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1. INVESTIGATION OF A PLASMA GUN

\We are undertaking a theoretical investigation of the Marshall coaxial plasma gun,

which is capable of accelerating a dense plasma to velocities of 107 cm/s. It does

not suffer from the space-charge limitations of electrostatic accelerators, and thus

particle densities of order 1014/cm 3 are readily achievable.

We have chosen a magneto quasi-static slug model in an attempt to analyze the

dynamics of the current sheet. In this formulation, the complicated breakdown process

can be avoided by assigning an initial mass to the current sheet. The resulting "planar"

sheet is then treated as a thin mass obeying the dynamics of a snowplow model. This

model has the advantage that we may easily take account of complicated boundary

effects. Physically, the sheet corresponds to an ionization front in which the current

is fed continuously from the gas which is snowplowed and entrained from ahead of the

sheet. An ion drag term, which corresponds to randomization of the ion axial motion

at the cathode (with a subsequent loss in axial momentum of the sheet), has been included

in the momentum equation. It follows by mass and charge conservation in the plasma

that the ions must carry one-half the total current to the cathode, thereby losing axial

1
momentum at the rate of m V. The momentum equation for the sheet has been

2e 1
coupled with the circuit equations to yield a complete set of equations. These nonlinear

equations can only be solved (exactly) numerically, but under certain reasonable

assumptions, analytic expressions may be obtained. The snowplow momentum equation

for the sheet is

d f(1)
dt 2 +2e 1

This work was supported by the U. S. Atomic Energy Commission (Contract
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where the second term is the ion drag term. For the coaxial system under considera-
1 In r/r

tion fe Y and = In r /r i  In terms of the magnetic pressure, this equa-2 2Tr
tion (without the drag term) is equivalent to the more familiar form

B 2  2 dv oz
2 = pv +dv - pd . (2)
0 0

Note that although the magnetic pressure varies over the surface of the sheet, experi-

ment indicates that the sheet remains approximately planar.This fact might be accounted

for by an uneven mass pickup. 2

Consider Fig. VII-1. The circuit equation is

eL dI d dI
L +  (LI) (L +L) + (yv)I, (3)e dt dt e dt '

where we have used dL/dt = Yv. To complete this set of equations, we need an initial

gas distribution (mass loading) in the gun. If we assume that the initial puff of gas has

diffused with a diffusion constant D for a time T before the gun is fired (T >T ),o o exper
then

dM (1-y) F-x2- Mv exp , (4)dt DT 4DTo

where

M (t= 0)

SM

It is important to note what has been left out of these equations. The initial breakdown

is taken into account only phenomenologically when we assume an initial current sheath

mass and that the ionized gas is a (perfect) conductor, allowing the current to flow impeded

only by the inductance of the circuit and gun. A look at the initial processes in the gun

will indicate, at least qualitatively, that breakdown should be (and is experimentally

observed to be) dependent upon the polarity of the applied voltage, as well as the gas pres-

sure (E/p ratio). The polarity dependence arises because the breakdown occurs in a non-

uniform (1/r) electric field. The ionization ratio as a function of p will go through a

maximum. The current sheet is most likely to occur at these high values of breakdown
1

current. Experimentally, the initial breakdown is observed to be somewhat resistive

and imperfect up to -0.5 is (typically). Resistive losses have not been included in the

model.
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Numerous other physical processes have been neglected. For instance, in the

circuit equation we should take account of losses attributable to ionization, recombina-

tion radiation, and thermal-heating effects. The ionization effect is usually negligibly

small. The power input resulting from ionization and recombination can be at most

E= CV 20 2 o

,¢',_1_J7-'7y"J7J//'//X/X////

p(z)o- V

r.
-z

L(t)

(b)

Fig. VII-1. (a) Coaxial plasma gun.
(b) Equivalent circuit for plasma gun.

P ma= V eI, where Ve = 13. 6 volts, and hence appears to be negligible in comparison

with the powers involved with other processes. A more comprehensive model would

consider these effects, as well as the self-consistent field problem associated with the

electron current flow in the sheet.1 The ions in fact are dragged along by an E-field

because of a slight axial charge separation. In the present account we have neglected the

drag force attributable to ablation of material from the gun walls. We have found that

the shape of the calculated velocity graph matches closely the shape of the experimental

graph, when we include the ablation drag. (These graphs will be submitted in a

future quarterly report.)

To discuss the efficiency of the gun in converting the stored energy E in the

capacitor bank into plasma kinetic energy, it is necessary to compute l = WK/E o .

