
IX. COGNITIVE INFORMATION PROCESSING

Academic and Research Staff

Prof.
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.

R.
J.
B.
R.
J.
A.
A.
W.
D.
L.

M. Eden
J. Allen
B. A. Blesser
T. S. Huang
F. F. Lee
S. J. Mason
W. F. Schreiber
D. E. Troxel
I. T. Young

R. Bochner
E. Bowie
E. Boyle
L. Brenner
R. Ellis, Jr.
E. Filip
C. Goldstein
B. Grossman
W. Hartman
P. A. Henckels

D. A. Fay
Deborah A. Finkel
C. L. Fontaine
C. C. Hsieh
E. R. Jensen
D. E. Robinson
J. M. Sachs
Sandra A. Sommers
J. S. Ventura

Dr. R. R. Archer
Dr. G. H. Granlund
Dr. J. E. Green
Dr. E. G. Guttmann
Dr. K. R. Ingham
Dr. J. I. Makhoul
Dr. D. M. Ozonoff
Dr. D. Sankowsky
Dr. O. J. Tretiak
F. X. Carroll

Graduate Students

M. Hubelbank
P. D. Henshaw
T. Kitamura
J. W. Klovstad
G. P. Marston
G. G. Matison
G. Poonen
N. Rashid
R. Singer

A. ESTIMATES OF THE HUMAN VISUAL LINE-SPREAD AND

POINT-SPREAD FUNCTIONS

There has been much interest in the human visual spatial modulation transfer func-

tion, line-spread function, and point-spread function. These three functions are mean-

ingful only under conditions of vision when the human visual system is linear and

space -invariant. The modulation transfer function is the system function relating sen-

sation (the output) to stimulus (the input). The line-spread function is the output attribu-

table to a knife impulse input of unit area per unit length, and the point-spread

function is the output resulting from a point impulse input of unit volume. This report

shows the relationship among the three functions when circular symmetry is present

and uses experimental values of the easily measured modulation transfer functionI to

calculate values for the two spread functions.

Cutrona 2 approximates the human visual spatial modulation transfer function, H(k),

as

H(k) = 470 (e-.1531k -e-.54k )k

where k is spatial frequency in cpd (cycles per degree). The line-spread function,
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h f(x), is the one-dimensional impulse response of the visual system and is related to

H(k).

hp(x) =Sr
-00

H(k) cos (2lTkx) dk

4 .153 .54

(.153) 2 + ( 2 rrx) 2  (.54)2 + (2irx)

where x is distance in degrees. The point-spread function is the two -dimensional

impulse response. If the point-spread function, h (r), has circular symmetry, then ha (x)

and h (r) are related by the Abel-like integral equation
p

00

2 2
which is solved by substituting a = x + z

h (r) -
r

and using Laplace transform techniques.

dh (y) 1
dy 2(y 2 )1/2

(y -r)

= 470 • 2Tr 153

((.153)2 +(2Trr))3/Z

where r is radial distance
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in degrees. h and h arep shown in Fig. IX-1.
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Fig. IX-1. (a) Point-spread function vs angular distance in degrees.
(b) Line-spread function vs angular distance in degrees.
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Although an experiment by Mitchell, Freeman, and Westheimer 4 indicates circular

asymmetries in the visual system, the formula given for h is probably a fair approx-

imation.

It is interesting to note that the formula for h can be determined directly. h (r) is

the Fourier-Bessel transform of H(k) and is given by

p 0

where J denotes the zero-order Bessel function of the first kind. The two computations
40

agree.

R. E. Greenwood
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B. TRANSFORMATIONS ON DIGITIZED PICTURES USING LOCAL

PARALLEL OPERATORS

1. Introduction

A vital area of concern in automatic pattern recognition and image-processing appli-

cations is that of preprocessing. Usually, a picture presented for analysis to a compu-

ter is in digitized form. This report is concerned with the (common) case in which

a picture is represented as a rectangular array of 1 's and 0's with 1 corresponding to

black and 0 corresponding to white. Preprocessing can then be defined to be any trans-

formation on the array such that some points are changed from 1 to 0 (erased), and some

are changed from 0 to 1 (filled in).

A family of such transformations can .be defined with the useful property that

the connectivity of the picture is not altered. The following properties can also be

imposed.

Local - Each point in the new pattern is a function of the corresponding point in the

old pattern and its eight neighbors (see Fig. IX-2).
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Fig. IX-2. A point P and its eight neighbors.
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Fig. IX-3. Changing P will not alter connectivity.
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Fig. IX-4. Changing P will alter connectivity.
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Fig. IX-5. Removal of only P or Q will not disconnect the set of
black points in these pictures. Removal of both will.
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Parallel -A new copy of the picture is generated separately from the old one, so

that each newly generated point is a function only of points on the original pattern.

A transformation, then, can be viewed as an array of local operators, one for each

point, operating in parallel. In practice this is implemented sequentially, with one oper-

ator generating a new picture point-by-point from the original.

Any transformation can therefore be completely specified by specifying the condi-

tions under which a single point may be changed, either from 1 to 0 or 0 to 1. One of

these conditions is that changing the point does not alter connectivity. This condition

is discussed next, followed by a description of two particular transformations.

2. Connectivity

A subset of a pattern is connected if for any two points p and q of the subset there

exists a sequence of points in the subset:

p = poP P1' ... Pn-,Pn = q

such that p.i is a neighbor of Pil , 1 < i - n. As in Fig. IX-2, each point is considered

to have 8 neighbors.

