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RESEARCH OBJECTIVES

The major goal of this group is to generate a basic understanding of various types
of oscillations and waves in ionized gases that are relevant to problems in thermonu-
clear fusion and space research.

1. Investigations of electromagnetic radiation emitted spontaneously by the plasma,
because of thermal and nonthermal fluctuations of the free charges. At present,
particular attention is being paid to emission generated as a result of many-body
(collective) interactions between the charges at frequencies near the electron plasma
frequency.

2. Studies of the dispersion characteristics of small-amplitude stable and unstable
waves. We are now looking at the properties of ion sound waves in a facility that gen-
erates a collisionless plasma.

3. Investigation of nonlinear plasma phenomena is one of our major goals for
the next few years. In this connection, we are particularly interested in the prop-
erties of large-amplitude waves, particle trapping, nonlinear Landau damping, para-
metric coupling of three or more waves, coupling of waves with particles, and
turbulence.

4. Studies of fluctuation, particle losses, and turbulence in magnetic multi-
pole geometries. For this purpose, we are constructing a steady-state linear
quadrupole (SLIM-1). This is operated in the Francis Bitter National Magnet
Laboratory.

G. Bekefi

1. LINEAR AND NONLINEAR RESPONSE OF A PLASMA SHEATH

TO RF POTENTIALS

A plasma inherently is a highly nonlinear medium, and its nonlinear oscillatory

behavior is being subjected to intense studies. These studies are concerned with

interactions among different types of waves and between waves and charged particles

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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(XIV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

of the system. The main concern is with phenomena that exist in the bulk of the plasma;

the plasma sheath, which necessarily separates any plasma from its external sur-

roundings, has received relatively little attention. The main purpose of this report is

to bring out the role of the plasma sheath as another important nonlinear element and

to obtain better understanding of its characteristics. This work has been reported pre-
1-4

viously. In this report we present our final conclusions.

A prerequisite to the understanding of the nonlinear response of any system is a

knowledge of its linear characteristics. Thus, after briefly discussing the experi-

mental apparatus we shall discuss the linear response of our system. The second part

of this report is devoted to a study of the nonlinear response of our system.

Experimental Apparatus

The plasma sheath under investigation is in the form of a spherical shell surrounding

a spherical metal probe inserted in a plasma. Figure XIV-1 is a schematic drawing

of the experimental arrangement. The probe consists of two metal hemispheres sep-

arated by a narrow gap and is capable of being driven in antiphase by a voltage genera-

tor. The balun (General Radio 874-UBL) interposed between the generator and the probe

TO
RF CIRCUIT

ED LINE

PLASMA S[
(THICKNESS

COAXIAL

PLASMA

SPLIT-SPHERE
ANTENNA

Fig. XIV-1. Experimental arrangement.
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insures that no unbalanced RF currents flow to the probe and that the voltages on the

two hemispheres are equal and opposite (about a common ground). We have studied

the operation of such a "split-sphere antenna" in air by exploring its electric field

configuration; we find that the electric fields are indeed predominantly dipolar, with

some contribution from the next odd multipole also present.

In the experiments, antennas of various radii ranging from 1. 6 cm to 3. 8 cm are

immersed in the plasma and driven with voltages ~0. 5 V at frequencies between 50 MHz

and 250 MHz. Except when stated otherwise, the metal hemispheres are insulated
-3

electrically from the plasma by a thin (~5X10-3 cm) dielectric coating; thus no direct

current flows and, in the absence of the RF voltage, the hemispheres are at the plasma

floating potential.

The production, maintenance and characteristics of the plasma have been described

in previous quarterly reports. Suffice it to note that the electron densities are typically

108-109/cm 3 , the electron temperature in 3.4 eV, and the gas pressure is so low

(~-5X10-4 Torr) that the plasma may be considered collisionless.

Linear Response

The most convenient way to describe and measure the linear RF current-voltage

characteristics of our sheath-plasma system is in terms of its complex admittance Y,

that is, the ratio of the current through the circuit to the voltage across its

terminals. It is this admittance with which we are now concerned.

(a) Theoretical Model

The relevant dimensions of our plasma-antenna system are very small compared

with the wavelength, and thus we are justified in computing the electric fields in the

sheath and in the plasma from the quasi-static approximation. That is, we solve

Laplace's equation in spherical coordinates, subject to the usual boundary conditions

at the sheath-plasma boundary and at the surface of the antenna. In this manner,

we derive the electric fields and, in particular, the radial electric field E at the

surface (r=a) of the antenna in terms of the applied voltage V and the dielectric

coefficient K.

The complex admittance Y = I/V may now be derived if we note that the cur-

rent I flowing out of one hemisphere and entering the other is given by

I = jE 0  E (a) 2-r sin 0 dO, (1)

0

where 2n-a sin 0 dO is an element of the antenna surface area. The result for

Y is
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Y = -j2rrc wa F 2£ + + I
I Qf (2)

We have defined the Q in a previous report 5 in which it was shown that admittance res-

onances exist when Q f 0 and the admittance approaches zero when Q - (2f+i)/C. The

coefficient F is related to the integral of the Legendre polynomial of order f. It does

not generate poles or zeros of the admittance.

The admittance given by Eq. 2 is amenable to a very useful and rather elegant

interpretation in terms of lumped-circuit elements and we shall make much use of

such a formalism. This is shown in Fig. XIV-2 where C is the capacitance of the

vacuum sheath, and Cp, Lp, and R , are the capacitance, inductance, and resistance

associated with the bulk of the plasma. A somewhat lengthy manipulation of Eq. 4

allows us to compute the actual values of these circuit elements. Assuming that the

damping is light, we find that, for a given multipole f,

C(f) (a/s) H1

C (f) = (£+1) Hp

p pf

R(p)z [(k+l)wpHf]- (v/cop),

(3a)

(3b)

(3c)

(3d)

where a is the probe radiius s is the
some loss rate that can be due either to

approximate equations are valid when s

VACUUM
SHEATH

---i
C(•-)

sheath thickness, H is ZTrE aF , and v is
collisions or collisionless damping. These
is much less than a; this is the case in all

PLASMA

--nT----vv%-Ll i1 - iv

C 2t)

p-t

Vexp[jwt]

Fig. XIV-2. Lumped-circuit model.
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of our experiments.

On the basis of Fig. XIV-2 and Eqs. 3, we see that the admittance exhibits ser-

ies resonances at frequencies w R = [C()L p( C)]- /  Substituting for C() and L(f)

from Eqs. 3a and 3c, we obtain

(cR a p) [(f+1)(s/a)] 1/ (4)

Likewise, "antiresonances" occur when = A = [Cp()L ()]-  , and these are given

by

(A p) 1. (5)

(b) Observations

The RF admittance measurements are carried out by attaching an RF admittance

bridge (General Radio 1602B) to the unbalanced section of coaxial line shown in

Fig. XIV-I. The measurements are made 130 cm from the split-sphere antenna.

