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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

Our interests center on the structure and interactions of atoms and molecules, and
on their interaction with the radiation field. Our methods involve colliding beam
scattering spectroscopy, atomic and molecular beam resonance spectroscopy, high-
precision maser techniques and, more recently, optical fluorescence spectroscopy.

1. Hydrogen Maser Studies

We have measured the effect of nuclear mass on the magnetic moment of the bound
electron by comparing the electronic g-factor in hydrogen and deuterium. Our experi-

ments achieved a fractional accuracy of 3 X 1011, and provide the first accurate verifi-
cation of the quantum electrodynamic theory of the bound electron in an external field.

2. Production of a New Species of Molecule

We have succeeded in producing a molecular beam of the paramagnetic van derWaals
molecule CsHg. Binding is provided through weak polarization forces, roughly 100 times
smaller than chemical forces. CsHg represents only one of a large class of molecules
which can be created, and which can yield information on atomic interaction mecha-
nisms that cannot otherwise be observed.

3. Spin Exchange Scattering

We have carried out a detailed determination of the potential for an alkali and a

molecule with nonzero electron spin. By measuring the spin dependence of the dif-
ferential scattering cross section, we have been able to elucidate both the long- and
short-range behavior of the K-0 2 system. Small-angle scattering results appear to

be well described by elastic scattering theory, a rather unexpected result.

4. Excited State Interactions

During the past year work was started on a program to measure coherence effects

in excited atomic systems, and to study interactions between excited atoms. The

initial effort is directed toward the production of nonradiating excited dimers.

D. Kleppner

This work was supported by the Joint Services Electronics Programs (U. S. Army,
U. S. Navy and U. S. Air Force) under Contract DAAB07-71-C-0300, by the National
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1-35857).
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(III. ATOMIC RESONANCE AND SCATTERING)

A. NUCLEAR MASS CORRECTION TO THE BOUND

ELECTRON g-FACTOR

There has been remarkable agreement between precise quantum electrodynamic

(QED) calculations of fine and hyperfine structure in simple systems and experimental

measurements. Recent theoretical work has extended high-order QED calculations to

hydrogenic systems in external fields for which precise experimental evidence is lacking.

Grotch and HegstromZ have computed corrections to the electron g-factor, gj, in one-

2 3 2 2electron atoms in an external field to relative orders a m/M, a m/M and a(m/M)2

including nuclear mass, and radiative and binding corrections. Comparison of their

results with measurements of G = gJ(H)/gj(D) provides tests of both the nuclear mass-

dependent correction terms and the reliability of quantum electrodynamic Zeeman the-

ory. The theoretical result is

(G1 t m1 2 1 I) 2 1 1 +21Ta3m,( 1 1
th=a m e  MD e - 2 2 e M M

P M M D  P

= (7. 248-0. 026)X 109

-9
= 7. 222 X 10

Previous experimental evidence is inconclusive. Hughes and Robinson 3 found (G-1)HR =

7. 2(12) X 10 , in agreement with theory, while Larson, Valberg, and Ramsey4 found

(G-1)LvR = 9.4(14) X 10 - 9 , in disagreement with theory. These results are sensitive

enough to test only the leading theoretical terms, and are slightly discrepant.

Our experimental result is (G-1) = 7. 22(3) X 10 - 9 , which confirms the leading
exp

theoretical term and gives us some confidence in the second and third terms, although

the precision is not sufficient to resolve them clearly. Our result confirms the result

of Hughes and Robinson, but disagrees with that of Larson, Valberg, and Ramsey.

The major factor contributing to the improved precision of our experiment (3 X 10-11

over that of the previous experiments (~l X 10 - 9 ) is that we measure the electron tran-

sition frequencies in H and D simultaneously in the same spatial region. Since their

g-factor ratio is essentially independent of the field, the problem of field stability, which

previously limited the accuracy, is secondary.

1. Maser Apparatus

In our experiment we use a double-mode pulsed maser that radiates simultaneously on

electron spin transitions H and D in ground state at a magnetic field of 3500 G. The energy

levels are shown in Fig. III-1 with the observed transitions indicated by TH and wD"

QPR No. 104



7'D Ho

(a) (b)

Fig. III-1. Atomic energy levels as a function of magnetic field:
(a) hydrogen; (b) deuterium.

RF DISCHARGE BULB

ORB- ION PUMP

DOUBLE-MODE
MICROWAVE
CAVITY

H 2 IN

FACE
diam.

