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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

The work of our group is focused upon the development of efficient methods for the
processing of analog and digital signals over channels of interest. We shall divide
the discussion of our work into three areas.

1. Sonar and Oceanographic Research

a. Current echo sounders for oceanographic survey ships have a quoted accuracy
of 2-3o which implies a topographic resolution in excess of 700-1000 ft at deep-water
depths of 20, 000 ft. The random characteristics of the ocean channel caused by effects,
such as turbulence, internal waves, scattering, and ambient noise, in addition to the
random errors in measuring platform orientation, will limit further improvements in

accuracy. Work has commenced for determining the following.

(i) The point at which these effects become significant for conventional echo-
sounding methods with a large array.

(ii) Potential improvements that could be obtained by signal processing which

exploits the statistical characteristics of the signal.

(iii) Data processing methods of multibeam signals that would permit surveillance
of large geographical regions with enhanced accuracy.

b. There are many situations in which the propagation effects of the channel have a

significant effect upon the signals observed. These effects are particularly interesting
when the signal propagates through a layered medium where appreciable distortion and
multiple travel paths are often encountered. Current analyses are deterministic and
are confined to methods such as ray tracing or mode analysis. While there is a limited
number of results available, at present, which involve the characteristics of random
processes propagated over these channels, we are investigating several topics in this
area of process propagation for the sonar, or underwater, channel where random effects
and receiver structure implementation are issues in the analysis.

2. Array and Space/Time Processing

We are concerned with effective space-time processing techniques. Specific topics
include the following.

a. Development of suboptimum process procedures that are simpler to implement
than the optimum receiver, but do not lead to a significant performance degradation.

b. Investigations into analysis and synthesis procedures in frequency wave-numbers
space.

This work was supported in part by the Joint Services Electronics Programs (U. S.
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c. Applications of distributed state variables to space-time processing.

d. A study of the effects of hard-clipping sensor outputs.

e. Analysis of various array-tracking problems.

3. Communication Systems

a. A method of calculating performance bounds that is applicable to a large class
of systems. Further applications of this technique are being studied.

b. A detailed analysis of various forms of delta modulation systems is being con-
ducted.

H. L. Van Trees

A. STATISTICAL MICROSTRUCTURE OF RANDOM FIELDS

GENERATED BY MULTIPLE-SCATTER MEDIA

i. Introduction

This report presents the results of some present research aimed at obtaining a bet-
ter understanding of the microstructure of random fields generated by a multiple-
scatter medium. The results are based on Maxwell's equations and allow for
arbitrary incident radiation fields. The mean or coherent field is obtained, and we
show by example that the field decays exponentially as the wave propagates down
into the cloud for a plane wave excitation. Such a result agrees with Twersky.1

Similar results are also obtained for arbitrary incident illumination. We also obtain
an integral equation for the correlation matrix of the field. All of these results are
for a frozen set of scatterers. The results for a moving set of scatterers will not
be presented in this report.

2. Problem Definition

Let an arbitrary nonrandom monochromatic electromagnetic vector field E (r)
o -

be incident on a cloud at z = 0, where r is a spatial vector (x, y, z). Let the cloud
be of depth d extending from z = 0 to z = d. The cloud is composed of spherical
scatterers with a radius 6 and dielectric constant E. There are assumed to be N
of these scatterers and they are uniformly and independently distributed over the
volume of the cloud. The dielectric constant is E = Eo(l+n'). The excess index of
refraction, n', is such that

n r B(6, ri)
n'(r) = (1)0 r Z B(6, ri )

and B(6, ri-1) is a ball of radius centered about the point r i which is the center of

and B(6, r.) is a ball of radius 6 centered about the point r. which is the center of1 -1
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the i scatterer. For such a medium the dielectric constant E is a function of the spa-

tial coordinate r as given by (1). It can be shown that the electric field E(r) satis-

22fies the equation (Tatarski2

V(E(r) 7 In(1+n')) + 7VE(r) + co E2(l+n') E(r) = 0, (2)

wnere the spatio-temporal field was assumed to be of the form E(r) exp(-jct). If we
2 2 2

define k 2 as2 o then k represents the free-space wave number. Clearly, the
0 o 0' 0

first term in this expression is of an impulsive nature so that it represents multi-

pole sources that reradiate in such a fashion that they depend on the field itself.