The results must be transformed by means of the usual transmission-line equations

to obtain the admittance at the terminals of the antenna. Also, the "stray" reac-

tances associated with internal capacitance of the hollow hemispheres and the induc-

tance associated with the wire leads inside the hemispheres must be removed. These

two circuit elements are deduced from admittance measurements made in free space.

Only after making the various transformations are we justified in making comparisons

with the theory outlined above. Henceforth, all results shown refer to admittances that

have been transformed appropriately.

Figure XIV-3 illustrates typical measurements made with an antenna of 3. 8 cm

radius. The solid points refer to the conductance, the open circles to the suscep-

tance [i. e. , the real and imaginary parts of Y(w)]. We observe two resonances,

a strong one at 56 MHz, and a weaker one at 78 MHz. A blown-up view of the

weaker one (after subtraction of the contributions from the stronger one) is shown

in the lower figure. These two resonances are, respectively, the dipole (f=1) and

the next higher multipole (f=3) contributions to Y(w).

At and near a given resonance k, the sheath capacitance C(f), the plasma induc-

tance L p() and the plasma resistance R p() are the principal circuit elements that

contribute to the resonant behavior; the plasma capacitance C p() of fig. XIV-2 con-

tributes weakly. Thus the admittance Y is approximately given by

R (f)

R (f) + j[:L (c) - (mC(2)) ]
p p
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(a) Admittance vs frequency for antenna
of 3. 8 cm radius.
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Values of measured circuit elements obtained
by fitting the experimental points of Fig. XIV-3
to Eq. 6.

P=1 P=3

RR/27T 56 MHz 78 MHz

Rp(C) 24 2 133 ~

L (C) 0. 50 X 106 H 1. 70 X 106 H

C(.) 16. 1 x 10- 12 F 2.46 X 10- 1 2 F
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and the circuit elements can be evaluated by fitting this equation to the experimental

results. The solid lines of Fig. XIV-3 represent the best fit obtainable, Table XIV-1 gives

the values of C(M), R (M), and L (p) thus obtained. We may now, even without knowledge
p p

of w and the sheath thickness s, examine the extent to which theory agrees with the

experimental values. Taking the ratio wR(1)/cR(3) from Table XIV-1 yields wR(1)/lR(3)=

0.718 and Eq. 4 gives 0.707. Similarly, Table XIV-1 gives C(1)/C(3)= 6.55 and Eq. 3a

gives 6.85. This good agreement lends support to the validity of the theoretical model.

Once the sheath capacitance C(f) is determined experimentally as described above,

use of Eq. 3a immediately yields the effective sheath thickness s. Since we may expect

s to vary linearly with Debye length LD = [eoKT/Ne2 ] /2, it is convenient to write

s = pLD and determine the numerical coefficient p. We have determined C(1) for

antennas of 3 different radii[a= 1.6, 2.2, and 3.8 cm] and for several different values

of electron density N. Figure XIV-4 shows the experimental results, together with the

theoretical curve obtained from Eq. 3a for the case s =3. 3 LD . This value of sheath

thickness agrees well with earlier estimates. Using it in the exact form of Eq. 4 tells

how the resonant frequency or varies with a/L D . This is shown as the solid line

in Fig. XIV-5, together with the experimental points.

We realize that the theoretical model of a perfectly uniform plasma surrounding a

vacuum sheath devoid of charges is but a first crude approximation to the physical sit-

uation. Buckley, 7 and DeAngelis and Baldwin 8 consider more refined models. Buckley

calculates radial electron trajectories around a spherical monopole (f=0) probe;

DeAngelis and Baldwin make allowance for the expected density gradients that must

exist in the boundary separating the plasma bulk from the sheath. The calculations

of DeAngelis and Baldwin are shown in Fig. XIV-5 by the dashed line. The good

agreement gives us added confidence in the vacuum-sheath model.

We also wish to point out the relevance of these results to plasma diagnostics.

Equation 5 shows that the antiresonance frequency is very insensitive to the precise

value of the sheath thickness and therefore a determination of WA could, in prin-

ciple, be used as a diagnostic tool to determine the plasma frequency. Unfortu-

nately, because of heavy damping, the antiresonance is usually poorly defined and often

is not even observed in the experiments. When it is observed, the admittance in its

vicinity varies so slowly with frequency that large errors are easily made in determining

the crossover point where the admittance changes sign. On the other hand, we cannot

use the resonance frequency in the determination of w (Eq. 4) unless the sheath thick-

ness s is known or is determined by some other means. This has been the difficulty

in most previous experiments. Our method of fitting a series RLC circuit to the

admittance results gave us experimental values to plug into Eq. 3a. This is our

independent determination of s which can now be used to determine w unambig-

uously.
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Nonlinear Response

To observe the nonlinear response of our sheath-plasma system we send a sinusoidal

signal down the transmission line to our split-sphere antenna and observe the generation

of harmonic signals in the reflected wave. The experimental details have been discussed

in a previous report. 3 We shall show that the amplitude of these harmonics relative to

the amplitude of the imposed RF voltage can be fully explained by the following sim-

ple model. The oscillating field causes a sinusoidal motion of the electrons in the

boundary separating the vacuum sheath from the bulk of the plasma. This motion causes

the vacuum-sheath capacitance of Eq. 3a to have a time-variant component. This

time-variant capacitance is the nonlinear element that we seek.

(a) Theoretical Model

Instead of assuming that the electric field at the probe surface is sinusoidal,

as we did in deriving Eq. 1 for the linear case, we let E be a still unspecified func-

tion of time. The general form of Eq. 1 is

dEr(t)
I(t) = dt dA (r=-a). (7)

By writing E(t) in terms of the applied potential V(t) and a factor P(t) which depends on

the terms 2 ' + of Eq. 2, we obtain

dV(t) dPA dPs
I(t) = -E P - dA- V(t) dA. (8)

o dt ds dt

The first term yields the linear admittance, while the second term, which varies in

time because the sheath thickness s varies in time, yields the nonlinear results. After

much algebraic manipulation, including substitution of values for QV, we find, for

the f = 1 multipole, that the nonlinear voltage generated across the antenna can be

written

2

9 (EoA) 2 m ipn
where A is the surface area of a hemisphere.

To compute the amplitude of the harmonic signals, we must Fourier-analyze the

current I(t) in the nonlinear term. Consider, for example, the second harmonic.

The voltage from the external oscillator at a frequency o. drives a current at the

same frequency through the sheath-plasma system. As we learned from the linear
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CllII'iaCLerzIsLtCs, Lhli CUL''t lSL i UtLe•t'illllntl uy Le 1llliiea"r hImpeUanlCe a, LltL irequency

Since this current appears as the square in the nonlinear term, it will give rise to a

voltage at the second harmonic which in turn drives the second-harmonic current.

It is important to note that the flow of the second-harmonic current depends on the

impedance at the second harmonic. Thus the measured harmonic output reflected

back from the antenna critically depends not only on the plasma characteristics at

the fundamental frequency but also on its properties at the second harmonic. Suc-
rd th th

ceeding iteration processes lead to 3r d , 4 and 5 harmonics, and so on.