I- STATE- SE LECTI ON
MAGNET

BALL VALVE

GLASS TUBE

BULB

(b)

Fig. III-2. (a) Double-mode pulsed maser.
(b) Maser vacuum assembly.
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(III. ATOMIC, RESONANCE AND SCATTERING)

Design and operating principles for the maser have been described elsewhere. 5 ' 6

Essentially, the maser produces a signal because of electron free-precession in a mag-

netic field of 3500 G. Transition frequencies are typically 9. 5 GHz, and the decay

time is 5 ms, corresponding to a resonance width of 70 Hz (Fig. III-2a).

The atomic beam is produced in a discharge bulb by RF dissociation of H-2 and D 2
A standard hexapole focusing magnet state-selects the beam, which then enters a col-

limated storage bulb within a microwave cavity. The storage bulb is coated with DuPont

FEP-120 Teflon, which permits the atoms to make approximately 104 adiabatic wall

collisions before the electron polarization is relaxed. The entire vacuum system is

pumped by a Norton-NRC Orb-ion pump, rated at 800 1/s for air at high vacuum

(Fig. III-2b).

With the maser assembly resting securely on it, the entire magnet assembly floats

on 4 air cushions to minimize vibration of the maser within the magnetic field. The

magnet is temperature-regulated within a millidegree at ~34. 50 C by two sensitive

thermal regulation controls, made up of thermistor bridge sensors, high-gain ampli-

fiers, and proportional heaters. This system maintains field stability, with fractional

drift rates typically less than 1 X 10-7 /h.

The magnet has mechanical pole adjustments for parallelism and lateral alignment,

and standard Rose shims. With 19 electrical shims, we are able to achieve an rms

field homogeneity of 1 X 10-7 over a spherical region 2. 5 cm in diameter.

The double-mode transmission cavity is resonant at 9200 MHz and 9650 MHz, which

are the H and D transition frequencies, respectively (Fig. 111-3). The cavity operates

in the TE102 and TE012 modes, with loaded Q's of ~4000. The modes can be tuned102 012

Fig. 111-3. Microwave cavity.
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(III. ATOMIC RESONANCE AND SCATTERING)

separately and can be simultaneously nearly critically coupled through simple

wall irises.

2. Electronics

Because of the required frequency accuracy, all laboratory frequencies are derived

in standard ways from a stable Sulzer crystal oscillator which is monitored against the

NBS standard from WWVB by a VLF comparator. The oscillator is constantly main-

tained to an absolute accuracy of 5 X 10 11; this results in a final error (6G/G)os c

3 X 10-12

03Xl0

S F E OR 001 ( SE)
MU PELOCKCK ] )

EN OR30 (IF MIXER)

MD GET FERATOR 31M.. (VOFH)

Fig. III-4. Frequency-generation scheme.

The frequency-generation scheme is shown in Fig. 111-4, the pulsed RF switching

scheme in Fig. 111-5, and the microwave system in Fig. III-6a. One klystron (H) is

phase-locked to a reference 9200 MHz, while the other klystron (D) is phase-locked to

the first (Fig. III-6b). The atomic transitions are stimulated by "900 pulses," which

enter the cavity through an under-coupled port and are generated by mixing pulsed

RF power onto the microwave carriers in balanced modulators, with the resonance

frequencies corresponding to the first sidebands of the respective carriers. The

free-radiating signal power following the pulse is mixed with local-oscillator power

from the klystrons in a microwave mixer-preamplifier circuit, thereby heterodyning

the signals to intermediate frequencies corresponding (at resonance) to the respective

pulsed radiofrequencies, 30.01 for H and 32.01 for D. The signals are then isolated

and processed in the identical channels shown in Fig. 111-7.
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Fig. 111-5. (a) Phase-locked oscillator.
(b) RF switching networks.
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Fig. 111-6. (a) Microwave system.
(b) Klystron phase-locking sys-
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(III. ATOMIC RESONANCE AND SCATTERING)

PULSE VARIABLE DELAYED ARMING TRIGGER) The frequencies are determined by mea-
TRIGGER TIM DELAY (ENABLE) FROM

COUNT RESET) COTROL BURST COUNTER suring accurately the period of the residual

(C0 NTER 10-kHz signals. After filtering and zero-
2-DECADE TIRI NG START

SIOGAL F COM OUTER F STOP crossing detection, the signals (or "bursts")
DESFCTOR

are counted by circuits (Fig. III-8) that gen-

erate "start" and "stop" pulses at the first and
Fig. III-8. Zero-crossing counter.th

(N+l) t h zero crossings, thereby defining the

period of N cycles. These pulses then start

and stop scalers counting a reference 1-MHz signal. After accumulating a preset num-

ber of "bursts," the scaler counts are transferred by a teletype system to paper

display and punched paper tape for later computer analysis.

