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A. DIFFRACTION OF HELIUM ATOMS FROM A TUNGSTEN (112)

CRYSTAL SURFACE

1. Introduction

During the last forty years there have been numerous investigations of the diffrac-

tion of atoms and molecules from solid surfaces. Early in the 1930's, Stern, Estermann,

and Frisch1 observed the diffraction of thermal beams of He and H2 from LiF and NaCl

single crystals. Many workers2 have reconfirmed and extended these results for alkali

halide crystals, but no one has reported observing either atomic or molecular dif-

fraction from a metal crystal. There have been numerous studies of the scattering of

He, H2 , and D2 from various metal crystals, and the general finding is a lobular

scattering pattern peaked at the specular angle with no indication of secondary peaks

corresponding to diffraction of order greater than zero. Recently, Weinberg and

Merrill 0 have observed the diffraction of helium and deuterium beams from a tungsten

carbide surface structure on a W(110) crystal, but the diffraction effects disappeared

when the carbon was removed. We report here the diffraction of helium from a W(112)

crystal that is believed to be clean. This is the first instance of atomic diffraction from

a pure (i. e. , clean) metal surface.

2. Experimental Apparatus

The experimental apparatus is identical to that described elsewhere,5 except that

the target chamber is now pumped by an ion pump and the detector is a stagnation-type-9 Tr fe
ionization gauge. The target chamber pressure is of the order of 1 X 10 Torr after

baking at 200°C. A nearly monoenergetic molecular beam, generated by a nozzle source,

strikes the target that is situated at the center of the target chamber. Detection of either

the incident beam or the scattered beam in the principal scattering plane is accomplished

by the rotatable detector.

This work was supported principally by the National Aeronautics and Space Adminis-
tration (Grant NGR 22-009-091), and in part by the Joint Services Electronics Programs
(U.S. Army, U.S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E).
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The tungsten target is a disc, 0. 6 cm in diameter, oriented and spark-cut from a

high-purity single crystal so that the surface is the (112) face. Before mounting, the

crystal surface was polished, first mechanically and then electrolytically, and the ori-

entation was checked by the Laue x-ray diffraction technique. After installing the crys-

tal in the apparatus and baking the system during evacuation, the surface was cleaned.

Specifically, the carbon impurities were removed by the oxidation procedure described

by Germer and May,11 that is, a repeated cycle of heating the crystal at -1300'K in
-7-2 X 10 Torr 02 for a considerable time and then flashing for a few seconds above

2400'K. (Our confidence in this procedure is strengthened by the fact that no impurities

were detectable by Auger electron spectroscopy when a similar crystal was cleaned in

this manner in an auxiliary apparatus.) Before measuring a scattering pattern, the crys-

tal was flashed (i. e. , heated to -2400 0 K for several seconds by electron bombardment)

to remove adsorbable background gases. Unfortunately, the background pressure

(~1 X 10- 9 Torr with beam off) proved to be too high to keep the surface clean for the

length of time required to measure a scattering pattern unless Ts > 1200'K. Hence we
could not obtain reliable scattering patterns for T below -1300 0 K (see Yamamoto and

Stickney 5 for detailed discussion of this point).
The (112) face of a tungsten crystal has a highly anisotropic surface structure, com-

prising closely packed rows of top-layer atoms in the [111] azimuthal direction, sep-

arated by relatively open channels or "troughs" as shown in Fig. III-1. By comparing
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3soo Fig. III-1. Atomic structure of the (112) face
of a tungsten single crystal.
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the scattering patterns for two azimuthal directions (4 = 0" and p = 900 in Fig. III-1),
we hoped to determine the sensitivity of atom-solid collisions to the atomic structure
of the surface. The diffraction-grating spacing in the principal scattering plane is
d = 4. 47 A in the = 00 [110] direction and d = 2. 74 A in the 4 = 900 [111] direction.
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The temperature of the beam gas was the same, ~300 0 K, for all experimental runs. For

an ideal nozzle beam, the helium beam would be nearly monoenergetic with speed

approximately equal to 1. 76 X 105 cm/s for a source temperature of ~300 0 K. (The nozzle