Figure XIV-6 shows the results for the harmonics obtained with the antenna

10
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of 1. 6 cm radius. The points are the experimental results for the first 3 harmonics

and are joined with the dashed line. The solid lines are calculated from the nonlinear

equations. In these measurements, the oscillator is held constant at a frequency of

70 MHz and the plasma density is varied. The vertical scale is the amplitude of the

measured voltage relative to a fixed oscillator voltage of 0. 5 V. The shape of the

response reflects the resonance characteristics of the sheath-plasma system. When

the ratio of plasma frequency to oscillator frequency coincides with a natural mode of

oscillation, the harmonic output is enhanced. The harmonic falls off rapidly on both

sides of the resonance. The detailed line shapes, showing, for example, the minima at

the 3 rd and 4 th harmonics, are due entirely to the impedance characteristics at the 2 nd

and higher harmonics.

The importance of these impedance characteristics at the higher harmonics is

emphasized in Fig. XIV-7. Here we adjusted the frequency of the oscillator so that

10 110
w/27r=50 MHz

5 5

0 0

-5

w/27=70 MHz
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the second harmonic (100 MIHz), rather than the fundamental frequency (50 MHz), coin-

cided with a natural mode of our system. Once again we see quite good agreement

between experiment and theory. We should stress that in making these comparisons

between measured and computed harmonic signals no adjustable parameters were intro-

duced into the relevant nonlinear equations.

In Fig. XIV-8 we show the measured values of the admittances corresponding to the

harmonic results of Fig. XIV-6 and XIV-7. In Fig. XIV-8b, we see the resonance that

occurs at the fundamental frequency and enhances the harmonic output in Fig. XIV-6.

In Fig. XIV-8a we see that the admittance at 50 MHz is devoid of resonances, and

it is the admittance resonance at 100 MHz that enhances the harmonic output of

Fig. XIV-7.

In conclusion, we have shown that the relatively simple model of an oscillating

vacuum sheath very satisfactorily predicts the nonlinearities that might exist in many

experiments whenever a plasma sheath is excited by RF oscillations. XWe have imposed

voltages that are small compared with the voltage drop across the sheath, and thus

the harmonic content is but a few per cent of the amplitude of the fundamental. Under

strong driving conditions and in the neighborhood of natural modes of the coupled

sheath-plasma system, harmonic generation will be a major effect.

A. J. Cohen, G. Bekefi
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2. NEW VIEWS ON THIE SELF-CONSISTENT ELECTROSTATIC PROBLEM

Introduction

The study of the initial and boundary-value problems for electrostatic disturbances

in a hot plasma using the Vlasov equation is still of considerable interest. Although it
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is a very old problem, some important aspects are not well understood and some are

even completely unknown. Among these we mention the case of an inhomogeneous

plasma in the linearized approximation and the nonstationary nonlinear problem for

a homogeneous medium. In these cases the usual Fourier-Laplace transform method

cannot be applied, and this means that we should study the problems in a space-

time language. As a natural start for the study of the nonlinear problem we should

see what we can get in the linear case, and in this report the linear theory of elec-

trostatic disturbances in a homogeneous plasma is reviewed from the point of view

of a space-time description, and simple exact solutions of the initial and boundary-

value problems are presented with a new way of deriving old results. The method

consists in finding solutions to integral equations representing the initial and boundary-

value problems.

Integral Equation for the Number Density-Initial Value Problem

Assume that we have found the initial perturbed distribution function fl(x,t= o,v) in

all space. We want to find fl(x,t, v) and E(x, t), given f (v).

af 1 fl eno f
S+ v E(x, t) (la)at 8x m av

aE -4re (dv) f (lb)

To integrate (la) formally in time, apply the translation operator etv a/ax to both

sides (fl(x) is expandable in Taylor series). Then (la) becomes

Stv x en f

- [et f (x, t, V) = m E(x+ vt,t) .v (2)

Integration between zero and t gives

tv a/arx = en 8f 0 t
e fl(x, t, v) - fl(x,o,v) - m av E(x+ vt',t) dt'. (3)

''m v 0

Multiplying by the inverse operator, we get

en af t
f (x,t,v) = f (x- t,o,v) + o$°+ 0 v E[x-v(t-t'),t'] dt'. (4)

Equation 4 tells us that once the electric field E(x,t) is known, we can

immediately find fl(x,t,v). Now define n(x,t), the relative number density, by
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fC (dv) fl = n(x,t), and integrate (4) in v. We may then write

en E (ttt dtf ,
n(x, t)= n (x,t) + d__o d - E[x-v(t-t'),t'] dt',

00c0

c0
where nF(x,t) = J0_ dv fl(x- vt, o, v). We may now invert the order of integration in

the double integral and integrate by parts.

0C a f 0C o
dv f E[x- v(t-t'),t'] = (t-t')

-00 -c
dv fo(v) D1E[x- v(t-t'),t'],

where D 1 indicates derivative with respect to the first argument.
X - X'We may now introduce the variable x' in (6) by v = - ' This givest - ti

af
dv E['x-v(t-t'),t'] =

d fx-x' 8E
dx' fo t - t' ax (x',t').

-- 00

Then, making use of Poisson's equation (lb) and

(5), (6), and (7) the equation for n.

t 0C
2

n(x,t) = nF(x, t) - •dt'
P '0 _-00

(7)

the definition of n(x,t), we get from

dx' f - n(x', t'),aý t -t'1 (8a)

n (x, t) = c dv fl(x- vt, o, v).

Equations 8 have a simple physical interpretation. If the process were completely

interactionless, only the first term would be sufficient to describe the time evolution.

The second term reflects the effect of the long range interaction potentials and plays

the role of a collective collision operator.

Once n(x,t) is determined, Poisson's equation gives us the electric field with which

we may find fl(x, t, v) by use of Eq. 4.

Equation 8a has a unique solution, and standard techniques may be used to find it.

The most powerful one is based on a successive approximation scheme.1 We may write

Eq. 8a as

2
n=n - Wf *n,
where the starF peration denotes the two-dimensional convolution in a

where the star operation denotes the two-dimensional convolution in (8a).
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The solution is then given by

2
n = n - H * n ,  (10)

F p F'

where

00

Hn=

n= 0

-@2 n nf(2\) ~f (11)
\ /

and *f = f , f =
O O' O

f f stars . . f

n stars

In our specific case,

dt . . n-
0

dt c00

-00
dx 1 .Y o

x x
f . n- foon- 1 n n (12)

It is convenient to write the formula (12) for the Fourier-transformed problem in

space. Equation 9 will then be a Volterra equation of second kind. The Fourier trans-

form of (12) is

''0dt

tn - I dt (t-t
I )  .