Consider Fig. IX-3. In each of the three pictures, changing P either from black

to white or from white to black will not alter the connectivity of the black points. This

is because the set of l's (blacks) around P is already connected. In each of the pictures

in Fig. IX-4, the set of 1 's will be connected only if P is black. Changing P either way

alters connectivity.

From this, we can state a rule that must be satisfied to change a point: A point may

not be changed, either from black to white or white to black unless the set comprising

its 8 neighbors contains at most one connected subset of black points.

A simple means of calculating the number of connected black components in the

neighborhood of P (excluding P) has been reported by Hilditch. Define the crossing

number of P with respect to the subset containing its black neighbors as the number of

times a "bug" taking a walk around P by way of its neighbors would have to cross from

outside to inside the subset. The bug is permitted to take diagonal steps to avoid leaving

the black area. If the crossing number is 0, the number of connected black components

is 0 or 1. Otherwise, the number of components is equal to the crossing number. In

Fig. IX-3, for example, the first two pictures have crossing number 1 and the last pic-

ture has crossing number 0. In Fig. IX-4, the first two pictures have crossing

number 2 and the last picture has crossing number 3.

The crossing number X(P) is calculated as follows:

4

X(P) = b,

i=l 1
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where b. = 1 if P = 0, and either P2i or P = 1, and b. = 0 otherwise.

3. Hole Filling

Consider the transformation specified by the following set of rules. A point P will

be filled in, that is, changed from white to black, if and only if all of the following are

true:

1. P = 0. The point must be white initially.

8
2. I P. > 4. Most of its neighbors are black.

i=l 1

3. X(P) = 0 or 1.

All other points remained unchanged.

This transformation changes some points from white to black. A point is changed

if most of its 8 neighbors are black and if connectivity is preserved. Such a transforma-

tion can be used to eliminate isolated small sets of 0's, that is, to fill in small holes in

black regions. To achieve this effect, the transformation is applied repeatedly, always

using the most recent version of the picture, until no more points are changed.

4. Thinning

Another algorithm that can be specified is thinning. Thinning is the process of

reducing a picture to a stick figure or skeleton. A linelike black region is reduced to a

black line which is only one point thick. Again, this effect is achieved by repeated appli-

cation of a transformation. The transformation to be applied removes boundary points

in the picture. A boundary point is a black point, at least one of whose axially adjacent

neighbors (P1, P3, P5, P7) is white. Each application peels away the outer layer of

the black regions. This is continued until all black regions have been shrunk to mini-

mum thickness without erasing them.

This algorithm is somewhat complicated to explain, because of an effect produced

by the parallel nature of the computation. The effect can be observed by noting the pic-

tures of Fig. IX-5. In each case, the removal of either P or Q (for example, changing

P or Q from black to white) does not alter connectivity. The removal of both these

boundary points does, however.

One way out of this difficulty is to perform the thinning operation sequentially,

changing points directly on the original picture. Unfortunately, as points are removed

from the boundary of an object, subsequent nearby points become eligible for removal.

The result is that the skeleton will tend to be biased toward one side or the other of the

original set of black points, depending on the order in which the points are taken.

To maintain an essentially parallel type of computation, the following procedure is
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adopted: each point P is tested with its 8 original neighbors. If the point is eligible

for removal, it must then satisfy the further condition that its removal in conjunction

with any of its neighbors that has been previously removed does not alter connectivity.

Since the sequence in which the points are being tested is known, it is only necessary

to test for this condition for those neighbors that precede P. If the picture is examined

starting at the top and going left to right, then it is only necessary to consider P2, P3,

P4, and P5.

Now notice that P2 may be ignored. The reasoning is as follows:

The only case of interest is that in which P is black, and P2 has been changed from

black to white, and the crossing number X(P) with P2 black is one. This is the case in

which we wish to change P and must check that this change plus the change in P2 does

not alter connectivity.

Such a change in connectivity would take place only if X(P) with P2 white were greater

than one.

Suppose that P1 and P3 are white. If P is P2's only black neighbor, then, as we

shall show, P2 would not have been erased. On the other hand, if P2 has other black

neighbors, then X(P2) > 1 and P2 still would not have been erased.

It follows that at least one of P1 and P3 is black. Therefore, removal of P2 cannot

change the value of X(P), and so P can be erased without altering connectivity.

The same line of reasoning applies to P4. To guarantee that the parallel removal

of two adjacent points does not alter connectivity, it is sufficient to say that P may not

be erased if either P3 or P5 has been.

The thinning transformation can now be specified. A point P will be erased, that

is, changed from black to white, if and only if all of the following are true:

1. P = 1. The point must be black initially.

2. P1 + P3 + P5 + P7 < 4. The point must be a boundary point.

8
3. P. 1. If the point is on the tip of a thin line, it should not be erased,

i=l
thereby shortening the line.

4. X(P) = 1.

5. Neither P3 nor P5 has been erased.

All other points remained unchanged.

5. Conclusion

Two examples of connectivity-preserving transformations on digitized pictures have

been given. A family of such transformations can easily be specified. Examples of

other functions that could be performed are thickening black regions, erasing isolated
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small sets of black points, and reducing each connected black region to a single

point.

W. W. Stallings
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