beams have been described by others. 12,13 ) Therefore, the corresponding de Broglie
th

wavelength, X, would be 0. 565 A. The expected angular position, 0 rn' of the n -order

diffracted beam may be obtained from the simple diffraction relation

sin 6 - sin 8. (1)rn i d '

where 0. is the angle of incidence, and d is the diffraction-grating spacing.
1

The flux and halfwidth (i. e. , the full width at half-maximum) of the incident beam

are measured with the detector by lifting the crystal out of the beam. The measured

peak flux of the beam, F , is used to normalize the scattered flux, F s The measured

halfwidth of the beam is ~-5 in terms of the angular rotation of the detector. Since the

acceptance angle of the detector is -4o, the true halfwidth of the beam is substantially

less than the measured value. (We estimate from our measurements that the true half-

width is ~2. 80.)

3. Experimental Results

Figure III-2 shows the He scattering patterns for 4= 0 [110] when the crystal temper-

ature, T s , is -1300 0 K. The scattering patterns for 0. = 30' and 400 exhibit three peaks,

whereas only two peaks are observed for 0i = 500 and 600. Notice that the angular posi-

tions of these peaks agree very closely with the theoretical predictions (indicated by

arrows in Fig. III-2) obtained from Eq. 1 for the (00), (10), and (10) diffraction peaks.

The intensity of the specular or (00) peak is observed to increase significantly with

increase in the angle of incidence, Bi . Specifically, (Fs/F )spec increases from 0. 047

for 0. = 300 to 0. 24 for 0. = 600. Note that the individual peaks become increasingly
1 1

narrow with increasing angle of incidence. The halfwidth of the specular peak at 0. = 600

is ~-6, which corresponds closely to the measured halfwidth of the incident beam (~5',

as described above).

Figure III-3 shows the scattering patterns for 4 = 0 [110] with T s = 2200'K and

0i = 450 and 600. The patterns are broader than those for Ts 13000K (Fig. 111-2), and

only the specular peak is observed. By comparing the data for 0i = 600 in Figs. II-2

and III-3, we see that the intensity of the peak decreases by a factor of three when

T is increased from 1300 0 K to 2200K. This decrease in peak intensity with
s 6-8

increasing T is consistent with the results obtained by other investigators. One
s

of the possible reasons for the increased broadening and decreased intensity at higher

temperatures is that the perfection of the surface structure (the diffraction grating)
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Scattering patterns for helium scattered
from a W(112)crystal. Beam conditions:

#= 0 ° [110], oi = 300, 400, 500, and 60,

Tb = 3000K. Target conditions: T s

1300 0 K. Arrows indicate the positions
of the diffraction peaks predicted by
simple diffraction theory.
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Scattering patterns for helium scattered from
a W(112) crystal. Beam conditions: = 0

[1101, 0 = 450 and 60, Tb = 300'K. Target
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is degraded by thermal motion, as observed in low-energy electron diffraction studies.14

Data were obtained at various values of Ts, and we found that the (10) and (10) peaks

could be resolved only for T < 19000K.

The scattering patterns for 4 = 900 [111] with Ts = 1300 0 K and 0. = 450 and 600 are

shown in Fig. III-4a. In this case, there are no distinguishable peaks other than the

(00) specular peak. (The arrows in Fig. III-4 indicate the predicted positions of the first-

order diffraction peaks.) Note that the intensity of the specular peak is much smaller
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Scattering patterns

Beam conditions:

Target conditions:

for helium scattered from a W(112) crystal.

= 900 [111], 0 = 450 and 60, T b = 3000 K.

T z 13000 and 2200K.
s

in this case than for 4 = 00 [110]. For example, the peak intensity for 0i = 600 and Ts
13000K is roughly a factor of two less for 4 = 900 [111] than for 4 = 00 [110].

The corresponding data for Ts = 22000K are shown in Fig. III-4b. The general shape

of the patterns is similar to that for Ts - 13000K, but the intensities are smaller and

the halfwidths are larger, as observed for = 00 [110].