0 n
(t l-t n)t nn-i n n Fo[k(t-tl)]

... Fo[k(tn_ 1-tn)] Fo(ktn) (13a)

0oCF (k) = 1 (dv) e- ikvf (v)o

Had we Fourier-Laplace transformed Eq. 8a, we should have obtained Landau's

formula

n(k, s)= 1
KL(k, s) - oo

Fl (k, v)
dv

s + ikv

2 00 f (v)
K L(k,s) = 1 + p (s+ikv) dv;_ cc (s+ikv) 2

Re (s) > 0,

(14a)

(14b)

nf =
0

Frn] n

and

(13b)
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where F 1 is the Fourier transform of fl(x, o, v) in x.

Solution of the Initial-Value Problem

We shall now study the general properties of the resolvent Kernel (11).
write it

(-P )

We may

an+ 1 (x,t), (15)

with an+l(x, t) nf . If we can find an operator T(x,t) that can act on (12) to give

T(x, t) a n+ (x, t) = an(x,t), (16)

or an operator T(k,t) that can act similarly on (13), we get from (15)

T + T H = 0 (17)

which, together with some initial conditions, plays the role of a "resolvent" dis-

persion equation. The general properties of this equation will not be studied in this

report, but two examples will be given using a resonance type of distribution func-

tions. This method does not appear to have been used previously to solve this kind

of equation.

The Lorentzian Distribution

We shall now study the problem with the Lorentzian equilibrium distribution func-

tion fo(v) = v T +r(v2+v2).

We chose to work with the Fourier transform of (8a):

0

n(k,t) = nF(k,t) - Wp s i 0 dt' (t-t') Fo[k(t-t')] n(k,t'),
' 0

(18)

where F is defined by (13a). In our case,O

- kv t
Fo(kt)= e

and formulas (15) and (13) give

-kvT t
an+l(kt) = e b n+(t),n-tl
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where

St
b (t) = dtn+ 1 0 1

1dt (t-t)
0 n

(t n-tn ) t nn-i1 n n

and b (t) = t.

-]
H= e

we then have

It is seen that b" (t) = b (t), so that, if we write (15) as
n+l n

kvTt
oo

n= 0

2
+"(t) ±+ co (t) = 0,

p

and the initial conditions are 4(o) = 0 and ¢'(o) = 1.

tion to (18) is 3

1
Then 4(t) = - sin c t and the solu-

o P

n(k,t) = nF(k,t) -
Ot -kV Tt'

Wp0 e sin C t'nF(k, t-t').

If we Fourier-invert this formula, we get

n(x,t) = nF(x,t) - o
t dt'

S t - t sin p(t-t')

00
dx f -t nF(x' ,t').

J ,,F~tt)

If we have a standing wave as initial state, we may write

2evT °o e-ikx
fl(x, o, v) m 2'

(T±v 2 )

where eo ikx is the wave electric potential, and (22b) will give

n(x, t) =e -ikx -kve os t +
2  pk

mVýTT(

kvT
--- sin (24)

P)./

It is peculiar to a Lorentzian distribution that there is no dispersion. Following

the usual method, one would find4 for the dispersion relation w = Fcp - ikv T.
Formula (24) also shows that the perturbation dies off with the Landau damping con-

stant kvT, oscillating with frequency o .p

QPR No. 100
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Higher Resonance-Type Equilibrium Distributions

ZT
For f (v) = 2' the dispersion relation gives a Bohm-Gross type of formula

2

for long wavelengths and Landau damping. We shall only indicate the calculations that

illustrate the way to find the resolvent equation, since we do not now study the features

of the exact solutions.

In this case Fo(kt) = (l+kvTt) e
-kvt. 

The equation 
analogous 

to (19b) is

The equation analogous to (19b) is

bn+ (t) d

and bl(t) = t(l+kvT

bn"(t) = +

t1 .

t). To find the operator T for Eq. 17, we note that

kvT) bn- 1 (t).

n-l dtn (t-tl)[l+kvT(t-tl)] ... tn (l+kvTtn ) (25)

(26)

If we solve Eq. 26 formally for bn-1_(t), we get

-kvT (t-t)
e b"'(t') dt' = b (t)n n-1

which is equivalent to

22 33b" - kv b' + k VT b - k v
n Tn Tn T

t
0

-kvT (t-t')
e

and from this the equation analogous to (21) follows:

" - kvT ' + 2 +
S2z 3 3 t -kvT (t-t')

k v T - k dt' e

This equation is easily soluble by the Laplace-transform method, and the solu-

tion may be obtained by Laplace-inverting the formuK

L(ý) =
s + kvT

3 2 2
s +w s + w kv

p pT

(30)

which is obtained from the Laplace transform of (29). We do not write down the exact

QPR No. 100
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formula for the resolvent kernel because it is messy and we are not interested

in it right now.

Integral Equation for the Boundary-Value Problem

Assume we can find f (x= o,t, v). Then, given fo, we may Fourier-analyze the

Vlasov-Poisson system in time and write

af en 8f
I+ i f - E(x, co)

ax v 1 mv av

aE = -4Tre
ax - 00

(dv) f

Integrating (31a) between zero and x yields

en f x/v
fl (x, , v) = e- i'Wx/v f (o, W, v) + e e D _x

my av 0

By integrating the last term by parts, Eq. 32 becomes

dx' ei o x !v

en 8f -
o-iex/e v o - E(oo)

fl(x, , ) = e f ( , v) + im v E(x, ) - e E(o,)

-ix/v x iox'/v 8E
- e0xv x dx' e L xv a (x',c2).

0

Using (31b) in the last term and integrating (33) in v, and with n(x, w)= f (dv)f l(x, W, v),

we get

p x
nx )n(x, w) = in(x, w) +

0
dx' n(x', ) w

-O0

af (x-x')vo evdv - e
av

nL(x, c) = C
- 00

n e a8 f
f (o, w, v) o E (o, w)Iiwm o, v"

-idwx/vdv e

In (34b) the E(o,w), by virtue of Maxwell's equations, may be written

E(o, W) =
i co

vf (o, c, v) dv.
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Again, (34a) is a convolution type of integral equation.

As an interesting example of these equations, we write down the solution for

the Lorentzian distribution without the calculations that are completely symmetrical

to the initial-value problem.

In this case, the equation analogous to (21) is

" (x) i- T (x) = 0 (35)

and

(x) = - sinh - x, (36)
p vT

so that

S-xT

n(x, w) = nL(x, w) + dx' e T sinh- x nL(x-x', c), (37)

or if we Fourier-invert (37),

n(x, t) = nL(x, t) + (dx')x sinh xfo nL(x-x' t-t'),
SVT J0 oT t '

(38)

where f is the Lorentzian distribution. The effort is now being concentrated on the0
solution of these problems for a Maxwellian f . An equation formally equal to (8a) has

5been used recently by A. J. Turski to investigate the time-asymptotic behavior of the
resolvent kernel.