To avoid the difficulties of discontinuities in (2) we introduce a wave-number trans-

form, E(k), of E(r):

E(k) = f E(r) exp(-jk r) dr. (3)

The inverse transform is given by Jackson3:

E(r) = 1 f E(k) exp(jk r) dk. (4)
(2T)3

For those cases of interest, namely clouds, n' = 0. 33 so that we may approximate

In (l+n') by n'. This is not necessary, but is done solely to make the analysis simpler.

Taking the transform of (2), we obtain

f K(k, k') E(k') dk' + (1k 2 -k 2 ) E(k) = S(k), (5)

where K(k, k') is the 3 X 3 matrix given by

N
K(k,k') = n'A(k,k') I( k-k' ) Z exp(j(k-k') r i ) (6)

i=l

and

A(k, k') =

2
kl(kl-k1) - ko kl (k2-k2) kl (k3-k3)

2
k 2 (k -kl') k2 (k -k') - ko k2 (k 3 -k3)

2
k3(kl-k') k3(k2-k) k3(k3-k') - o

(7)

where k1 represents the wave number associated with x, k 2 with y, and k3

with z. Also kl 2 = k + k2 + k3 . Furthermore, I( k-k'j) is the scattering

function of the spherical scatterer and can be shown to be
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4,6 sin 6 kI( k ) = 2 - cos 6 k (8)

Thus the randomness of the field is imparted by the random kernel which depends on the

scatterers r.. S(k) represents boundary conditions at z = 0, obtained by using one-sided--1

transforms. The existence and uniqueness properties of equations like (5) have been

discussed by Bharucha-Reid. 4 ' 5 We shall be interested in obtaining its statistical

properties.

3. Field Statistics

We now want to find E(k) which is the field averaged over all positions of the scat-

terers {ri}. We shall present the results in definition and theorem format.

DEFINITION 1. Let _r.}i represent the position of the scatterers. Let p(r, . r

be the joint probability density of these centers. Let the scatterers be identically and

uniformly distributed over a volume V. Let E(k) be the solution of (5). Then E(k), the

average field, is given by

E(k)= f E(k) p(r ... r ) dr ... dr .  (9)

Furthermore, let E'(k) be the average of E(k) over all but the particle at r'. This

is given by

E'(k) = f E(k) p(r, ... r /r') dr .. drN. (10)

Lemma 1

The average random field generated by the scattering medium is a solution to the

following integral equation

pVn' f p(r') dr' f A(k,k') I( Ik-k') exp(-j(k-k') r') (11)

E'(k') dk + E(k)(I k -k 2 ) = S(k),

where p is the density of scatterers (N/V), and V is the volume occupied by the scat-

terers. Here p(r') is the probability that there is a scatterer at r'.

Proof: This is easily obtained by averaging over (5), except in each of the N terms

taking the conditional expectation. There are N of these and we assume that they

are identically distributed. So we can add them up to obtain Eq. 11. Q.E.D.

Lemma 2

The field E'(k) which is the average field with a single particle fixed at r' is given by
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E'(k) = E. (k) +E (k), (12)
-- ine- -sc -

where E. (k) is the field incident on the scatterer at r' in k space, and E (k) is the
inc -- sc

field scattered by the scatterer located at r' with incident field Einc (k).

Proof: This follows directly from classical scattering theory when one takes the

wave-number transform (see Jackson 6 ). Q. E. D.

We now assume that the field incident on the it h scatterer averaged over all (N-1)

scatter positions is the average field. That is, we assume that Einc (k) equals E(k). Thus

Lemma 2 can be stated as

E'(k) = E(k) + E' (k), (13)
-sc -

where E' (k) is completely determined by r' and E(k). This assumption was made
-sc .. 87sc 9-12

by Lax, 7 Foldy, 8 and Twersky and is usually justified for scattering volumes of

large N but of density small enough to retain the concept of individual scattering

centers.

Lemma 3

Let a single spherical scatterer be located at r'. Let a plane wave E(r') be incident

on the scatterer at r'. The scattered field at r, where r f r', and Ir-r' is greater

than many particle diameters and wavelengths, is given by

E (r) = T-l(k ) So(k , k l ) T(k l ) E(r'), (14)
-sc - -o 2 -.1

where k is the direction of propagation of E(r'), and k2 is the vector between r and

r'. T(k) is a rotation matrix. Also

S2(e) 0 0
exp(jko o-r

S (k ep kk) ) o 0 S (6) 0 (15)
s0kk - jk ir'-ri g

O -- --

0 0

with 0 the angle between k1 and k2 . The functions Sz () and S 1 (0) are given in Goody.