Mendel 3 computes 1' = W /E , where Wp is the total energy imparted to the plasma

(which, in the absence of ion drag, is equivalent to WK). His result is
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1 (f EdL) /ELf
(5)

1 + L /L f

From this he concludes that for a fixed Lf, it is desirable to have Le << Lf, to get the

energy out of the source as quickly as possible, and to keep it out (by applying a crow-
L

bar at the source, for instance), thereby minimizing r = 0  EdL. In our model, the

desirability of the last criterion is debatable, since at high enough current and velocity,

the ion drag force may overwhelm the J X B force and actually decelerate the current

sheet. Nevertheless, the results of applying a crowbar may lead to an increased final

velocity.

To modify Mendel' s calculation, we define the kinetic energy of the plasma (= Mv2

WK 2I m.I

WK= W - .v M -- dt = W - W dt, (6)
K p e p M K e

where

W 1 2 dL v dt.
W - dt = • v dt.

p 2 dt

Using the energy equation for the circuit (Fig. VII-lb),

E = E(t) +W -(Le+L)I 2  (7)

and integrating, we find that

12 e2 (L+L)(-E) dt. (8)

Substitution of this value in Eq. 6 yields

dWK

dt + Yo(t) WK Eo (9)

where

t) = e (L +L)(-2E) d 0.

o e L + L e

Note that the ion drag force is dissipative and leads to damping of W K . At this point we
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would like to substitute the capacitor energy source for E and a value for L(t) to obtain

y(t) explicitly. We are now integrating the equations of motion, both numerically and

analytically, and our research will continue in this direction.

S. P. Hirshman, L. D. Smullin
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1. PLASMA INSTABILITIES DRIVEN BY A DC ELECTRIC FIELD

In a previous reportI we pointed out that a dc electric field E 0 parallel to the mag-

netic field B 0 can produce unstable electron-plasma waves. These instabilities are

attributable to the presence of the E0-field rather than the relative drift velocity u e
between electrons and ions. Thus, unstable electron-plasma waves may be generated

by a dc electric field even if the electron drift velocity ue is less than the electron

thermal velocity vTe. We also showed that these instabilities set in for fields EO that

are comparable to, or larger than, the runaway field ER (E R- my eivTe/e, where v

is the classical electron-ion collision frequency). These unstable waves have charac-

teristic phase velocities that are in the tail of the electron velocity distribution function,

and hence can make an important contribution (by enhancing the scattering of these

electrons) to the inhibition or reduction of runaway electrons in applied electric fields.

They may thus help to explain the observed lack of runaways in Tokamak TM-3 experi-

ments where the induced electric field ranged from E R to 15ER 2

In this report we present further results of this study. In particular, we extend our

analysis to arbitrary shapes of the electron distribution function f0e(w); next we include

the effects of an effective collision frequency that depends upon velocity; then we allow

for the slow evolution of the distribution function f 0 e(w, t); and finally include the ion

dynamics to determine the ion-wave instabilities that may also be driven by E 0 . In the

following discussion we consider only a one-dimensional description of the interaction,

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(1 1- 1)-3070).

tDr. D. Bruce M\Iontgomery is at the Francis Bitter National Magnet Laboratory.
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which would be pertinent in a large applied magnetic field (ce>w pe)

Effects Caused by the Shape of f 0 (w)

The linearized Boltzmann equation for the electron dynamics is

af l  f
+ w - +at a z

-eE
0 af

m aw

-eF1 8 (n f0

+ = - (f -n f0L ) ,
m aw eff 1 1 fl OL

where the right-hand side is an assumed Bhatnagar-Gross-Krook (BGK) collision model 3

with an assumed constant collision frequency Veff. Equation 1 can be solved exactly4

and, together with Poisson's equation, gives the following dispersion relation.

p dw ieE 82 af0
e x p _ _- 8

k2  Wo + iv ef 2mk 2 aw
k eff w

w-
k

dw

S o + eff
k

exp -ieE 0 0L

If f0 and f0L are Maxwellian and with and without drift, respectively, then we obtain

our previous results. For arbitrary distribution functions (well-behaved at w - +ce)

it is convenient to introduce the function

f 0 (w) dw

vT -2

and Y0 () its derivative with respect

usual Landau-contour prescription.