M. L. Vianna
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B. Diffusion and Turbulence

Academic Research Staff

Prof. T. H. Dupree
Prof. L. M. Lidsky

Graduate Students

K. R. S. Chen P. M. Margosian L. C. Pittenger
H. R. Greenberg G. K. McCormick A. E. Wright

G. D. Pine

RESEARCH OBJECTIVES

1. Differential Cross-Section Measurements

Techniques developed in magnetic-mirror experiments can be applied to the rapid
and accurate measurement of differential scattering cross sections. The main feature
in this experiment is the use of the mirror fields, rather than slits or edges, as angle -
discriminating elements. The result is the ability to use the total azimuthally integrated
scattering from a line source as the scattering signal, thereby improving both sensi-
tivity and the signal-to-noise ratio. Differential scattering cross sections have been
measured for argon, helium, neon, and nitrogen. The results are in good accord
with published values except for angles greater than 80 . We understand the reason
for this discrepancy and are attempting to resolve it.

L. C. Pittenger, L. M. Lidsky

2. Toroidal Electron Trap

Our original experiment for measuring the lifetime of electrons circulating in a
toroidal magnetic trap has been completed. The technology needed to inject electrons
into the trap and to measure their lifetime has been perfected. A sweeping system to
permit measurement of the angular distribution of the circulating electrons has been
built and is being tested. This apparatus will be used for the study of waves propa-
gating on electron beams and as a test bed for some experiments to be done on Alcator.
To this end, we have designed an electrode structure to give us a phase-stabilized
beam. This will be used for the accurate mapping of flux surfaces.

P. M. M~argosian, L. M. Lidsky

3. Incoherent Scattering - Anisotropic Velocity Distribution

We plan to use incoherent scattering techniques to measure the distribution of
plasma electron velocities in the directions parallel and perpendicular to the con-
fining magnetic field. Experiments show that the electron temperature in the HCD
plasma is anisotropic and that the degree of anisotropy depends on several plasma

This work is supported by the U. S. Atomic Energy Commission (Contract
AT(30 -1)-3980).
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parameters. Our first aim is to determine whether thermalization is caused by classical
(Coulomb) scattering or by wave-particle interactions. A hollow-cathode arc plasma
source has been built specifically for this experiment with greater than usual emphasis
placed on diagnostic access. A 100-MW Q-switched laser has been provided and tested.

G. K. McCormick, L. M. Lidsky

4. Coherent Scattering from Steady-State Plasmas

We are attempting to observe coherent scattering of 10. 6 - radiation from the mod-
erate density steady-state plasma produced by the hollow-cathode discharge source.
Our goal is the comparison of the experimentally measured and theoretically predicted
scattered spectra in order to determine the spectrum of plasma density fluctuations,
that is, to measure plasma turbulence. We are using a 100 -W N2 -CO He laser as
a radiation source and cryogenic Ge detectors.

Measurements of signal-to-noise ratios for the separate parts of this system have
been completed. It appears that final S/N ratios of 6 are achievable. We hope to
observe the detailed structure of the plasma-frequency satellites.

K. R. S. Chen, L. M. Lidsky

5. Superconducting Magnet Design Studies

It is clear that high-field steady-state plasma confinement experiments will require
the use of superconducting coils. We are studying the applicability of superconductor
technology to various toroidal plasma systems. We are studying, in particular, the
design problems of a 100-kG neutral ion-injected Tokamak experiment and of a uni-
conductor high-shear stellarator. In order to gain direct experience working with
modern superconducting materials, we have constructed a single low-field element
of a possible linear quadrupole pair.

A. E. Wright, L. M. Lidsky

1. SUPERCONDUCTING QUADRUPOLE MAGNET

Introduction

A facility for experimental studies of the basic behavior of magnetically confined
hot plasmas is under construction for cooperative use by the Departments of Nuclear
Engineering, Physics, and Electrical Engineering, M. I. T. The machine is a linear

quadrupole, a subset of a general class in which the magnetic confining fields are cre -
ated by pairs of bars carrying high currents in the same direction and sense. The

nature of the field is such that the confined plasma surrounds the current bars.

The array of parallel bars may be either linear or toroidal in shape. Linear mul-

tipoles afford a simplicity of magnetic field shape not possessed by toroidal multi-

poles, thereby allowing easier interpretation and understanding of plasma behavior

both experimentally and theoretically. On the other hand, linear multipoles have

ends through which plasma may be lost. Such loss has been shown to be not criti-

cal, being in fact less than that due to radial diffusion of the plasma to the walls.
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A number of multipole machines are, at present, operating at several other labo-

ratories. These are generally of the quadrupole (two current bars) or octopole (four

current bars) type existing in both the linear and toroidal versions and in a wide

range of sizes. In the case of a linear multipole, a minimum of technical complex-

ity affords a great deal of knowledge of plasma behavior, much of which has yet

to be obtained from such a device. Such knowledge has application to the plasmas

generated in machines such as stabilized mirrors and Tokamaks wherein similar

plasma particle behavior is found.

Normal vs Superconducting Windings

With the attainment of high reliability and low cost in superconducting wire it

has become necessary in the design of large magnets to consider the relative advan-

tages and disadvantages of superconducting vs normally conducting windings. Factors

in such a consideration relevant to the magnet of a linear quadrupole machine oper-

ating in the facilities available to the Research Laboratory of Electronics are the

following. The power requirement of normally conducting magnets with the desired

current (100 kA per bar) necessitates operation at the Francis Bitter National Mag-

net Laboratory. Even there, however, such power is available only periodically

because of the necessity of sharing the Laboratory's power capacity with other exper-

iments. Thus there is a twofold lack of convenience in both location and availability.

Also, with the large water-flow rate that is required to cool the copper current bars,

a space-consuming array of pipes and current return lines is encountered.

A superconducting winding circumvents these problems, but provides some of its

own. There is increased difficulty at the design stage because of the cooling mainte-

nance of a large massive body at 4. 20 K and the marked changes in physical properties

among materials relative to their room-temperature values. The main operating cost

of the superconducting coil is accountable to liquid-helium consumption and requires

careful minimization of heat-transfer rate during design. Minimization of the resulting

liquid-helium consumption may well result in a sufficiently low operating cost that would

be even more economical than the use of a copper coil, with the choice of location

and continuous availability as bonuses.

To members of the Plasma Physics Group of the Department of Nuclear Engineering,

M. I. T., superconducting coils for the linear quadrupole have the additional advantage

of providing an opportunity for students to develop expertise in cryogenics and super-

conducting magnet design and operation.

Characteristics of the Superconducting Quadrupole Magnet

We decided at the outset that constructing a full-scale test magnet possessing most

of the characteristics of the desired final design would be an effective means of testing
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the efficiency of the cryostat and providing an extreme test of behavior of the supercon-

ducting wire. In the mock-up planned, only several turns of the superconductor would

be needed; thus the considerable cost of the full superconducting windings would be

avoided.

This wire would be placed, however, in a more restrictive environment than would

be allowed in the final version, thereby testing its margin of reliable operation. The

cryostat would be designed for easy disassembly, and hence be available for use in

the construction of the final magnet version.