3. Error Analysis

The systematic errors affecting this experiment have been analyzed thoroughly,7-9

and will be discussed fully as part of F. G. Walther's thesis research. The major

sources of error are the inhomogeneity shift, 7 spin-exchange pulling, 8 the second-order

Doppler shift, wall shifts 9 and instrumental pulling in the detection system. The cavity

can be tuned sufficiently well to virtually eliminate cavity pulling, and many other

sources of error, which are always present, are small enough to be neglected. We

remove the inhomogeneity shift by using several different collimators and extrapolating

to zero collimator length. Spin-exchange pulling has been extensively studied, with cor-

rections being made from computer integrations of the complete rate equations. Wall

shifts occur because of a change in hyperfine frequency during wall collisions. These

effects are well-known and lead to a shift in G.

Instrumental effects are caused primarily by mixer distortion (phase shift vs ampli-

tude) and finite delay times in the counters, although bandpass pulling and leakage

power mechanisms are also present. Instrumental pulling, however, can be removed

by successively interchanging the -intermediate frequencies of H and D and by using

different sideband combinations of the IF carriers. All data are taken by using 4 dif-

ferent sideband combinations; this provides two redundant means of removing instru-

mental pulling. Therefore we not only have data corrected for instrumental effects but

also a test of the consistency of the instrumental corrections.

In Table III-1 important corrections to the raw data are listed, with typical values

given for both the total magnitude of the correction and the estimated uncertainty asso-

ciated with the correction.

Although three separate sets of data, after extrapolation to remove the inhomo-
-11

geneity effect, agree within error bars of approximately 2 X 10 , we have some

evidence that other effects (presumably related to contaminated surfaces) can cause

shifts of several parts in 10- 1 1 . Although the presence of these effects can be
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(III. ATOMIC RESONANCE AND SCATTERING)

Table III-1. Corrections to raw data.

Source of Error Magnitude of Correction Estimated Uncertainty

Instrumental Effects 5 X 10 - 11 0.5 X 10-11

Shimming and Inhomogeneity 2 0. 5

Second-Order Doppler 1

Wall Shift 1 0. 3

Cavity Pulling < 1 <0. 3

independently determined and apparently did not affect our final data, we have allowed
-11

an additional 2 X 10 uncertainty for these effects to be added quadratically to our

apparent error bar, which results in a final error bar of ~3 X 101 . Since some sub-

jective judgment is included in this estimate, it should be viewed as our best estimate

of a 60% confidence interval.

F. G. Walther, W. D. Phillips,

A. Jacobsen, D. Kleppner
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B. MOLECULAR-BEAM STUDIES OF VAN DER WAALS MOLECULES:

THE CsHg SYSTEM

We have produced and detected, for the first time, a free paramagnetic van der Waals

molecule. The molecule CsHg has been produced and detected in a molecular beam.
2The theory of the magnetic-resonance spectrum of the 52 molecule has been developed,
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(III. ATOMIC RESONANCE AND SCATTERING)

and we are searching for resonance transitions at low magnetic field. Our goal is to

obtain information on atomic interactions and the structure of the weakly bound mole-

cules, especially about the spin-rotation coupling constant. The formation mechanism

of these molecules in an atomic beam has been described previously. 1

M' D'
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VELOCITY
SELECTOR SLITSLIT

/

S

M D

)VEN POSITION

CsHg PATH
Cs

Cs2 ('X)

- RF
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Fig. 111-9. Schematic diagram of the apparatus.

Figure III-9 is a schematic diagram of the apparatus which was formerly used for

spin-exchange scattering experiments, but has been demoted to a molecular-beam reso-

nance machine by adding a C magnet and an RF coil. An oven with a 0. 00 18 in. con-

verging nozzle, similar to one used by Gordon, is used to produce a supersonic jet. The

oven is heated by 3 independent heaters in order to prevent clogging of the nozzle.

A liquid-nitrogen-cooled housing with a water-cooled radiation shield is used to pump

the large amount of Cs and Hg streaming from the oven. The skimmer has been elim-

inated in order to prevent skimmer-jet interaction. Instead, a 0. 08 in. slit is situated

approximately 1 in. downstream. The oven is loaded with equal amounts (by molar

weight) of Cs and Hg and is operated typically at 750 K. A beam of Mach number 14

can be obtained with considerable enhancement of the association fraction of Cs dimers

and CsHg molecules over that in the source.