Proof: From Goody we know that a plane wave propagating in some direction k I can

be decomposed into two components in the plane to which kl is normal. Likewise, the

components in the scattered field can be decomposed into two components in a plane of

which k is the normal. These incident and scattered components are related by the
14

scattering matrix in Goody. The radial components, that is, those along the k I and

k directions can also be related and they can be shown to be of order I/ r-r' 2 ;that is,
-2
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they are vanishing small compared with other terms (see Born and Wolf 1 5 ). Now the

vector E(r) is defined with respect to the (x, y, z) coordinate system. Thus, using a

rotational transformation T(kl), we can reference it to the propagating system. This

is done by Chandrasekhar for Stokes parameter scattering. Q. E. D.

Let us define S(r, r', k ) as

S2(0) 0 0

S(r, r', k ) = T-(k 2) S (0) 0 T(k ), (16)

where k2 is defined as the wave number going in direction r-r'/ r-r' and having mag--2
nitude Ik2 . Clearly, for free space scattering, k2 = k . Then the following lemma

follows.

Lemma 4

The field scattered to position r from a spherical scatterer at r' with an incident

field E(r') is given by

E exp(jk_ Ir-r ' ) - k '
E (r) = S(r, r', k) - E(k) ejk - dk. (17)-sc-rr jrk -r' k-SC 

k

Furthermore,

k-r '+jk'·r' exp(jk Ir" ) r"
E (k') = ej '+jL '' dk S(r", k) exp E(k) e-jk  dr". (18)
-sc .. jk 0r" -

Proof: From Lemma 4 we know that we can find the field at r when a plane wave

from direction k is incident upon a scatterer at r'. Now, by means of the wave -

number transform, E(k) exp(jk - r') dk represents a plane wave at r' coming from direc -

tions k, k + dk. Thus adding the contributions from plane waves coming from all

directions, we obtain (17). Note that if we had a plane wave incident, then E(k) would

be 5(k-k 1 ) and (17) would reduce to the result of Lemma 3. Now the second part of

Lemma 4 follows directly from an application of the wave -number transform along

with a change in variables. Note also that in (18) r" = r - r', and will take on the

limits of r - r'. Here, r" > 0, but 0 :< r' <ý d so that -d -< r" < 0. Thus, since d isz z z
the depth of the cloud, the integral over r" takes note of this fact. Q.E.D.

Theorem 1

If the volume of the scatterers is large compared with the wave number, then
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the average field in wave-number space is given by the solution to

algebraic equation:

pn' f A(k, k')I( k-k' )A(k, k) dk'} E(k) + (-k 2 +k') E(k) = S(k),

whe re

k2 = k2 (1+n' 4 -631 rr6

the following

(19)

(20)

and

exp(jk 0 r" )
S(r", k)

jkO r-"O0
e-jk r dr "

Proof of Theorem 1

Using the approximation of (13) in (11), together with (18), we obtain

pVn' p(r') dr' A(k, k') I( k-k' )exp(-j(k-k') -r')

exp(jk r" 0 )

E(k') + exp(-jk" • r'+jk' r') S(r", k")
jk ~,,

0-

E(k") exp(-jk'- r") dk"dr' + (~k •-k) E(k) = S(k).0O

Now if we use the assumption that the scatterers are uniformly distributed over V, this

implies that p(r') is 1/V. Then integrating over r' yields

f exp(-j(k-k') r') dr' = 6(k-k')

and

f exp(-j(k-k') r') exp(-jk" - r' +jk' -r') dr' = 6(k-k").

Equations 23 and 24 follow from the assumption that the scatterers are uniformly dis-
17

tributed over distances large compared with k 1 , k2 and k 3 (see Papoulis ). Then using

these in (21), noting what A(k,k') is, and showing that I(0)is (4/3)rr 3, we obtain (19).

Q.E. D.

Lemma 5

The matrix A(k, k') is equal to
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k -d z z
0

where

S2(0) 0 0

Z(k) = 0 S1(0) 0 (26)

0 0 0

Proof: Using the method of stationary phase on (21) (see Born and Wolf, 18 Erydelil9
20

or Papoulis ), we obtain (25). Note that the 0 that appears in Z(k) is the angle that
the k vector makes with the (x, y, z) coordinate system. This can easily be defined in
terms of the components of kl, k 2 and k 3 . Q.E.D.