Choosing 200 A as a convenient operating current leads to 500 turns of 0.021 in.

diameter superconducting wire to provide the 10 5 ampere-turns required for the linear

quadrupole. The wire selected has 121 strands of NbTi embedded in a copper matrix

with a 3: 1 ratio of copper to superconductor. The entire matrix is twisted two turns

per inch for increased stability. Such wire is said to be stable at currents closely

approaching its critical current, even when wound without spacers. To provide a

test of this prediction, the test magnet was wound with 1500 turns of 0.021 in. diam-

eter insulated copper wire, which resulted in an approximately 1 inch square winding

cross section. At the center of this cross section three turns of the superconducting

wire were wound electrically independent of the copper windings. The winding of the

final magnet version, containing 500 turns of 0. 021 in. diameter superconducting

wire only, is thereby simulated, except that the 1000 extra turns will further limit

the flow of liquid helium to the winding center. This provides an abnormally severe

test for the superconducting wire at the center.

The magnet is toroidal in shape with essentially rectangular major and minor cross

sections, dimensions of the former being 1. 5 X 1 m, and the latter approximately

5 X 6 cm (Figs. XIV-9 and XIV-10). The linear quadrupole machine will require two

such magnets with a longer leg of each providing one of the pair of parallel current

bars (Fig. XIV-11). The minimum desired bar separation is 20 cm, yielding a max-

imum attractive force between the 4. o K bars of approximately 2200 lbs (9800 N) per

meter. This force must be supported at 4. 20 K to keep the heat-transfer rate to the

bars low. If it were transmitted instead to a 770 K or room-temperature structure

through a sufficiently strong support, large heat-transfer rates or very long sup-

ports would result. The practical solution is shown in Fig. XIV-11 where the adja-

cent magnet legs are separated by short stainless-steel members. A liquid

nitrogen-cooled radiation shield prevents 3000 K radiation from the vacuum vessel

walls from reaching the magnet bars.

The designer is faced with three conflicting problems: (i) minimizing the degree

of magnet bending, hence the axial magnetic field variation, (ii) minimizing the mag-

net cross-sectional area, hence maximizing the plasma containment volume, and

(iii) providing sufficient space within the magnet for the windings and flow of liquid
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Fig. XIV-9.

Over-all view of test magnet assembly.

FLOOR

Fig. XIV-10.

Quadrupole magnetic field plot with
the location of the magnet (shown in
cross section). The cross indicates
the winding center.

S10 cm

MAGNET

Fig. XIV-11.

Quadrupole magnet pair situated in a vacuum
chamber for plasma experiments. The sup-
porting member is shown crosshatched.
Dashed lines indicate heat shields.
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helium. A simple adequate solution is shown in Fig. XIV-10, where the magnet's minor

cross section is shown in full scale within the magnetic field configuration. The magnet

is built of 1/4 in. 304 stainless-steel flat stock bent into box-channel shape. Four

T-shaped covers are welded to the channel to form a vacuum-tight high-strength

enclosure for the windings and liquid helium. The square winding volume is located

in the center of the magnet cross section, the wire being supported by perforated

teflon-coated stainless-steel plates. Liquid helium is allowed to circulate freely

around the winding volume. Circulation within the windings is determined by the

size and tightness of winding of the wire.

Because of the difference in thermal conductivity between the copper wire and

stainless-steel container, there will be a different rate of cooling, hence thermal

contraction, of the two during cooling down. Unless this is limited the yield stress

of the wire will be exceeded. This was avoided by terminating the supports B in

Fig. XIV-10 a distance of 4 cm from the ends of the magnet legs, thereby allowing

the perforated plate A to cantilever the remaining distance. The deflection of the

cantilever by the tensile force developed in the wire during cooling down is suffi-

cient to limit that force to a safe value.

The magnet is surrounded by a vacuum-tight copper shell shown in Fig. XIV-9

which will be cooled to 77 0 K by liquid nitrogen. The liquid-nitrogen jacket and

thermal insulation have been omitted for clarity. The annular region between the

magnet and liquid-nitrogen shell will be highly evacuated by a baffled diffusion pump

and by its own cryopumping. The principal means of heat transfer to the 4. 2" K

magnet is via conduction through the tubular stacks serving both to support the mag-

net within the dewar and to vent the helium vapor. The expected liquid-helium loss

rate of the dewar is 0. 3 liter per hour.

A. E. Wright
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C. Plasma Diagnostics

Academic and Research Staff

Prof. G. Bekefi
Prof. E. V. George
Dr. P. A. Politzer

RESEARCH OBJECTIVES

The aims of this group are to perfect and refine existing methods of studying the
properties of plasmas and, in particular, to devise novel techniques. At present, we
are concentrating on the effects of intense high-frequency electric fields acting on
excited atoms. Under suitable conditions these fields can give rise to quantum
transitions that are normally forbidden by standard selection rules. At present, we are
using these techniques to study the spatial and temporal density distributions of laser-
produced plasmas, using a high-power CO 2 laser as the source.

G. Bekefi

1. OPTICAL SATELLITES INDUCED IN A PLASMA THROUGH

THE ACTION OF INTENSE, HIGH-FREQUENCY

ELECTRIC FIELDS

We have been making a spectroscopic study of a laser-produced plasma. To produce

a more uniform plasma at breakdown, we have modified our CO 2 laser in the following

manner. Now the laser comprises a series of resistors, the legs of which act as

anodes, spaced in a helical pattern on 2" O.D. Plexiglas tubing, 1. 5 m long. Dia-

metrically opposite each resistor leg is placed a pin cathode. The excitation scheme

involves charging a 0. 03 iF capacitor to 25 kV and then discharging it through the

laser tube via a hydrogen thyratron.

This laser produces -1-2 MW laser pulses of ~200 ns width at a repetition rate

of 10 pps. The optimum operating pressure is 320 Torr. The high repetition rate

and good shot-to-shot reproducibility of this laser allowed us to make spatial and

temporal studies of our plasma with good signal-to-noise ratios by means of stan-

dard boxcar integration techniques.

As before, the laser radiation is focused by means of a 3. 8 cm focal length

germanium lens either into a cell containing -1 atm of spectroscopically pure helium,

or onto a cylindrical metallic post of lithium. The post is continually rotated so

as to minimize pitting of the metallic surface by the laser.

This work was supported by the U.S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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The experimental arrangement was illustrated in a previous report.1 The light

from the plasma is focused onto the slits of the 0. 5 m scanning spectrometer. The

output from the spectrometer was fed into the boxcar integrator and graphic display

equipment. The boxcar gate width is typically 250 ns and thus represents the time

resolution of our measurements.

The germanium laser focusing lens and gas cell is mounted on a vernier car-

riage so that lateral scanning of the plasma is also possible. The spatial resolution

is approximately 0. 1 mm.