4. Conclusion

The most interesting aspect of the present results is that atomic diffraction has been

observed from a metal surface which we believe to be clean. As can be seen in Fig. 111-2,

the peaks for 4 = 0O [110] are sharp and well resolved, and their angular positions agree
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well with the predicted positions of the (00), (10), and (10) diffraction peaks. The data

for 4 = 900 [111] in Fig. III-4, however, do not exhibit peaks other than the (00) specular

peak. It seems reasonable to suspect that this dependence on azimuthal direction arises

because the surface structure is far more pronounced (atomically "rough" or non-

planar) in the [110] direction than in the [111] direction. This would cause the periodic

variation of the interaction potential "seen" by the incident He atoms to be significantly

stronger for 4 = 00 [110] than for 4 = 900 [111]. Existing theoretical treatments of atom-

solid diffraction predict that the intensity of the first-order peaks should increase with

the strength of the periodic interaction potential.15 Since the crystal orientations

employed in previous experimental investigations of the scattering of He from met-

als 3 -9, 16 have less pronounced ("smoother") atomic surface structures than W(112),

we suspect that the periodic variations of the interaction potentials were so small that

the first-order diffraction peaks were either below the level of detection or completely

masked by inelastically scattered atoms.

D. V. Tendulkar, R. E. Stickney
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B. EXPERIMENTAL MEASUREMENTS OF THE SPEED DISTRIBUTIONS

OF DEUTERIUM MOLECULES DESORBED FROM NICKEL SURFACES

1. Introduction

This study is a continuation of our previous experimental investigations of

the spatial and speed distributions of hydrogenic molecules (H2 , D2 , HD) desorbed
1, 2

from polycrystalline and single-crystal nickel surfaces. 2 We have discovered that the

time-of-flight curves reported previously2 are erroneous, because of distortion of the

signal by the preamplifier in our detection electronics. These experiments have

been repeated and we report here the new data obtained for D2 desorbed from poly-

crystalline and single-crystal (110) nickel surfaces. We also describe a quantitative

method for characterizing the data by taking low-order moments of the time-of-flight

curves.

2. Moment Method for Characterizing Time-of-Flight Data

In the following description of the moment method for characterizing the time-of-

flight (TOF) curves, we shall refer to the time-of-flight experiment shown schematically

in Fig. 111-5. After molecules in free molecular flow leave the source (which could

be a Knudsen cell or a surface from which the molecules desorb), they are chopped

at regular intervals by the mechanical chopper. At the end of the flight path, f,

some of these molecules are ionized by electron impact. If the time that the chopper

is open, t , is much less than the average flight time, the shape of the chopper opening

(the shutter function) may be considered to be a delta function. In this case, the instan-

taneous number density of particles in the detector is related to the velocity distribution

3
n(ti) = K 1 f(v) 4' (1)

t
i

where t. is the time measured from the instant the chopper opens, f(v) is the velocity1
distribution, v is the velocity (v= £/ti), and K 1 is a constant. A plot of n(ti) against

t. is called a "TOF" curve.
1
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Fig. III-6. Time-of-flight curve measured by the apparatus in Fig. III-5 when
the shutter function is rectangular. (The crosshatched area repre-
sents molecules that have been detected while the chopper is still
open.)
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If the source in Fig. III-5 is considered to be a slit and the shutter function is rec-

tangular, the TOF distribution measured by the detector would be that shown in Fig. 111-6.

The crosshatched area in Fig. 111-6 represents molecules that have been detected while

the chopper is still open. Because too is of the same order as the average flight time,

the TOF curve is affected by the shape and duration of the shutter function. Therefore,

the particle number density in the detector is related to the velocity distribution by a

convolution integral over the shutter function 3

t
n(t) = K 2  t0

(2)
3

A(t c ) f -' dt c'T

where t is the time scale for the shutter function, t = t. for t. < t and t" = t for t. >
C 1 1 CO CO 1

tco, T = t.- t , v = V /T, and A(t c) is the shutter function. To solve Eq. 2 for the

velocity distribution, f() = f(v), we shall take the Laplace transform of the equation.

