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A. QUASI-EQUILIBRIUM ANALYSIS OF THE REACTION OF

ATOMIC AND MOLECULAR FLUORINE WITH TUNGSTEN

Rosner and Allendorfl have recently reported experimental data on the rate of attack

of solid tungsten by gaseous atomic and molecular fluorine. Based on a comparison of

these data with their interpretation of the quasi-equilibrium model of Batty and

Stickney,2, 3 Rosner and Allendorf conclude that "the quasi-equilibrium model, combined

with presently available thermochemical data, does not provide a self-consistent expla-

nation of our observed Arrhenius behavior for the W(s)/F(g) reaction." The purpose of

this report is to point out a limitation in their reasoning which, when corrected, invali-

dates their conclusion. Specifically, we shall show that the quasi-equilibrium model

does provide a consistent, approximate explanation of Rosner and Allendorf' s data for

the reaction of F(g) and F (g) with W(s).

In Appendix B of their paper, Rosner and Allendorf examine the predictions of the

quasi-equilibrium model regarding the relative concentrations of the three most prob-

able reaction products: WF 6 , WF, and F. They focus their attention on the temperature

T - 2000"K because their experimental data pass through a maximum at approximately

that value. Using a straightforward analysis, they conclude that the quasi-equilibrium

model fails to predict the observed maximum at T - 2000 K. We agree with their anal-

ysis but we find their conclusion to be misleading because, although it is correct at

2000K, a totally different conclusion is valid when the analysis is performed at a

slightly lower temperature. Specifically, by employing Eqs. B-17 and B-18 of Rosner

and Allendorf, we compute that the proportions of F and WF 6 will be comparable when

T is between 1900"K and 2000K. Furthermore, these equations predict that the

dominant reaction product changes from WF 6 to F when T passes through the range

1900-2000 0 K, thereby producing the maximum observed in Rosner and Allendorf's data.

(WF is negligible throughout the entire range of interest in this study.)

This work was supported principally by the Joint Services Electronics Programs
(U. S. Army, U.S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300, and
in part by the National Aeronautics and Space Administration (Grant NGR 22-009-091).
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To provide a more detailed comparison of the quasi-equilibrium predictions with the

experimental data of Rosner and Allendorf, we have performed a complete analysis

similar to that described elsewhere 3 for the 02 -W reaction. The results are shown in

Fig. IV-1, which is a reproduction of Fig. 4 of Rosner and Allendorf except for our
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Comparison of predictions of the quasi-equilibrium model with

experimental data of Rosner and Allendorf, 1 where the fluorination
probability E, is defined as the ratio of the rate of removal of
W atoms from the specimen to the rate at which fluorine atoms
or molecules impinge upon the specimen.

addition of the curves representing the quasi-equilibrium predictions. For simplicity,

we have approximated their data for T < 1800'K by straight lines, thereby causing the
23empirically determined equilibration probabilities ' for F and F to be simple

exponential functions of temperature.4 Although the procedure by which the equilibration

probabilities are determined 2 ' 3 causes the predictions to agree closely with the experi-

mental data in the region T < 1800 0 K, the maxima appearing at ~2000 °K result primarily

from the fact that the thermodynamic aspect of the quasi-equilibrium model causes the

dominant reaction product to change from WF 6 to F as T increases. The predictions

provide a satisfactory semiquantitative explanation of the experimental data, but we

are disappointed by the increasing discrepancy at the highest temperatures. We are

unable to present a definite explanation of this discrepancy, but we suspect that it may
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be the result of (a) oxygen impurities,5 (b) inaccuracies in determining the fluorine

impingment rates, 3 and/or (c) slight errors in the thermochemical property data for

WF 6 at high temperatures.

P. C. Abbott, R. E. Stickney
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4. Although this simplifying assumption does not have a substantial effect on the gen-
eral (qualitative) nature of the predictions, it does neglect the fact that Rosner and

Allendorf's data exhibit definite structure, I such as the "bump" in the curve for
atomic fluorine at T z 850'K. We shall not attempt to consider the possible expla-
nations of the structure.

5. In a recent mass-spectrometric investigation of the reaction of F2 with W, J. D.

McKinley (National Bureau of Standards; unpublished results) has found that it
is extremely difficult to reduce the partial pressure of O2 to a sufficiently low level

that the F2-W reaction is not influenced significantly by the formation of WOF 4 .

B. CREEP-RUPTURE BEHAVIOR OF DOPED TUNGSTEN WIRE

AT HIGH TEMPERATURE (1600-2925 0 C)

There is considerable evidence that the mechanical properties of tungsten are influ-

enced markedly by the presence of extremely small quantities of impurities.1 A prac-

tical example is the commercial product called doped tungsten, which is commonly used

for the filaments in lamps and electron tubes because its resistance to sag at tempera-

ture is far greater than that of undoped (i. e., standard purity) tungsten.1 The purpose

of the work described in this report was to obtain creep-rupture data for doped tungsten

wire at temperatures in the normal operating range of filaments. Such temperatures

are above those for which data are available for doped tungsten.2 A second aim was

to attempt tQ relate these data to the results of recent investigations of the formation

and growth of cavities in doped tungsten.3

Presented here are the results of short-duration creep tests of 5 mil (1.27X 10- 2 cm)

diameter doped tungsten wire (Sylvania NS 86). The tests were carried out in vacuum

(p< 5X 10- 7 Torr); loading was by deadweight; and extensions were recorded continuously

using a displacement transducer (Hewlett Packard 7DCDT-050). The wires, 10 cm long,

were heated resistively by a dc current. The wire temperature was determined from

this current 4 and checked by optical pyrometer.