Figure XIV-12 illustrates the Stark-broadened spectrum of the neutral He 5876 A

line, at a time ~10 js in the afterglow. The dots are a computer profile fit of the

data following the method outlined by Griem.2 It is evident that the best fit is obtained

TIME= 10 Is

r=.oxo6 -3

Te = 1.2 eV

ý-

z

5865 5870 5875 5880 5885

WAVELENGTH (A)

Fig. XIV-12. Stark-broadened spectrum of the neutral He 5876 A
line. The dots are a theoretical profile fit of the
experimental data.

TIME= 10 4s

N =4.5x10 cm

Te = .2 eV

2 0

4705 47 0 4715 4720 4725

WAVELENGTH (A)

Fig. XIV-13. Stark-broadened spectrum of the neutral He 4713 A
line. The dots are a theoretical profile fit of the
experimental data.
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16 -3
for a density of 5 X 10 cm and an electron temperature of 1.2 eV. Figure XIV-13

illustrates the spectrum of the neutral He 4713 A line under identical conditions. Note

that the best fit corresponds to approximately the same density and temperature as

in Fig. XIV-12. The excellent agreement between measured and calculated profiles

gives us confidence that we are justified in using Stark broadening as an accurate

density probe of our plasma.

One of the observed visual characteristics of this CO 2 laser-produced plasma

is that the plasma appears to consist of a very intense inner core a few tenths of

a mm in diameter by a few mm in length surrounded by a much less intense larger

halo. This is reflected in the spectroscopic measurements of the Stark widths of

the ionized and neutral He lines; there is good agreement between the electron den-

sities obtained by using the Stark widths of various neutral lines but the density

obtained by using the Stark width of the ion line is always larger. We thus con-

cluded that the ion lines emanate predominantly from the intense inner core, while

the neutral lines come, for the most part, from the less intense outer halo.

16
qxIu

S3
E

(n

H-z 20 I

-J

0 0.2 0.4 0.6 0.8 1.0 I .2

AXIAL POSITION (cm)

Fig. XIV-14. Spatial dependence of the electron density as obtained

from the Stark widths of the neutral He I (5876 A) line

and the ion HeII (4686 A) line, at a time 1 ýs in the
afterglow.

In Fig. XIV-14 we illustrate the spatial dependence of the electron density as

obtained from the Stark widths of the neutral He I lines and of the ion He II lines

at a time 1 ýis in the afterglow. The germanium laser focusing lens is toward

the right-hand side of this figure. At this time, in the afterglow, the sizes of the
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dependence of the electron
widths of the He I and He II
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Fig. XIV-16. Lower curve is the reciprocal of
electron density as obtained from
Fig. XIV -15 as a function of time.
Upper curve is electron tempera-
ture as a function of time.
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two plasmas are approximately 0. 5 cm, the outer halo being somewhat broader

than the inner core. Similar measurements made at later times show a much

stronger distinction between the two regions; the outer halo is much larger than

the inner core. The apparent increase in density at these points is thought to

be due to reflections of light from the back wall of the cell entering the spec-

trometer slits. We are now in the process of constructing an Abel transform

of our results in order to obtain a true spatial density profile. This transfor-

mation has not been made on the data shown here.

In Fig. XIV-15 we illustrate the time dependence of the electron density as

obtained from the Stark widths of the neutral and the ion spectral lines. We see

that at very early times the two densities are equal, but soon significant departures

occur, thereby indicating that the separation into a hot core and a halo occurs at

~0. 5 [s in the afterglow. It is noteworthy that the two plasmas decay at different

rates. Indeed the hot core shows a slight increase in density around 6 Is. We feel

that the formation of this outer halo is possibly due to the blast wave that carries

plasma out of the initial breakdown region and produces additional ionization at the

shock front.

Using our spectroscopic techniques, we have measured the expansion rate of the

halo and found that it is proportional to t O 3, as compared with blast wave theory
0.4

which yields an expansion rate proportional to t 4  Using the density data of

Fig. XIV-15, we plot the reciprocal of density as a function of time as shown in

Fig. XIV-16. The straight line and value of the slope is suggestive that collisional-

radiative recombination is the major plasma loss mechanism. The slope is in good

agreement with the theoretical results of Mewe 2 and Bates et al. 3

The electron temperature is seen to be almost constant over this period of time.

These values were obtained in the usual way by measuring the ratio of intensities

of an ionized and a neutral helium line. In our case, however, this technique is

highly suspect because the two radiations come from different regions, the core

and the halo. Hence this temperature is at best some average temperature.

One of the major difficulties in using Stark broadening as a diagnostic probe of

electron density for high-density plasmas is the phenomenon of self-absorption. At

high densities the radiation emitted from the center of the plasma is absorbed by

the less dense cooler outer regions of the plasma. The spectral line, when

wavelength-scanned, is self-reversed at and near line center; hence, determination

of an accurate linewidth is extremely difficult. The degree of self-absorption is

determined primarily by the oscillator strength and the degeneracy of the line (e. g.,

a triplet suffers more self-absorption than a singlet). We have been studying weak

forbidden transitions for use as a measure of the electron density.

Such forbidden transitions occur because of so-called level mixing of the allowed
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and forbidden lines. This can be theoretically treated by considering the total wave

function to be a linear combination of the upper levels of the forbidden and allowed lines.

These coefficients are a function of the local electric fields, and are obtained by con-

sidering the ions to be stationary, and the electrons are treated by using the so-called

impact approximation.

In general, to verify the theory, we determine the density using lines that suffer little

self-absorption (in He, for example, we used the lines illustrated in Figs. XIV-12 and

XIV-13). The comparison between the theoretical and experimental profiles of various

He and Li forbidden lines is illustrated in Figs. XIV-17 through XIV-19. Notice that

the lithium allowed line (shown in Fig. XIV-19) shows strong evidence of self-

absorption.

E. V. George, G. Bekefi, R. J. Hawryluk, B. Ya'akobi

(Dr. B. Ya'akobi is a member of the Department of Physics and Astronomy, University
of Maryland.)
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D. Fusion-Related Studies

Academic Research Staff

Prof. L. M. Lidsky
Prof. R. A. Blanken
Prof. R. J. Briggs

Graduate Students

R. L. McCrory

RESEARCH OBJECTIVES

i. Fusion Feasibility

We will continue our work on the analysis of fusion power systems with particular
emphasis given to the possibilities inherent in fission-fusion symbiosis. The combina-
tion of marginal D-T fusion reactor with an MSCR fission reactor operating on the tho-
rium cycle will be analyzed in more detail. Another system to be studied during the
next year is the D-D cycle mirror reactor with direct conversion. It appears that effi-
cient use of the neutrons generated in the complete D-D cycle may suffice to make this
concept economically viable also.

