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A. OPTIMAL LINEAR FILTER FOR ESTIMATION OF GROUP

TIME OF ARRIVAL

The problem of optimal linear filtering of Loran C pulsed radio transmissions is

being studied. Two related linear time-invariant filter operations were considered for

estimating phase time of arrival and group time of arrival. The filter operations

described in this report will be applied to the signal in place of the bandpass "RF" fil-

ters of a Loran C radio navigation receiver. Optimality was considered in the sense

of maximizing the ratio(s) of desired signal parameter(s) -to-noise variance ratio at

the output of the filter(s), in response to the Loran C pulse and an uncorrelated shaped

noise spectrum. For phase time of arrival the signal parameter of interest was that

of a maximum signal envelope at a specified sample time. For group time of arrival

the resulting signal was constrained to have a zero crossing at the specified sample

time, while the signal parameter of interest was that of the signal slope at the zero

crossing.

In the Loran C context the optimal filter for estimating phase time of arrival is the

familiar "matched-filter" result stated in the Wiener-Hopf equation (Eq. 1). The optimal

filter for Loran C group arrival time is the more general result stated in Eq. 2, which

gives the optimal linear filter for maximizing the ratio of slope-to-noise standard devia-

tion of a filter, thereby causing a response passing through zero at time "T". The filter

transforms H (s) and H (s) are specified by the pulse spectrum P(s), the fac-
P g

tored noise-power spectrum / (s) and 0-(s), the sample time T, and the given

constant C.

h (t) H (s) = 1 ausal P(s) (1)
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S(t) (s) P(-s) e sP(-s) e
(t) H (s) ausal + C . (2a)

hg g( a'-c c+(s) - (s

The constant C is so selected that

h (.) * p( )tT = 0. (2b)

Numerous simulations pertinent to the Loran C environment have been performed.

This work will continue.

T. L. Rhyne

B. RECONSTRUCTION OF TWO-DIMENSIONAL SIGNALS FROM

PROJECTIONS

An ordinary x-ray represents a flat two-dimensional projection of the optical density

of a three-dimensional object. If several of these projections are available from dif-

ferent directions, then the three-dimensional structure of an object can be obtained or

approximated. Similarly, a two-dimensional signal can be approximated from several of

its one-dimensional projections. Several techniques have been explored, some of which
1-3

perform reconstructions in the frequency domain, and some of which perform it in

the time domain.4 In this report we shall consider several of these reconstruction

schemes from the point of view of digital signal processing, consider the relationship

between a multidimensional signal and its projections, and report on the progress that

has been made in this study. Specifically, we hope to answer questions such as: What

restrictions must be imposed upon a multidimensional signal so that the reconstruction

can be performed exactly? When the result of the reconstruction is an approximation,

how well does the reconstruction reproduce the original signal?

If a projection p(x) is taken in the y direction on the function f(x, y), then

p(x) = f(x, y) dy. (1)
-o

Furthermore, if F(X, Y) represents the Fourier transform of f(x, y)

F(X, Y) = f(x, y) e- j rr(xX+yY) dxdy, (2)
-C -oC

then
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F(X, 0) = f(x, y) e - j 2 rxX dxdy
-O -OO

= e - j 2 Trx X  f(x, y) dy dx

S: e - j 2 Trx X p(x) dx.
-oo

--00i"" ~l r

(3)

The one-dimensional Fourier transform of this projection, then, is numerically equal to

the two-dimensional transform F(X, Y) evaluated along the line Y = 0.

It can be shown that if f(x, y) is represented in polar coordinates as f(r, ) and if

F(X, Y) is represented as F(R, 6), then f(r, +~ o) transforms to F(R, 6+0o); that is, a

rotation in the image plane corresponds to a rotation in the Fourier plane. Utilizing this

fact and Eq. 3, we can obtain the Fourier transform F(X, Y) along the lines indicated in

Fig. XII-1, by taking the one-dimensional Fourier transforms of 8 projections of f(x, y)

at angles 0, rr/8, rr/4, 3r/8, Tr/2, 5Tr/8, 3rr/4, and 7rr/8.

One procedure for reconstructing f(x,y) from its projections would be, first, to

Fourier-transform the projections. This will specify F(X, Y) along some lines in the

Y

//8

Fig. XII-1. Lines in the Fourier plane where F(X, Y) is known
from equiangularly spaced projections.
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Fourier plane. Then, subject to some assumptions about F(X, Y) (or f(x, y)), we can fill

in the rest of the Fourier plane and generate an approximation F(X, Y) to F(X, Y). Finally,

we can get our reconstruction f(x, y) by letting

f(x, y) = F(X, Y) e j 27r(xX+yY) dXdY.

The accuracy of the reconstruction will depend upon the number of projections, the

assumptions made in filling in the Fourier plane and inherent errors, such as inaccurate

projections and inaccuracies in performing the integrations.

Fig. XII-2. A system used to implement the reconstruction.

The system that is block-diagrammed in Fig. XII-2 was used to implement the recon-

struction. The projections were computed, lowpass-filtered (to remove noise generated

in the computation), and transformed. At this stage, F(X, Y) was known at points on a

regular polar raster (points equally spaced in radius and angle). Interpolation was then

used to approximate F(X, Y) at points on a regular Cartesian raster, after which an

inverse two-dimensional discrete Fourier transform was computed. The interpolation

at this stage of the work was simple. The value of F(X, Y) at each Cartesian point was

made equal to F(X, Y) at the nearest polar point (the nearest point computable from the

projections). Other more accurate interpolation schemes will be tried later. Results

of this technique are shown in Fig. XII-3 for pictures of different sizes. In Fig. XII-4
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(a)

(b) (d)

(c) (e)
Reconstructions by interpolating in
for pictures of different sizes.
(a) original picture.
(b) 32 X 32 picture.
(c) 64 X 64 picture.
(d) 128 X 128 picture.
(e) 256 X 256 picture.

the F ourier plane
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(a)

(b)

(c)

Fig. XII-4. (a) Original function (64 X 64).
(b) Reconstruction with unfiltered projections.
(c) Reconstruction with filtered projections.
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(a)

(b)

(c)

Fig. XII-5. Results of a reconstruction implemented by
the procedure of Eq. 6.
(a) 32 X 32 picture.
(b) 64 X 64 picture.
(c) 128 X 128 picture.
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reconstructions whose projections were lowpass-filtered are compared with reconstruc-

tions whose projections were unfiltered.

Another approach that has been tried is to write the inverse transform in polar

coordinates,

f(r, ) , F(R, 0) ej2TRr cos (0-c) RdO dR. (5)
0 -T

Since we know F(R, 0) along lines 0 = 6i for several values of i, we can approximate the

integral by a sum.

TN-i j2rRr cos (6.- )

(r F(R,i) Re dR. (6)

i=0

The integral is simply the inverse transform of a line impulse and so must be constant

along a line perpendicular to the line = 0.. Parallel to this line it simply represents

a modified projection function (the modification is due to the factor of R which multi-

plies F(R, 0)). Hence these can be called modified smeared projections. This recon-

struction procedure informs us that f(x, y) is approximately the sum of the modified

smeared projections of f(x, y). Some results obtained from this procedure are shown

in Fig. XII-5.

R. M. Mersereau
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