The Laplace transform of the right-hand side may be written as the product of two trans-

forms,

N(s) = F(s) H(s). (3)

where

N(s) = Y(n(t i))

F(s) = ~ (A(tvc))

H(s) = Y(f(v) £3 /-4),

(4a)

(4b)

(4c)

and the constant K2 has been dropped. The velocity distribution is obtained by taking

the inverse transform of Eq. 3 and rearranging the terms:

f(v) = £ -1(N(s)/F(s)),
v

(5)

where 3/T4 = v 4/. For our experiments, the shutter function is actually trapezoidal,

but it can be approximated accurately by a rectangular shutter function of duration tco

116 ± 4 ps. The Laplace transform for a rectangular shutter function [A(tc) = Ao for

0 < tc < tco; A(tc) = 0 for t > tco] is

t

F(s) = co
0

-st A -st)
A e dt - 1 - e co

0 c s
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where A is the height of the shutter function. The reciprocal of F(s) is

00

-rst
[F(s)]- A -st e (7)

o - e co r=0

Substitution of Eq. 7 in Eq. 5 yields

f(v) =- 4 3 N(s) A e (8)

r=O

4

By letting q = f/v and taking the inverse Laplace transform of the right side,4 the veloc-

ity distribution is obtained:

0o

f(v)= 3 4 d n(,-rto ), (9)

r=0

where the constant Ao has been dropped, and n(ij-rtco) is the height of the TOF curve

at time t. = 7 - rt .1 co
A serious drawback of Eq. 9 is that the first derivative of the TOF curve must be

evaluated at each t.. This means that the TOF curve would have to be known very accu-
1

rately to obtain moderate accuracy in the velocity distribution, f(v). Other investiga-

tors 3 have found that it is more appropriate to take low-order moments of the TOF

curve rather than to determine the velocity distribution itself, since this involves

integration rather than differentiation of the TOF curve. Ratios of these moments

yield quantitative information on the properties of the speed distribution (mean speed,

mean energy, and speed ratio) by eliminating the unknown constant multiplier which had

been dropped.

The pth moment of the speed distribution of molecules crossing a stationary refer-

ence plane is defined by

MI = f(v) v 3 p dv. (10)
P 0

By letting v = /rl, Eq. 10 can be transformed to TOF coordinates, to give

M = f(v)(4+p / 5 + p) d, (11)
p -O

where the minus sign before the integral has been dropped. Substituting for f(v)
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from Eq. 9, we obtain

< +p d 1M = I p +n(rl-rt co) drl. (12)
P 0 O co 1+p

r=0

Integration of Eq. 12 by parts once yields

M = +p 1 n( p-rt n(-rt ) d (13)
p 1+p n co Y 2+p co

r=0 -0 r=0

The first term of Eq. 13 vanishes at both limits. Since t. = 1 - rt , the integral can
1 CO

be rewritten

a 7 l+p)
M = r2+± n(t.) dt., (14)

r=0 1 co

where n(ti) is the height of the TOF curve at time t.. The bracketed summation is

defined as the weighting function, w :
p

w (t.) -2 (15)
p (t+rt )2+

r= 0 i co

We have evaluated the weighting functions separately from the integral because the

weighting functions are independent of the form of the distribution function.

The moments corresponding to p = 0, 1, and 2 are directly proportional to the fluxes

of particles, momentum, and energy:

Particle flux = A M (16a)
o

Momentum flux 1 =m M = AM (m ) (1 6b)

m 1
Energy flux = A -- M2 = Mo (16c)

where A is an unknown proportionality constant, m is the mass of the molecules,

V is the mean speed (v-M 1 /Mo ), and v2 is the mean-square speed (v 2 =M 2 /o ).

We shall describe our experimental results in terms of three properties defined as

ratios, in order to eliminate the unknown constant A:

Mean speed: v = M /M ° (17a)
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- 1 2 1
Mean energy: E = - m v =-m /Mo (17b)

10 3-2 3
Speed ratio: SR = 1 f(v) v(v-v) dv f(v) v d (17c)

The speed ratio is a measure of the rms deviation of the molecular speeds from

the mean speed; that is, it is a convenient parameter for expressing the width (spread)

of the speed distribution. Equation 17c simplifies to

SR = ( = 2E 1 (17d)
2 M 2

Because our experimental curves are to be compared with Maxwellian curves, it is

necessary to derive expressions for the mean speed, mean energy, and speed ratio for

the Maxwellian distribution,

2
-my /2kT

f(v) = ce (18)

By substituting (18) in the previous equations, we obtain

-- 3 2kT 1  (19a)

EM =2kT (19b)

SR = 0. 363. (19c)

Equation 19 is important because it shows that the speed ratio of a Maxwellian distribu-

tion is independent of temperature and particle mass.