L. M. Lidsky

2. Economics of Reactor Concepts

All known fusion reactor concepts contain some difficult physical questions that are
often overlooked in the simple economic analyses done thus far. We plan to analyze
several of the more important of these to see their effect on fusion reactor economics.
For example, there is considerable experimental and theoretical evidence that the max-
imum allowable P in toroidal systems will be a strong function of the aspect ratio. Stud-
ies of the economics of toroidal reactors are being undertaken using realistic
assumptions for the functional dependences of P on the aspect ratio. For another
example, the crucial problems of synchrotron radiation have been handled very approxi-
mately in previous studies. A re-examination of the economics of mirror reactors using
more realistic models for radiation reabsorption is under way.

R. A. Blanken

This work is supported by the U.S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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E. Feedback Stabilization

Academic Research Staff

Prof. R. R. Parker
Prof. K. I. Thomassen

Graduate Students

R. K. Linford
R. S. Lowder
A. R. Millner

RESEARCH OBJECTIVES

The objectives of this research are to use feedback control techniques for the
diagnostic study and suppression of instabilities in plasmas. Under investigation are
ways to couple the feedback system to the plasma, the applicability of this method to
fusion devices, and the study of continuum feedback methods in general.

Present studies include investigations of the drift instability in a moderately ener-

getic plasma (1012 density, 15 eV temperature) and ways to couple to it, MHD insta-
bilities in a Tokamak and coupling schemes for their suppression, and adaptation of
the methods of modern control theory to the general problem of continuum feedback
control.

R. R. Parker, K. I. Thomassen

This work is supported by the U.S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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F. High-Temperature Toroidal Plasmas

Academic and Research Staff

Prof. B. Coppi Prof. R. A. Blanken Prof. K. I. Thomassen
Dr. D. B. Montgomery" Prof. R. J. Briggs Dr. U. Daybelge
Prof. G. Bekefi Prof. L. M. Lidsky Dr. R. Gajewski
Prof. A. Bers Prof. R. R. Parker Dr. P. A. Politzer

Graduate Students

E. L. Bernstein Y. Y. Lau E. N. Spithas
R. Dagazian M. A. Lecomte B. V. Waddell
D. P. Hutchinson A. R. Milner D. C. Watson

M. Simonutti

RESEARCH OBJECTIVES

The physics of high-temperature plasmas is of primary importance in the problem
of controlled thermonuclear fusion and to astrophysics in general. The main point of
interest for the controlled thermonuclear program is the production and magnetic con-

finement of dense plasmas (n > 10 14 particles/cm 3 ) with thermal energies in excess
of 5 keV. One of the most debated questions in astrophysics, at present, is the nature
of thermal and nonthermal radiation mechanisms from the magnetosphere of collapsed
stars (X stars and pulsars are thought to belong to this class).

Considerable experimental and theoretical effort has been undertaken in order to
understand the dynamics of plasmas in the regimes mentioned above, and in particular
their transport properties. In fact, it is recognized that in conditions wherein the two-
body collision mean-free paths are very long the transport coefficients of a plasma
are determined, for the most part, by the collective modes that are excited in it rather
than by two-body collisions.

In magnetically confined plasmas at high temperatures two classes of particles may
be distinguished: particles that are trapped in the local wells of the inhomogeneous
magnetic field and circulating particles that sample the entire length of the lines of force.
As a result, new collective modes can be generated and have an important effect on the
stability and transport properties of the plasma that is being considered.

To investigate these and other aspects, a sequence of experimental apparatus is being
put into operation: a linear quadrupole that is the simplest two-dimensional configura-
tion for the study of trapped-particle dynamics, a small toroidal configuration (Minitor)
to study the effect of turbulent resistivity and plasma microwave heating, a relatively
large toroidal configuration (Alcator) designed to achieve new plasma regimes and to
analyze new methods of plasma heating.

A special experimental program is being organized to investigate the x-ray, optical,
and infrared emission from Alcator. This is in view of its astrophysical implications
and of the importance that radiation has in the energetic balance of thermonuclear
plasmas.

B. Coppi

This work was supported by the U.S. Atomic Energy Commission (Contract
AT(30-1)-3980).

tDr. D. Bruce Montgomery is at the Francis Bitter National Magnet Laboratory.
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1. DENSITY EXPANSION OF THE EXACT MASTER EQUATION

The purpose of this report is to give a direct method for obtaining the density expan-

tion of the exact master equation given by Zwanzig. Expansion of the same equation in

the interaction strength leading to the Fokker-Planck type of equations has already been

discussed by Zwanzig1 and by Muriel and Dresden.2 Such expansions are not directly

applicable, however, to many physical systems, including molecules with hard-core

potentials and plasmas. For such systems, one must first resort to complicated resum-

mation procedures to all orders in the density. 3 The method presented here for the

direct density expansion is analogous to the inner expansion techniques used in fluid

mechanics.4

We start with the exact master equation for the N-particle momentum distribution
1

function written in the form

SPf(t) - HN(Y) PfN(t-y) dy, (1)

where

HN(y) = PL exp -iy(1-P) L

P = V-N d d .. drN

p 8Vj

S 1 m r. r. a

l- 1<j<k<N Ajk Pj k

withjk j - k . The underlying assumption in (1) is that initially fN is independent

of particle positions. Here, X denotes the interaction strength, and Vkl(rkl) is a

power-law potential, V = kra where a > 0.

In near collisions, the distance between particles can be so small that interaction

with other particles may be neglected. To indicate such close separations let us

introduce new magnified relative coordinates 4

R -l1/(l+a)R =I r V (2)'wk 1 -k 1

If (2) is substituted in the Liouville operator L, it yields

aV
L = + iaR + 0(). (3)

o aRk •  al(w ̂IV w
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By neglecting terms of order k, (3) represents the binary collision approximation of
the Liouville operator L = Lo + Lk l . Similarly, we can consider n-body collisions. Let
I denote the set of indices of n particles, so that 2 < n and In C {N}. Also, let Jn denote

the set of binary subsets of I . Then J contains n(n+l)/2 pairs of indices a k  Intro-
ducing new magnified coordinates R for each pair ak as indicated in (2), we findvak k

L = L=L + La + 0(X). (4)
o ak

akE Jn

The corresponding n-body operator Hn may lead to all s-ary collisions among s parti-
cles, where s < n. Therefore, a new operator, Bn-1 (In) can be defined recursively
as

n-2

Bn-(I)n = Hn - B (I s+). (5)
s= Is+ CIs+1 n

Clearly, Bn-1 (In) is a true (irreducible) n-body collision operator. Reciprocally, the
operator HN can be expressed from (5), by generalizing it for n = N. Substituting HN in
(1), we obtain

N-I

at- N(t) = -i y Bs(y) mN(t-y) dy, (6)
s=1

where

1N = PfN

and

B (y)= B (I)s s (s+ 1)

Is 1 C {N}

It is important to note that in the derivation of (6) no assumptions have been made about

the number of particles or the containing volume. Defining the density as c = N/V when
when N, V - oo, we note that the Bs are proportional to c s . In a detailed report on this
and other results for plasmas we have shown that the use of the approximation 5 HN(Y) =
PL exp -itL in connection with the above-mentioned method leads to Weinstock's master
equation. 6

U. Daybelge
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