The beam contains Cs, Hg, Cs 2 (1 2, 32), Hg 2 , CsHg, and other polymers of Cs

and Hg. As the beam passes through the Stern-Gerlach magnet, the species are deflected
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CsHgt

DEFLECTION PROFILE OF
Cs, Cs2 ( ' Z), CsHg

STO 750
0 K

Csf Cs 2

CsHg4

z

Cs4

-6 -4 -2 0 2 4 6

RELATIVE DISTANCE (ARBITRARY UNITS)

Fig. III-10. Deflection profile of the beam.

according to their weight and magnetic moment. (Unlike a thermal beam, all species

of the jet beam travel at the same velocity.) Figure III-10 shows a profile of the inten-

sity vs the source position with the detector fixed at positions M. A 2 X 105/s maxi-

mum flux of CsHg is detected, approximately a factor of 103 lower than the Cs flux.

The approximate Hamiltonian for the CsHg molecule in low magnetic field is

H = a I + N .- - gNN  • H- gFBF - H,

where a and y are the hyperfine and spin-rotation coupling constants, N is the nuclear

magneton, and B is the Bohr magneton. N is the rotational quantum number, and gN
and gF are the nuclear and electronic g-factors. Figure III-11 is an energy-level dia-

gram in low field; the possible transitions are indicated by arrows. The number of

molecules in each quantum state is

n
on 0 o p(n),

(2I+1)(2N+1)

where n is the initial flux, and p(n) is the probability of finding the molecule at ao -5
particular N. At a beam temperature of ~15 0 K, n/no is ~8 X 10 . Since gN is dif-

ferent for each state, the fraction of the beam contributing to a given transition is very

small. A factor of eight increase in intensity can be obtained by using the state N = 4.

At lower fields J = N + F is a good quantum number. For a AJ = 0, Am = ±1J
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molecular-beam resonance transition (solid arrow)

gj oHAv = __ ,

h

where

J(J+l) + F(F+I) - N(N+1)

2J(J+1)

The state selector selects molecules with F = 4, and for N = 4. The fact that gj is inde-

pendent of J and is equal to gF/2 allows simultaneous transitions in mj states for

F'N

INTERACTION
ZEEMAN

SPLITTING

ROTATIONAL IS
LEVEL INTERACTION

F=4

7-0

N 7

9
4-0

F=3

Fig. III-11. Energy-level diagram and vector coupling model
of CsHg. Solid arrow: AJ = 0, Am. = 1 transition.

J
Dotted arrow: AJ = 1, Am. = 0 low-field transition.J

J = 8 to J = 1. The spin-rotational constant y can be deduced from the quadratic

effect by observing the breakdown of N • F coupling as the magnetic field is

increased.

An alternative way of observing the resonance is to use AJ = 1, Am = 0J
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(III. ATOMIC RESONANCE AND SCATTERING)

transitions (dotted arrow) at very low field so that for a transition J = N - 4 - J = N - 3,

we have

[g(J+l)-g(J)] 1oHm j/h < Av,

where Av is the resonance linewidth. If this condition is met, the transitions caused

by all mJ states overlap. This method gives a direct measurement of y.

Our initial search has been hindered by a large background signal caused by the

inability of the magnet to provide adequate separation of all the species. Large detec-

tors and slit widths have aggravated this problem. Work is in progress to eliminate the

background by narrowing the slit and detector. The new resonance machine described

in Section III-C should eliminate these problems.

F. Y. Chu, D. Kleppner, D. E. Pritchard
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C. MOLECULAR-BEAM STUDIES OF VAN DER WAALS MOLECULES:

NEW APPARATUS

In order to provide a more powerful and flexible facility for the study of

van der Waals molecules, a new molecular-beam apparatus has been designed and

is being built. Its basic structure is that of the traditional molecular-beam magnetic

resonance machine: a source chamber containing the beam oven; a separately pumped

velocity selector chamber; a magnet chamber with its own pump, containing two

deflecting magnets ("A" and "B") and a homogeneous ("C") magnet with RF coil. A

separate chamber containing a hot-wire detector is attached downstream of the magnet

chamber.

The new machine will be superior to the present modified scattering apparatus in

several respects. The high-temperature jet-beam oven will be provided with a gas inlet,

so that, for example, alkali-rare gas van der Waals molecules can be studied. The

increased pumping speed of the new apparatus, approximately 4 times that of the old,

permits use of noncondensable gases.