3. Experimental Apparatus and Procedure

The principal features of the experimental apparatus have been described previ-

ously. 5 The FET preamplifier has been modified so that it now passes higher frequency

components of the signal. The preamplifier used previously shifted the TOF curve to

the right because high-frequency components of the signal were attenuated. This shift

made the TOF curve in the previous experiment 2 appear to agree with that corresponding

to a Maxwellian distribution, but we shall see that this agreement is not observed with

the improved preamplifier.

System performance runs were conducted with a heated molecular beam (1073°K),
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as well as with a 300 0 K molecular beam. The steplike curves in Fig. III-7 are the TOF

measurements, while the filled circles represent the TOF curves calculated for a

Maxwellian distribution. The amplitudes of the Maxwellian curves have been nor-

malized to fit the TOF molecular-beam curves; however, no attempt was made to

force the maxima to occur at the same point on the time scale. The agreement

Fig. 111-7. Performance test of the apparatus: (a) time-of-flight data for
a D2 molecular beam at ~300*K. (The maximum density of the

7 -3
beam in the detector ionizer is ~1 X 10 cm .) (b) time-of-
flight for a D2 molecular beam at -1073 0K. In both cases, the

filled circles were calculated for Maxwellian beams at the tem-
peratures 300 0 K and 1073 0 K, respectively.

of the molecular beam and theoretical curves appears to be quite close in both cases.

The data from the system performance runs also served as a convenient test of the

moment method of analysis outlined above. By applying this method to the TOF curve

for T = 3000K in Fig. III-7a we obtain E = 0. 050 ± 0. 003 eV, which agrees satisfactorily

with the corresponding value of 0. 052 eV for a Maxwellian beam at 3000K. Similarly,

for the curve for T = 1073 0 K in Fig. III-7b, we obtain E = 0. 181 ± 0. 015 eV, while the

value for a Maxwellian beam is 0. 186 eV. The speed ratios obtained for Fig. III-7a and

7b are 0. 37 ± 0. 01 and 0. 38 ± 0. 02, respectively, which agree satisfactorily with the

value for a Maxwellian beam (SRM = 0. 363).

4. Experimental Results

Curve A in Fig. III-8a is the TOF curve measured for the desorption of D 2 from a

polycrystalline Ni membrane at 1073 0 K. This curve has two components: (i) molecules

that permeate and desorb; (ii) molecules of the background gas in the beam chamber

QPR No. 102
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that are scattered and/or desorbed from the membrane. The second component is deter-

mined by measuring the TOF curve obtained when the pressure behind the membrane

is reduced until the permeation rate is negligible while the membrane temperature is

- .

-74

i+ L : :FT+1'T'

Fig. III-8.

Time-of-flight data for D2 desorbed from

a polycrystalline Ni surface at ~1073*K.

i-h

maintained at 1073 0 K and the background pressure is held constant by leaking D2 into

the chamber at a sufficient rate. The result is curve B in Fig. III-8a. Therefore, the

TOF curve for the desorbed molecules is obtained by subtracting curve B from curve A,

and this yields the curve labelled "Experiment" in Fig. III-8b. The dashed curve labelled

"Maxwellian" was computed for a Maxwellian beam at T = 10730K. Clearly, the speed

distribution of the desorbed molecules does not correspond to that of a Maxwellian beam

at the temperature of the membrane.

