Prof. R. J. Briggs Prof. K. I. Thomassen

Graduate Students

S. P. Hirshman M. I. Mirkin M. Simonutti
J. L. Kulp, Jr. G. H. Neilson A. E. Throop
J. A. Mangano P. R. Widing

1. EFFECT OF OBLIQUENESS BETWEEN DENSITY GRADIENT AND

MAGNETIC FIELD ON RESONANCE CONES NEAR THE LOWER

HYBRID RESONANCE

A recent publication I deals extensively with the phenomena of "resonance cones" in

homogeneous plasma. This term describes the surface on which the spatial response
2

of a localized RF excitation is confined in a plasma. In a previous report, we have

examined this effect near lower hybrid resonance for a plasma with a density gradient

transverse to the magnetic field.

Most analyses of plasma waves near lower hybrid resonance in the presence of a

density gradient deal with a model in which that gradient is exactly perpendicular to

the uniform magnetic field. Fluctuations, however, in a plasma or the transport of

plasma away from a localized plasma generation region would be associated with a finite

component of density gradient in the direction of the magnetic field. This report points

out that this slight obliqueness between the density gradient and magnetic field can cause

significant changes in the resonance cones near lower hybrid resonance.

Our specific study concerns spatially localized RF wave propagation in a plasma

from a region of low density through a region of increasing density toward a layer asso-
2 2

ciated with lower hybrid resonance. It is assumed that nme/'mi << Wpe ,ee << 1, which

implies that cLH = pi. In our previous analysis of the case of perpendicular density

gradient and magnetic field, a one-dimensional density inhomogeneity of linear profile

was considered. This geometry is illustrated in Fig. VIII-1. The resulting two-

dimensional resonance-cone signal paths produced by localized RF excitation at the

low-density edge of the plasma are shown in Fig. VIII-2. The paths are two sym-

metric parabolic segments emanating from the source region and reaching tangentially

the density layer corresponding to lower hybrid resonance. The wave energy is

absorbed there according to cold-plasma theory.

This work was supported by the National Science Foundation (Grant GK-28282X).
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Fig. VIII-1. Geometry of the problem for Vn I B.

The signal paths are determined by following through the plasma the direction paral-

lel to the group velocity of an electrostatic plane wave. These paths can be expressed by

dx -K (x)

dz - +  (1)

where K and K are components of the cold-plasma dielectric tensor. Note that since
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Fig. VIII-2. Signal paths for Vn I B.
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the layer of lower hybrid resonance is determined by the relation Kl(x) = 0, the signal

path becomes tangent to the z direction at lower hybrid resonance.

When the model is generalized to allow for an arbitrary angle between the density

gradient and uniform magnetic field, it can be shown that the lower hybrid resonance

layer is no longer the only characteristic density layer of the problem. The generalized

geometry of the model is illustrated in Fig. VIII-3, where a is defined as the angle

between the density gradient and the perpendicular to the magnetic field, and a new set

of the coordinate axes x', z' is defined. The z direction is still the direction of homo-

geneity, while the z' direction is parallel to the magnetic field. The signal-path for-

mula can be written directly in terms of the primed coordinate system, since the

magnetic field is now in the z' direction.

-K (x',z')

dz' 
(2)

/ K(x', z')

In terms of the unprimed coordinate system, KI and K are functions only of x.

Equation 2 can be transformed to the unprimed coordinate system, with the result that

-K 1 (x)
+ tan a

dx K 1
( x) (3)

dz

1 - tan a
KL(x)

which corresponds to taking the plus sign in Eq. 2, and

K .. + tan a

d ((4)x)
-K 1 (x)

1 + tan a
K,pr(x)

which corresponds to taking the minus sign.

Again, the result is two signal paths emanating from the source region, although

the paths are no longer symmetric. The signal paths determined by Eqs. 3 and 4

are plotted in Fig. VIII-4 for the case of linear density profile, and for a =

tan- 1 mem me /m.. This a is generally a small number corresponding to 1. 30

for a hydrogen plasma, even less for a plasma of heavier ions. Note that compression

of the z' coordinate by a factor of 50 gives the appearance of a much larger a in
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Fig. VIII-3. Geometry allowing obliqueness between Vn and B.

Fig. VIII-4. The new signal paths have significant differences from those of the less

general case. Path 3, corresponding to Eq. 3, reaches hybrid resonance, but, as can

be shown by more complete analysis of the problem, it reflects at the lower hybrid reso-

nance layer into the mode determined by Eq. 4 (path 4a). The path then becomes

asymptotic to a particular density layer of density one half of that at lower hybrid
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Fig. VIII-4. Signal paths for the case of oblique Vn and B.
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resonance for the condition a = me/m. . The other branch (path 4b) becomes directly
e 1

asymptotic to this new density layer. This new density layer is determined in general

by the condition tan a = -K 1 /Kl under which the right-hand side of Eq. 4 is zero.