to C, where the integration is carried out over the

Extracting the operator from Eq. 2, we then obtain

Yo0012 xp [ 2

iN

K2

aZ
2 j YOL ( ) =

OL 0

= 1,

where the following normalizations have been introduced: K = kvT/wp= kkD; = -eE0

kmvT; N = v ff/; 0 = (Q+ iN)/K 2, with 2 /w

Equation 4 can be solved to first-order in N and y, and in the long-wavelength limit

we find
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1 kw 3k 2 2 (a)
+ 2 + 2 [ )- w) (5a)

p p

2

_ +eff - (5b)S 2 2 2 dw 2 m 2'
r p k /k KW

r p

where ( wn) f wnf0 dw are the velocity moments of f0" 6
For f 0 Maxwellian, Eqs. 5a and 5b reduce to our previous results. For this case

we can carry out an analysis of marginal stability by using Eq. 4, without restricting

ourselves to long wavelengths. The results are shown in Fig. VII-2. The growth term

arising from the applied dc electric field is proportional to A = EO/ER, and the damping

term that is due to collisions is proportional to a = v eff/vei. Thus, in the absence of

Landau damping, the marginal stability line is a straight-line graph through the origin

in the 6-a plane. The slope is the ratio of the coefficient of a in the collision damping

term to the coefficient of 6 in the growth term, namely 1/3K. The introduction of

Landau damping moves the whole marginal stability line upward. The intercept on the

6 axis now occurs not at the origin but at that positive value of a for which the growth

term is equal and opposite to the Landau damping evaluated at the phase velocity of the

wave. Since the coefficient of f in the growth term is very small, Landau damping

must also be very small if the intercept is to occur at reasonable (1-50) values of e.

For a Maxwellian velocity distribution, this requires phase velocities around 7. 2 times

the thermal velocity, that is, 7. 0 Z w/kvT p/kT - 1/K, and hence d/da = K/3 >

7/3 ; 2. 3. These conclusions are valid for a wide range of drift velocities and plasma

parameters, as shown in Fig. VII-2.

For a non-Maxwellian velocity distribution, these conclusions must be modified.

Figure VII-3 illustrates possible forms assumed by a velocity distribution evolving under

the influence of the dc electric field. The distribution in Fig. VII-3a is a Maxwellian,

drifted but otherwise undistorted. In Fig. VII-3b, a "hot tail" has developed and has

caused the region of negligible slope to extend farther in toward thermal velocities. In

Fig. VII-3c, the distortion is severe. The growth in density of the tail and the deple-

tion of the main hump have combined to extend the flat part of the distribution down

almost to thermal velocity. The previous discussion of the 6-a graphs still applies,

with the exception that the required phase velocity is a function of the extent to which

the distribution is distorted. Using Eqs. 4 and 5, we find

For distribution (a): 7.0 < 1/K d /da > 2. 3.

For distribution (b): 4. O < 1/K de/da ' 1. 33.

For distribution (c): 2. 5 < 1/K d e/da 0. 80.
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Parametric representation of plasma-wave instability onset at various
wavelengths and for a drifted Maxwellian distribution function.
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Thus, as the distortion of the velocity distribution increases, the threshold value

of the electric field required for instability decreases, as shown in Fig. VII-3. In the

Tokamak device TM-3, 60 may assume values of order 5-50, and the electron distribu-

tion function is certainly distorted. Thus, if the high-frequency effective collision

rate veff does not exceed the classical collision rate v ei by more than a factor of 5 or

so, electron plasma waves may be driven unstable.

Effects of a Velocity-Dependent Collision Frequency

We now turn to a more detailed analysis of the effective collision frequency. Under

conditions in which E > E the experiments in TM-3 exhibit a large anomalous resis-
0 R

tivity. It is also clear that under these conditions large-amplitude ion-acoustic waves

are present, and they are in large part responsible for the anomalous resistivity. The

effect of this strong turbulence on the electrons is difficult to model. We shall assume

that we can represent this as an effective "hard collision" which is dependent upon the

electron's velocity, and again use the BGK collision model 3 in the one-dimensional

Boltzmann equation.

af f + -e Ef f f v (w) f dw
at w + E = -v(w) f eL (6)-t z m 8w e - OL f ve (w) f0L dw

Consider first the zero-order distribution function f0 (w). From Eq. 6 we have

-eE 0  f if e (w) f0 dw
m w -v (w) f - f L dw(7)

e ve(w) fL dw

Under the assumption that f0 = f0L + f01' where f0L is Maxwellian and f01 is due to E 0,

the linearized solution of Eq. 7 gives us the dc current

J = -en0 f  f01 dw

2
e no

- EO, (8)
(0)

mveff

(0)
from which we can define the dc effective collision frequency veff. We thus find

af 0L
1 -w a dw. (9)

(0) v (w)
eff
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For high-frequency oscillations the linearized Boltzmann equation from Eq. 6 is