For a thick cloud, A(k, k') reduces to a simple form,

A(k, ki) = 6(k'- k ) ,(k) T(k). (27)
k2 3k

We can apply this to Eq. 19. Note that I( k-k' ) and the impulse are even functions,
while part of A(k,k') is odd. Using a Cauchy limit interpretation of the integral, we
obtain

pn' f A(k, k') I( Ik-k' ) A(k, k') dk' (28)

= -pn'2Tr f I(k') dk 1 dk 2 Z(k) T(k)

which can be integrated by using (8) to yield

= -pn'68-r 2 .

Thus we can restate Theorem 1 as a corollary.

COROLLARY. The average field in a thick cloud of large volume is given by

the solution to

F(k) E(k) = S(k), (29)

where

F( 2 4 3) pn'6 (30)
F(k)= Jk I-k 1 rn' I k 8Tr Z(k) T(k (30)

0
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with I a 3 X 3 identity matrix. In general the solution of (29) is not trivial and may

require computer inversion. It can be shown that (29) possesses simpler solutions when

the irradiating field is a plane wave. In that case it can be shown that E(r) is exponen-

tially decreasing in depth. The damping factor depends on p, n', 6 and the imaginary
21, 22, 1

part of E(k). Such a result has been previously obtained by Twersky.

We can now also consider the field correlation matrix. If E(r) is the field at r,

and E +(r) is the complex conjugate transpose, then we can give the following defini-

tion.

DEFINITION 2. Let R(r l , r 2 ) be the two-point spatial correlation matrix of the ran-

dom field E(r) given by

R(r ' r 2) E(r ) E+(r2). (31)

Then the two-point spectral correlation matrix of the random field is R(r l , r2 ), and is

given by

R(r 1 r_) = f exp(-jk 1 .rl+jk 2 L2 ) R(k 1 , k 2 ) dk 1 dk 2 . (32)

23 . 24
This can be seen to be well defined (see Doob 2 3 or Papoulis 4).

Now R(k, k ) can be shown to satisfy a certain integral equation.

Theorem 2

The two-point spectral correlation matrix is given by the solution to the following

matrix integral equation:

f C(k, k') R(k', k'+k"-k) D(k"+k'k, k") dk'

+ F(k) R(k, k") F+(k") = S(k) S+(k"), (33)

where

C(k, k') = pn'A(k,k') I( Ik-k' ) (34)

D(k"+k'-k, k") = A(k"+k'-k, k") F +(k"), (35)

and F(k) is given by (30).

Proof of Theorem 2

This can be obtained by multiplying Eq. 5 by E +(k") and then averaging, as was done

with the mean field. Q.E. D.

Under certain circumstances a series solution is possible (see Courant and Hilbert25
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and such a solution yields R(kl,k 2 ) as a sum of the product of the mean field and a con-
volution of that field. It is this convolution term that is associated with what we term

the incoherent field. For plane-wave excitation the incoherent field is the total field

deep in the cloud, since the coherent field decays to zero. For nonabsorbing scatterers

the total flux is constant so that this allows us to obtain the incoherent field directly (see

Chandrasekhar 26).

4. Conclusions

This report briefly sketches the first set of important results that have been obtained
in this research. There are several areas that will be reported on later but are worth
mentioning now. First, the term S(k) represents a boundary condition. It is the sum

of all fields at the boundary, both forward and reverse scattered. This follows directly
from Helmholtz's theorem where we assume Sommerfield radiation condition (see
Sneddon 2 7 or Courant and Hilbert28). It is possible to include and evaluate backscat-

tered by another approach. Obviously the average backscattered field is zero but
the incoherent intensity is not. Fritz29, 30 has evaluated this for clouds in terms
of albedo so that in using his results a general calculation is feasible. Second, the
inclusion of motion of the scatterers is possible. This leads to kernels that are
also a function of c, the frequency transform variable. Data on these motions have
been presented by Warner. 3 1 - 3 3 Third, the evaluation of field moments is possible
by using the wave-number transforms, as well as generalized "time constants."

Finally, coherence volumes or regions of finite nonzero correlations may be obtained.

These results extend the present understanding of these random fields by allowing

their microstructure to be obtained.

T. P. McGarty
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