It is important to point out that for any nonzero a, the signal power is not absorbed

at the new density layer. Instead, analysis by cold-plasma theory shows that the power

is now directed to infinity in the -z direction. Therefore, setting a exactly equal to

zero changes the physical picture significantly in certain respects. This suggests that

a finite a should be included in the analysis of lower hybrid resonance in an inhomo-

geneous plasma.

The reason for this marked difference may be explained as follows. The numerator

of Eq. 4 goes to zero at some density layer determined by tan a = -Kl(x)iK (x). When

the right-hand side of (4) is linearized about this value of x, the resulting differential

equation has a logarithmic singularity at that value of x, which is the new resonant den-

sity layer. When a is exactly zero, however, linearization of the right-hand side

of (4) is not possible and the singularity, which was a result of the linear term, does

not appear.

M. Simonutti, R. R. Parker, R. J. Briggs
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2. IMPEDANCE OF ELECTROSTATIC COUPLERS IN AN

INHOMOGENEOUS PLASMA

In this report we outline a theoretical calculation of the impedance of the electro-

static couplers used in our lower hybrid wave experiments.1 In this coupling method, the

RF voltage is applied to a narrow metal ring separated from a grounded metal cylinder

by two narrow gaps. The slab geometry approximation to this structure is illustrated

in Fig. VIII-5.

We assume that the plasma density next to the structure is such that KI (0) < 0, so

that the solution for the RF potential near the structure can be written"

+xx o dk

(x, z) = A(x) (kz) exp -ikzz + i) kx dx _' (1)

where
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A(x) = [K r(0O) K (0)/K (x) K )] 1/ 4

k = k z [-K 1/Ki l1/ 2

and qo(kz) is the Fourier spectrum of the boundary potential, with 6(x = 0, z). If the inner

ring is sufficiently thin, the net charge on the inner surface of the ring (x= 0 ) can

be calculated as

z

-1
oK1(0) E x(0, z) dz,

where f is the length of the ring ( 2 R,l with H the ring radius). With the wall potential

Vn x
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Fig. VIII-5. Electrode geometry and boundary potential.

profile of the form shown in Fig. VIII-5, we find the following expresssion for the admit-

tance associated with the inner surface of the ring:

1 i- T

F(c) = (1-a)

0 f [-K 0)K(0) 1 / 2 F(a),

1 In + a in
-a

2/

and a = z /z 2 . Typical values of F are listed as follows.
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z 1,/z = a F(a)

0.25 2.48

0. 50 1.9

0.75 1.6

Note that the total admittance of the ring structure is Y1 in parallel with the capacitance

associated with the outer surface of the ring (x = 0 ).

We see that in the regime of interest [K 1 (0) > 0 and K 1 (0) < 0], Y 1 is purely real;

physically, this comes about because all Fourier components of the electrostatic field

propagate away from the structure in this regime, in contrast to the vacuum case, in

which the potential is a Fourier superposition of waves that are evanescent in the

x direction. In fact, this method of deriving the input admittance indicates that, in gen-

eral, the (partial) input admittance of structures of this type would be purely real, with

a conductance value equal to the magnitude of the capacitive admittance of the inner sur-
1i2

face of the structure under vacuum conditions multiplied by (-KK1 ) K

If U (0) = p >> w, and w << c , as is typically the case, then
p pw pw c

2
1 i pw o

9 -3is independent of frequency. With plasma densities near the structure of order 10 cm 3

the typical values of 1/Y 1 are in the range 100-200 i2.

R. J. Briggs
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1. NONLINEAR PLASMA EFFECTS IN INTERACTIONS WITH

ACOUSTIC WAVES

We have recently proposed to study the surface acoustoelectric current in order to

determine the mobility and trapping of electrons at the surface of a semiconductor.1 The

phenomenon of acoustoelectric current is a nonlinear effect arising from the bunching

of electrons by the fields of an acoustic wave. 2 In previous studies of this phenomenon2

either the effects of electron diffusion, or electron drift, or both, had been neg-

lected. Since we propose to make measurements as a function of frequency, diffusion

effects may become important. Furthermore, acoustoelectric current measurements

in the presence of drift can give an indication of electron density inhomogeneities. 3

Hence the effects of drift are also important. In this report we reexamine the nonlin-

ear theory of the acoustoelectric current and derive this nonlinear current, correct

to second order in field amplitudes, including both the effects of electron diffusion and

drift. In a future report we shall describe the effects of trapping.