The computational method described in this report has been applied to the

curve labelled "Experiment" in Fig. III-8b to determine the mean energy and

speed ratio of the desorbed molecules. This has been repeated for 10 separate

measurements of TOF curves at T = 1073 0 K, and the results are E = 0.27 +

0. 02 eV and SR = 0. 345 ± 0. 025. (The uncertainties indicate the maximum

deviations of the measurements from their averages.) Although the result for

SR does not differ significantly from that for a Maxwellian beam (SRM = 0. 363),

the result for E is ~45%o greater than that for a Maxwellian beam at the tem-

perature of the sample. (According to Eq. 19b, Em = 0. 186 eV for D2 at

1073 K.)

The mean energy and speed ratio for molecules desorbing from polycrystalline

and single-crystal (110) nickel surfaces are listed in Table III-1. The results for

I = 1173"K indicate that speed distribution is essentially the same for desorp-

tion from the single-crystal (110) surface as it is for the polycrystalline sur-

face.
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Table III-1. Comparison of experimental mean energies and speed ratios
with the corresponding Maxwellian values.

Membrane Maxwellian Polycrystal Ni (110) Single- Crystal Ni

Temperature
T EM (eV) SR M  E (eV) SR E (eV) SR

1073 K 0. 186 0. 363 0. 27 ± 0. 02 0. 345 ± 0. 025 -

1173°K 0. 202 0.363 0.32Z 0.02 0.389 ± 0.025 0.30 ± 0. 03 0.393 ± 0. 035

5. Discussion of Results

We know Df only two theoretical models that provide predictions of the spatial and

speed distributions of desorbed molecules. The equilibrium model, whose develop-

ment has been summarized by Loeb,6 predicts a diffuse (cos 0) spatial distribution

and a Maxwellian speed distribution. These predictions do not agree with published

experimental results., l7, 8 Van Willigen 7 has suggested that the activated-adsorption

model of Lennard-Jones 9 may be used as a basis for developing an approximate model

of the desorption of hydrogenic molecules from solid surfaces. Expressions for the

speed distribution based on the activated-adsorption model have been determined pre-

viously.Z We shall briefly elaborate on the activated-adsorption model and its predic-

tion of speed distribution.

According to the activated adsorption model, the gas-solid interaction potential

may be of such a nature that the atomic and molecular states of adsorption are sep-

arated by an activation energy barrier of height E . For simplicity, we assume that

E is constant over the entire surface. By applying detail balancing, the speed dis-
a

tribution of the desorbed molecules is

0 if v <v

f(v) = (20)

Dv2 exp if v > v

1/2 1 2
where D is a constant, a = (2kT/m) , and v = (2E am) This means that the

desorbed molecules will have energies greater than E and, therefore, velocities
a

greater than v . Now we have to transform this distribution to time-of-flight coor-

dinates in order to be able to compare it with the experimental measurements. The

dimensionless form of the TOF distribution becomes 2
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t t
CO

1
2

t 0

t. -t
1

+ erf ->
2

t. -t
-erfQ ,

(To

-o 1/2
where t - (kT/E ) , with T the temperature of

a
t = t for t. > t .ro 1 c

the surface, t = t. for t. <t , and
1 1 CO

For the spatial distributions of Dabiri, we find that a reasonably good fit is obtained1
For the spatial distributions of Dabiri, we find that a reasonably good fit is obtained

when E ~ 0. 20 eV. The speed distribution calculated for E = 0. 20 eV at T = 1073 K
a a

is plotted in Fig. I1-9, together with the experimental TOF curve for polycrystalline Ni

Sr- 0.20 eV

n( t) /

TIME

Fig. 111-9. Comparison of experimental TOF curve for D2 desorbed

from a Ni surface at -1073°K (solid curve) with the TOF
curve predicted by the activated adsorption model for
E = 0. 20 eV (dashed curve).a

at T = 1073°K. The van Willigen model does not appear to be able to predict the shape

of the TOF curve of the desorbed molecules.

By using the moment method outlined in this report, the mean energy and speed ratio

QPR No. 102
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were calculated for the TOF curve predicted by the van Willigen model. For E = 0.20 eV
a

and T = 10730K, E = 0. 322 eV and SR = 0. 164. These values deviate markedly from the

experimental curve (E = 0. 27 ± 0. 02 eV and SR = 0. 345 ± 0. 025).

T. E. Kenney, A. E. Dabiri, R. E. Stickney
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