8a1 8 -eE 1 -eE 1 n0f0 f f ve(w) f 1 dw
+ w + + = - (w) f - f (10)at az m aw m aw e 1 0L f  V( dw

Solving Eq. 10 to first order in the effects of the dc electric field and of the collisions,

we again find in the long-wavelength limit, Eqs. 5a and 5b, where now

Veff E v e(w)[2f -f0L ] dw (11)

is the appropriate high-frequency collision frequency. We may expect v (w) to bee

sharply peaked below the electron drift velocity where the ion-acoustic growth rates are

largest, and hence that v(0) >> v ~ .. We thus infer that the electric field insta-eff eff el
bility threshold imposed by collisions need not be directly related to the dc anomalous

(0)
resistivity (namely, eff), but rather should be related to the high-frequency resistivity

(namely, veff), which may be considerably smaller. Our approximate representation

of an effective collision frequency for the electrons in strongly turbulent fields remains

to be justified in detail by further theoretical work.

Effects Caused By Evolution of the Distribution Function

For reasonable values of the applied electric field (E0-ER) the growth rates pre-

dicted by Eq. 5b will be of the order of the effective electron collision frequency. Thus,

the time scales for the instability may be comparable to the time scale of evolution of

the distribution function f 0 (w, t). Since the time scale of evolution is small compared

with the plasma period, we can examine its effect on the instability by WKB techniques.

The linearized Boltzmann equation assumes the same form as in Eq. 1 except that

f = f 0 (w, t) is now a slowly varying function of time. Assuming

f f 10 exp i[kz- ft uw(t')dt'], (12)

and similarly for the other field quantities, we obtain

iv f p af v  
i_ -eE 0

(fn +. f10 (13)k 0 : 8w k OL 10  k m 8w (13)

Solving Eq. 13 to first order in the effects of collisions, dc electric field, and slow

evolution of f0, we find in the long-wavelength limit

W k( w) 3 k2S k + k- w )-(w) ] (14a)

p p
p
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2

S V eff P fO 3 k eE0a(- T +
P P k pr/k

15 k a [()w (_(w)]. (14b)
4 Z at W

p

Equation 14a is of the same form as Eq. 5a except that in it the average velocity ( w)

and the thermal velocity [(Kw 2 ) w-]2 are slowly varying functions of time through

their dependence on f 0 (w, t). The growth rate as given by Eq. 14b has three new fea-

tures. The Landau damping, second term on the right-hand side, is changing in time

as f0 evolves. The growth term attributable to the dc electric field is counterbalanced

by the evolution of the average velocity (w), as shown in the third term. In fact, for

a freely evolving average velocity, this growth term is identically zero. Finally, the last

term shows that an additional damping is introduced by increasing the thermal

energy of the electrons. In order to determine the stability or instability of these

long-wavelength plasma oscillations, we would have to evaluate these three new

features from a knowledge of the evolution of f0. Consider, first, ordinary Joule

heating. As has been shown, 7 the classical results are only strictly valid for

E << 10- 2 E . For such low fields, introducing the usual formulas for the8
evolution of the average velocity and temperature, we find that Eq. 14b pre-

dicts stability. At electric fields E ~ 0. 1ER the validity of the classical cal-

culations is in doubt, and saturation of the average velocity may set in. 7 Under such

conditions Eq. 14b would predict instability, provided the distribution function were

sufficiently distorted to reduce the Landau damping. It has been shown that for veloc-

ities wi (KT/m)(ER/EO 1/Z the distribution function is indeed much flatter than a

MNIaxwellian. For E > E R there is still no proper theory for the evolution of f0. The

experiments in TIM-3, however, do indicate a steady state in which the electron drift

velocity is saturated, and hence the plasma oscillations of Eq. 14 may be expected to

be unstable. Further confirmation of this could come from measurements of the RF

emission spectrum of the plasma, and direct measurements of f0 (w). Apparently, such

measurements have not yet been made.