The oven will have a separately heated skimmer, at an adjustable distance from the

oven nozzle, so that beam conditions can be optimized. A water-cooled baffle will match

the skimmer, minimizing scattering of condensable atoms into the beam.
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The deflecting magnets are twice as long (10 in.) as in the old apparatus, and are

designed to produce a field of approximately 22, 000 G, and a gradient of ~40, 000 G/cm.

The large deflection produced by these magnets will help eliminate the background of

unwanted atoms.

The C magnet in the new apparatus will be longer and more homogeneous than
4

that in the present machine, with a design homogeneity of better than 1 part in 10 . In

order to narrow the resonance line further, all of the magnets will be operated from

regulated power supplies, with the C magnet field-regulated by a nuclear magnetic

resonance probe.

F. Y. Chu, E. Mattison, J. Apt,

D. E. Pritchard, D. Kleppner

D. SPIN-EXCHANGE SCATTERING

We have made measurements of the spin-dependent differential cross section in scat-

tering of K from 0 2 at thermal energies, and have obtained from this the probability

of spin exchange during a collision, P ex(0), and the spin summed differential cross

section, ,sum (), both as functions of energy and angle. The data were then analyzed

with the aim of determining the intermolecular forces.

For elastic scattering, the interaction is described by two potentials, depending

on the spin state of the KO 2 "molecule," doublet or quartet. The long-distance

van der Waals attraction is expected to be spin- independent; and at small intermolec-

ular distances both states are repulsive. In the intermediate range of ~8-15 a o ,

electron cloud overlap is expected to cause repulsion in the quartet state and increased

attraction in the doublet state, so that the average of the two potentials still follows the

van der Waals potential.1

In the following equations, asum is a weighted average of the scattering from the two

potentials and Pex depends on the interference between the two scattering amplitudes

Ssum(0) =[4 24 (0 2

)4 f4()-f 2(0)
P ex ( 6 ) -27ex 27 ()

sum

where f 2 f4' 2' 04 are the scattering amplitudes and cross sections for doublet

and quartet scattering.

The cross sections were calculated from the usual partial wave expansion by

using a 7-parameter model for the derivative of the phase shift with respect to the

angular momentum. For the derivative of the phase shift we chose a model that is
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closely related to the deflection function. This model can easily be varied to produce

a desired change in the cross section. In the semiclassical approximation,

X(b) = 2 a lC=kb

where X(b) is the classical angle of deflection as a function of the impact parameter b,

rl(f) is the phase shift of the kt h partial wave, and k is the wave number, k =
(2mE) 1/2/1. The potential can be calculated from the deflection function, although we

2
have not carried out that calculation.

For small-angle scattering, "sum is dominated by o4 so that we need only consider

co
I-

M

-

rIr

X,

E

Fig. 111-12. usum vs EO and b vs EO. Solid line in -sum plot is

calculated from a given deflection function. Crosses
are data points. Vertical scale of sum is arbitrary

and chosen so that the data points approximately coin-
cide with the calculated cross section.
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the quartet scattering in describing-the features of a sumr The position of the broad

peak in a- sum corresponds roughly to the maximum angle of classical scattering caused

by the attractive branch of the deflection function, the rainbow angle (Fig. I1-12). The

oscillations are caused by diffraction effects, and their period near a particular position

gives a direct measure of the distance between the impact parameters corresponding to

that angle of scattering.

Figure III-12 shows the experimental and calculated sum cross sections and the best

fit to the deflection function. These selected data exhibit the clearest structure, but

other data taken at different energies and out to larger angles can be reproduced equally

well by using the fact that EX(E, b) is independent of the energy, E, to find X(E, b) at

the different energies. (The deflection for a given impact parameter can be shown to

be inversely proportional to the energy for small angles of deflection. 3) The experi-

mental and calculated probability of exchange are given in Fig. 11-13. It should be

noted that the rapid oscillatory structure which was present in the calculation is averaged

away in the data at the larger angles chiefly because these data were averaged over a

range of velocities.

The requirement that the calculations reproduce -sum within experimental error

fixes the rainbow angle within 10%/, the impact parameter, b g, at which the deflection

function crosses X = 0 within 2%, and the phase at b (or, equivalently, the integral of

0.7-

0.6-

0.5

0.4

0.3 +

0.2 +
+

+ +

0.1
+

0 I 2 3 4 5 6 7 8 9

EO x -4 (a.u.)