Nonlinear Conservation Theorem

It is usually convenient to relate the acoustoelectric current to the power dissipated

or gained by the acoustic wave. For this we must employ a nonlinear energy conserva-

tion equation for the electrons. We model the electrons by hydrodynamic equations

that are valid for frequencies c which are low compared with their collision fre-

quency v, and wavelengths 2Tr//k that are short compared with the electron's mean-

free path v /v. For simplicity, we assume only a one-dimensional variation. The

equations of current, continuity, and momentum are

S= nv (1)

8n 8Fan + =  
(2)at az

This work was supported by the National Science Foundation (Grant GK-28282X),
and in part by M. I. T. Lincoln Laboratory Purchase Order No. CC-544.
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KT Dn
vmv + KT - _ qE. (3)

n 8z

Using the electrostatic current equation from Maxwell's equation

aEE + J -J (4)
at ext'

where Jext is due to the external fields, we can find the following conservation equation

E- K E
2 +nKT log + [KT (1 + log n ext (5)

where Pext is the power supplied by the external fields. We note that in the steady state

this power is taken up partly by power dissipated by the electrons and partly as power

flow caused by electron diffusion, the third and second terms on the left-hand side of

Eq. 5, respectively.

The power flow and power dissipated can be evaluated to second order in field ampli-

tudes by iterating Eqs. 1-3. To first order we obtain the small-signal equations

FI = noV + nv (6)

an F
1 1+ 0 (7)

at az

an

1 n z (

which, together with Poisson's equation, when Fourier-analyzed [expj(ot-kz)], give the

linear conductivity function (J 1
= -(w, k) E 1

co-

cr(o, k) o -r(w , k) + jcri (c, k), (9)
w - kv - jk2 D

where cr is the de conductivity, vo = -iE is the dc drift velocity, and D = -[iKT/q is

the diffusion constant. From these equations we can derive the small-signal conserva-

tion equation in the usual way4 and find

IFE E ++ 1 n + vmv 1  p (10)at 2 1 2 n 1 z n 1 + m Pext 1

The last two terms in Eq. 10 give us the small-signal power flow and power dis-

sipated, respectively. In general, they are not the same as the respective power
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terms from Eq. 5 evaluated to second order. From Eqs. 1-3 we can find the equa-

tions for the second-order fields.

F2 = nov 2 + nZv o + n 1v1  (11)

an , aF 2
+ o 0 (12)at az

an
2 + D 8n = -[(noE2+nEo+nlE1). (13)

Equations 11-13, together with Poisson's equation

aE

S z = qn 2 , (14)

can be combined to give the second-order density n 2 as generated by the first-order

fields

an 2  8n2  8 n 2  a
+ v D + wn (n ) (15)at o az 2 cr 2  az 1 1

8z

where w = o- /E is the dielectric relaxation frequency. Now, consider the first-order

fields as being established by weak coupling to an acoustic wave. All first-order field

quantities will then have as time-space dependence the form expj(wt-kz), where we take c

as real, and k=k r+jk i with k.i << Ikr . Equation 15 then shows that to zero order in k. the

time-averaged second-order density(n 2 ) is zero, and hence (E ) and (vZ) are also zero.

We can now evaluate to second order in field amplitudes the power-flow and power-

dissipated terms of Eq. 5. We shall be interested only in their time averages and find

(p 2) = ((vmvr))

= vm(lF 1 ) + Eo (r) (16)

(nK 1) LFon )
( s2) = KT n I + 0 1 (17)n r 2  (17)

o 2n

The first term, in both expressions, corresponds to what would be obtained from the

small-signal conservation equation (Eq. 10).
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Acoustoelectric Current

The acoustoelectric current is obtained from the time average of Eq. 13. Using

the results that we found for the second-order fields, we have

JAE J2 ) =: -qp(nElE1

2 ( , k)

1 rSEl . (18)
a

Thus we verify the correctness of the usual result for JAE'3

Consider now an acoustic surface wave interacting with an accumulation layer of
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Fig. VIII-6. Configuration for surface acoustoelectric interaction.

electrons which we model as a sheet of electrons,5 as shown in Fig. NII-6. The sur-

face acoustoelectric current is then simply AE TJ AE' where T is the thickness of

the electron sheet. Finally we integrate, over the volume shown in Fig. V'III-6, the

time average of Eq. 5 expressed to second order, and note that ( Pext) contains both

acoustic power flow and power supplied by the dc source. The latter just cancels the

second term of Eq. 16, and we obtain

Sa( l ) (Sa(0-)) = -TL I- E 2 ( , k), (19)

where I. is the length of the electron sheet. Using this result in Eq. 18, we find

RAE L K (LS)) -(S (0-)) " (20)
AE Lv a a0)

Equation 20 shows that by measuring the surface acoustoelectric current and acoustic

power flow we can determine the surface mobility of the electrons.
A. Bers
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