Ion-Acoustic Wave Instabilities Driven by E 0

Up to the present, we have considered the effect of the dc electric field on electron

plasma waves, and ignored the ion dynamics. It is physically clear, however, that the

dc electric field may also modify the ion-acoustic waves. We assume that the perturbed

ion distribution function is described by an equation similar to Eqs. 1, 10, and 13,

within an effective collision frequency model and with slow evolution of the distribution

QPR No. 105 101
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functions. We combine the solutions for the perturbed electron and ion distribution func-

tions in Poisson's equation to obtain the dispersion relation, in the usual way. The ion
sound waves are found at low frequencies (w<<c pe) in the limit vTi << W/k << vTe, and have
the following dispersion relation

_r K 3 Ti 2 (15a)
W pi 12 1 + 2 T e(1+K )(15a)

p1 (1+K ) / e

i
i eff K 2 2 p

W + 12 2 L aw fe + .f
pi  2Cp i  (1+K?)1 2k 2  W OerO /k

(1+K21/2 k 1/3 (+K2) k2 av

pi+ -Pi

aT1 3 1 e
+ ( Z 4 T at (15b)

(I+K2) 4 p e

where K E kkDe, u i is the ion drift velocity, and Te is the electron temperature. In

Eq. 15, k is positive and the waves described by it are traveling in the positive z

direction. For waves traveling in the negative z direction the dispersion relation is

Eq. 15, with (1+K2 ) 1/2 replaced by -(1+K2) 1/ 2 and k remaining positive. Equation 15a

is the well-known dispersion relation for ion-acoustic waves, including the correction

that is due to finite ion-temperature. The first term in the growth-rate expression of
Eq. 15b is the damping attributable to the effective ion collision frequency Veff. The
second term contains the Landau damping and/or growth caused by the resonant elec-

trons and/or ions; this term exhibits the usual growth of ion-acoustic waves from the
relative drift velocity between ions and electrons. The third term has three parts: the
electric field effect on the ions, on the electrons, and the evolution of the ion drift veloc-

ity; this term is destabilizing for waves propagating in the direction of E 0 (opposite to
the electron drift), provided that the ion drift velocity is saturated or at least not

evolving freely. The fourth term is similar to the last term of Eq. 14b, and represents
a damping when the ion temperature is increasing. The last term is a growth caused

by the heating of the electrons. It should be noted that we have exhibited in Eq. 15b only

the lowest order terms [in (me/m i)1/2 and slow variation] caused by the evolution of

f0e and f0i. Under steady-state conditions ion-acoustic waves in the direction of E 0
will be unstable if the electric field term can overcome both the collisional and Landau

damping terms of Eq. 15b. Under the assumption that Te >> Ti , the most severe condi-

tion arises from the electron Landau-damping term. This damping can become

QPR No. 105
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sufficiently small, provided the electron distribution function flattens out for w1l < 0.

Calculations on the evolution of foe in strong electric fields (E >ER) indicate that such

flattening does occur.10 There are still no calculations on the evolution of the ion-

distribution function which, for such large fields, may be mainly controlled by the

strong ion-acoustic instabilities from the relative average drift velocity between elec-

trons and ions.

If the E 0 growth term in Eq. 15b is to overcome the effective collisional damping,

we require (EO/ER) > ( eff/vii (Te/T i)3/2/3(1+K)1/2 , where vii is the classical ion-

ion collision frequency. In addition, the condition for neglecting ion-Landau damping

requires (1+K ) << Te/ZTi . We thus conclude that the excitation of unstable ion-acoustic

waves in the direction of E 0 requires applied fields EO > E R . These requirements are
2

satisfied in the high-field experiments on TM-3, and in some turbulent heating experi-

ments.11

Conclusions

We have shown that the presence of a dc electric field (or equivalently a slowly

varying induced electric field) in a plasma can generate instabilities of electron plasma

fei

I foe

O0 W

(a)
iw.

uojIA
Eo- IA Eo-EP

A Wr/k

0

(b)

Fig. VII-4. Possible distribution functions and instabilities in an applied electric field.

(a) Parallel distribution functions; the electron distribution function is

assumed to be flattened at both positive and negative drift velocities.

(b) Growth rates as a function of parallel phase velocity: E-IA are the elec-

tric field-driven ion-acoustic waves; E-EP are the electric field-driven

electron-plasma waves; U0-IA are the drift-driven ion-acoustic waves.
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and ion-acoustic waves that are distinct from instabilities driven by the relative average

drift velocity between electrons and ions. These new instabilities may be particularly

prominent in high electric fields (E 0 > ER) where the evolving electron distribution func-

tion tends to flatten for velocities along E 0 , and in high velocities opposite to E 0 (see

Fig. VII-4a). Thus, in addition to ion-acoustic waves at low positive phase velocities

that may be unstable because of the relative average drift, the electric field may

generate unstable electron plasma waves at high positive phase velocities and ion-

acoustic waves for negative phase velocities (see Fig. VII-4b). Both instabilities caused

by the electric field are fluidlike (nonresonant) and may be expected to have important

effects on the evolution of the distribution function.

A. Bers, D. C. Watson
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