Fig. 111-13. P vs EQ. Solid line is
ex

Crosses are data points.

calculated.
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the deflection function from bg to infinity) within 10%. But 0-sum is relatively insensitive

to the shape of the deflection function near its minimum and to the long- and short-range

interactions for b > 15 a or b < 10 a
o o

To fit P ex' another constraint must be put on the calculated deflection function. For
1

small scattering angles, the requirement that the average of the doublet and quartet

potentials be the van der Waals potential implies that the same is true for the deflec-

tion functions. The value of Pex (0) with its oscillations removed by averaging deter-

mines the difference between the deflection functions and therefore the difference

between each one and the van der Waals potential for angles less than the rainbow.

With this information about the shape of the deflection function near its minimum,

and the information from usum' the calculated deflection function should be accurate

within 20% between 10 a and 15 a . At the minimum it should be accurate to 10% ando o
outside this range to 50%.

There are two important results of this work. The first is the determination of the

quartet and doublet deflection functions for the KO 2 system; these may be inverted to

give the long-range behavior of the intermolecular potentials for KO 2 . This is, as far

as we know, the first detailed determination of the potential between an alkali and a

molecule with nonzero electron spin. The second result is that the small-angle

scattering in this system can be described fully by simple elastic scattering. This

is somewhat surprising, since we know 5 that the wide-angle scattering is dominated

by complex formation: K + 02 - KO 2 - K + 02, where KO 2 indicates an autodisso-

ciating state of the KO 2 molecule.

J. Lacy, D. E. Prichard
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E. NONRADIATING EXCITED COMPLEXES

The long-range interaction between two atoms is generally the second-order

van der Waals interaction -C/r 6 , but the interaction between identical atoms, one of

which is excited, is first-order, D/r 3 . This well-known effect, resonant dispersion

interaction, plays an important role in the long-range potential of excited dimers. These

excited complexes possess interesting radiative properties; essentially, they provide

the simplest example of a two-body coherent system. Therefore the complexes are an
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ideal subject for use in investigating the properties of simple super-radiant systems.

The origin of resonant dispersion energy can be seen by the following simple argu-

ment. Consider two identical L-C circuits with resonant frequency wo = (LC) /2 . The

energy of each oscillator is (n+l/2)hcoo, where n is the photon occupation number. If

the oscillators are in the ground state, the energy is

1 1
E ohw + hE = -c hw

Now let the oscillators interact by electric coupling of the fringe fields of the capaci-

tor. If the coupling coefficient is K, then the resonant mode is split into two modes

having frequencies

o : l± + K.
o O

The energy is

E ' = o1 o-
o 2

For K << 1, the change in energy because of interaction is

1 2Z
AE = E' - E = - K .

o o o 4 o

The capacitors couple like two dipoles, and K l/R 3 , where R is the separation

of the circuits. Hence AE = -C/R . This is the lumped oscillation analog to the

van der Waals attraction between atoms.

Next, assume that one of the oscillators is excited with one photon. Then

3 1
12 o 2 0

The interaction energy for K << 1 is

El =-mo {T4± K-K2

The change of energy, to lowest order of K, is

1 3AE =± h 0 K = ±D/R
1 2 o

where D is a constant. The sign of the interaction is positive if the system is in a sym-

metric mode, negative if the mode is antisymmetric.

If the photon is localized on one oscillator, the system has mixed symmetry and the

QPR No. 104



(III. ATOMIC RESONANCE AND SCATTERING)

first-order interaction is zero. A system prepared in a state of pure symmetry, how-

ever, has a large, first-order, interaction.

The lifetime of an excited molecule bound in the symmetric state by first-order dis-

persion forces exhibits the shortening associated with a super-radiant system; in this

case the lifetime is one half the free-atom lifetime. The antisymmetric state, however,

behaves quite differently; it exhibits what might be called "super nonradiance. " Essen-
tially, the radiating dipoles of the two atoms are out of phase, and the total dipole is
zero.

The radiation theory for two identical atoms and one photon has been attacked the-

oretically by Stephen1 and others,2-5 but until now these systems have not been inves-
tigated experimentally.

We are attempting to produce nonradiant excited complexes of two sodium atoms.

The complexes will be formed by exciting the forbidden transition, and observed by the
delayed fluorescence rate. The initial work is being carried out in a gas cell, although

the use of high-intensity atomic beams would have some advantages. We have con-

structed a flashlamp pumped dye laser and much of the photon-counting equipment.

R. Bailey, C. Wieman, D. Kleppner
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