Experiments were conducted on as-received doped wire at a stress of 8.28X 107 Nm - 2

(12,000 I/in. - z2 ) for temperatures from 1600'C to 29Z5°C (0.51 T m to 0.88 Tm) and
m m
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also over a stress range of 8. Z28 X 107 to 1.38 X 108 Nm - (12, 000 to 20,000 lb/in. - )

for a single temperature, 2500°C (0. 76 T ). Results are presented in Figs. IV-2

through IV-4; for comparison, Figs. IV-2 and IV-3 include results we obtained for 5 mil

(I. 27 X 10-2 cm) diameter undoped tungsten wire (Linde high purity).
(1. 27XI10 cm) diameter undoped tungsten wire (Linde high purity).
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Fig. IV-2. Temperature dependence of the undoped tungsten wires

[diameter = 5 mil (1. 27 X 10-Zcm)].

The creep rates for doped tungsten (Fig. IV-2) are extremely small, several orders

of magnitude below those for undoped tungsten 5 at the same values of temperature and

stress. (The data in Fig. IV-2 for doped and undoped wire should not be compared

directly since they are for different stresses.) We encountered a number of difficulties

in measuring the creep rate of doped tungsten. A truly constant rate for secondary

creep, in the same sense of that for the pure metal, was not obtained for doped tungsten;
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therefore average values have been computed. At the highest values of temperature and

stress, the time to rupture was so short that we suspect that our assessment of the

average creep rate was less reliable than at lower temperature and stress; on the other

hand, at the lowest values of temperature and stress, the creep rates are so small that

extraneous effects influence the readings.

The results shown in Fig. IV-Z indicate that the creep behavior of doped tungsten

wire falls into three regimes depending on temperature. At both the higher and lower

values of temperature, creep appears to proceed with approximately the same value of

activation energy (-250 kcal mol - ) while at intermediate temperatures there is a

transition region that cannot be characterized by a single value of activation energy.
1

Since this transition region coincides with that for recrystallization, it appears that

the transition is closely related to the changing size and character of the grain

structure. 6

The creep behavior of doped tungsten appears to be similar to that of precipitation-

hardened alloys.7 The extension-time curves we obtained in our tests are similar in

shape and character to those reported by Ansell and Weertman 8 for dispersion-hardened

aluminum alloy. Furthermore, our value of the activation energy for creep of doped

tungsten is ~2 1/2 times that for self-diffusion in tungsten, while Ansell and Weertman8

30K
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Fig. IV-3. Stress dependance of the creep rate of doped and undoped

tungsten wires [diameter = 5 mil (1. 27 X 10 -2 cm)].
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found that the activation energy for creep of dispersion-hardened aluminum alloy is

~5 times that for self-diffusion, and Mukherjee and Martin 9 report that this ratio is

~ 1. 6 for a nitrided molybdenum alloy.

The data presented in Fig. IV-3 may be described satisfactorily by the expression

j : Cu n

where j is the secondary creep rate, c is a constant, and a is the stress. These data

indicate that n - 10 for doped tungsten at 2500oC; stresses below -1. 24 X 108 Nm 2, and

n - 4 for undoped tungsten at 1650 C.
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Relationship between the time to rupture,

for doped tungsten wire [diameter = 5 mil

tr , and the creep rate, E,

(1. 27 X 10- Z cm)].

The data in Fig. IV-4 may be represented quite accurately by the expression

t = C,
r

where t is the time to rupture and C is a constant. For t in h and E in h these
r r-2 0 1 10data indicate that C = 3.6 X 10 h . Machlin has shown that when failure occurs

by void growth through vacancy condensation, the product of minimum creep rate and

rupture time should be a constant. Undoped tungsten conforms to this fairly closely,11

and our results indicate a similar pattern of behavior for doped tungsten. For undoped

tungsten, 11 however, the value of the constant is some fifty times greater than that
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which we have obtained here. Based on the work of Holloman and Turnbull, 2 we suggest

that this implies that the void (cavity) concentration and/or dislocation density at rupture

is higher in doped tungsten than in undoped tungsten.

Recent work by Moon et al.3 has shown that the dopants in commercial doped tungsten

wire lead to the formation of cavities within the bulk. According to the model proposed

by Coulomb, 13 cavities effectively hinder dislocation movement. Additionally, it is
14

known that bubbles act like dispersed particles for hardening materials, and both

theory 7 and experiment ] 5 assign high values of activation energy to the movement of

dislocations through embedded obstacles. It seems reasonable, therefore, to believe

that the very low creep rates observed for doped tungsten wire result primarily from

the effect of the cavities on inhibiting dislocation motion.

The creation of cavities in refractory metals is not restricted to dopant action but

can be brought about also by neutron irradiationl6 and electron bombardment.17 The

effect on creep of the cavities created in these ways is similar to our observations for

doped tungsten wire. 18

J. E. Franklin, R. E. Stickney
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