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A. ESTIMATION OF THE IMPULSE RESPONSE OF IMAGE-

DEGRADING SYSTEMS

1. Introduction

An image-degrading process can often be modeled as passing the picture through

a linear, spatially invariant system. For such cases, the received picture, r(x, y),

is simply the convolution of the original picture, s(x, y), and the impulse response of

the degrading system, h(x, y).

r(x, y) = s(x, y) * h(x, y).

If the system impulse response is known, the original image can be recovered by

passing the received picture through an inverse filter:

s(x, y) = s(x, y) * h(x, y) * h-1(x, y),
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where

h(x, y) * h 1 (x, y) = u (x, y).

For example, in the case of linear motion (blurring) in the x direction,

0 x < vT
h(x, y) =

0 elsewhere

where v is velocity, and T is exposure time. The inverse filter for this system may

now be computed and used to deblur the received picture. The problem that is being

considered differs from the example just given, in that no a priori knowledge of the

impulse response is available. In the rest of this report we shall describe a procedure

that was developed to estimate the impulse response.

2. Generalized Linear Filtering

In a sense, the problem is similar to that of classical estimation theory in which we

estimate a signal that is corrupted by additive noise; in this case, the signal, h(x, y),

is corrupted by "convolutional noise." By using generalized linear filtering tech-

niques,1,2 the convolutional noise is mapped into an additive noise component so that it

now becomes possible to use any of the methods of classical estimation theory to esti-

mate h(x, y).3 The over-all system is shown in Fig. XI- 1. D and D l are called the char-x X
acteristic and the inverse characteristic systems, respectively. For the deconvolution

*h s + h LINEAR h -1 h
D* = FILTER D,

Fig. XI-1. Generalized linear filter.

problem, they may be realized as shown in Fig. XI-Z. ZT and IZT represent the z trans-

form and the inverse z transform, respectively. The z transform was used because

of the discrete nature of the signals, a consequence of processing on a digital computer.

There are certain issues associated with the nonanalytic nature of the complex logarithm
1,2

used in D . These require that IMAG [log X(z)] = ANG [X(z)] be (i) continuous,

(ii) odd, and (iii) periodic. For the example included here no effort has been made to
insure the continuity of ANG [X(z)].
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Fig. XI- 2. (a) Characteristic system, D.
-1

(b) Inverse characteristic system, D.:.

Having mapped the convolved signals into additive signals, we then passed the result

through a system that extracts an estimate of the desired component. The estimate is
-1

then inverse-mapped by D

3. The Linear Estimator

The estimation algorithm used in the linear processor was derived heuristically.

Assume that s(n) is divided into M sections, si(n), each of which is N points long as in

Fig. XI-3. (For notational convenience, the functions are depicted as one-dimensional

functions.) Thus

M-l

s(n) = si(n)

i= 0O

si(n) =(n)

M-

s (n) * h(n) = (
i= 0

M-1

i= 0

iN < n < (i+1)N

elsewhere

s (n) * h(n)

(s (n) * h(n)).
1
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s (n)

so  (n) s, (n) s2  (n) I s3 (n)

N POINTS
n

0 N- 1 2N- 1 3N- 1

Fig. XI-3. s(n) divided into M sections, each N points long.

The approximation is valid only if the duration of the impulse response is much
shorter than the section length, N. Under the assumption that this condition is met, the
output of D* is

A Asi(n) + h(n) i = 0, 1, .... M-1.

The filter then calculates the average output for the M sections, reasoning that the
A

additive noise, si.(n), will average to zero (or a constant).

4. Experimental Results

Two examples were run to test the system. Both pictures have a raster of 512 X
512 picture elements. The number of sections used in both cases was 16 (M=16), with

each section having 128 X 128 points (N = 128).

Example 1 was a computer-generated random picture having a uniform brightness
distribution (Fig. XI-4a). The picture was then convolved with a 16-point long impulse
response, simulating linear motion in the x direction (Fig. XI-4b). The resulting esti-
mate of h(n, m) is shown in Fig. XI-4c.

For Example 2 we used a new crowd scene (CIPG No. 11), Fig. XI-5a, which was sim-
ilarly blurred in the x direction (Fig. XI-5b). Figure XI-5c shows the result of the

estimation procedure.

Note that in both cases, the impulse response is 1/8 of the section size. The esti-

mate of h(n, m), using the random picture, is significantly better than that using the

crowd scene. The reason for this is that the crowd scene has a relatively high cor-

relation between sections.

5. Conclusion

While results, thus far, look promising, more work must be done. A routine to
satisfy the continuity requirement on ANG [X(z)] is now being debugged. More
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(c)

Fig. XI-4.

Random picture. (a) Uniform bright-
ness distribution. (b) 16-point blur
in the x direction. (c) Estimate of
h(n, m).

(a)

(b)

(c)

Fig. XI-5.

(a) Crowd scene. (b) 16-point blur
in the x direction. (c) Estimate of
h(n, m).
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sophisticated estimation procedures will be tried, and also the inverse filtering must

be performed as a final test of the utility of the system.

A. E. Filip
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B. GENERATING STATISTICALLY INDEPENDENT GAUSSIAN

PSEUDO- RANDOM NUMBERS

There are several ways of generating a population of pseudo- random numbers with

a Gaussian probability density function. Three methods are described in this report,

all of which start with a uniform random variable. One method of generating a uniform

random variable is the power-residue method. 1 The power-residue method works in

the following manner. Select a starting integer a and compute z = a * x (mod y), where

x and y are appropriate integers. Choose some function of z as the random variable.

To compute the next element of the population, let z be the starting number and repeat

the process. If the original starting number a is an odd number, the multiplier x =

8 ±I 3, where I is an integer, and y = 2
n , then this process is periodic with period

n-22

It is possible to transform a uniform random variable into a Gaussian random vari-

able directly. For example, the random variable

y = erf-l(x)

where erf- l denotes the inverse error function, is Gaussian if x is uniform over the

interval (0, 1).

Second, the Central Limit theorem states that the random variable

N

y= Z x.
j= 13

is Gaussian if the x. are independent uniform random variables over the same range,
J

and if N is sufficiently large. This is called the sum method.
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Third, the random variables

Yl = q-log (x l) sin (2irx 2 )

YZ= NJ -log (x 1 ) cos (ZTxrx)

are independent Gaussian random variables"

dom variables over the interval (0, 1). This

The first method is inferior to the third,

For example, the Taylor series for erf-x)-1
For example, the Taylor series for erf (x)

if x 1 and x 2 are independent uniform ran-

is called the Chartres method.

since it is computationally more involved.

converges very slowly if x is near 0 or 1.

erf-
1 (x) = (2i ) (2 i+ 1/2 x- 2i+

i=0

where

fo (n) = 1

and

n- n+ 1 - 2i-j
f.(n) = n j fi-(n-1 ) .

j=

Similarly, the approximation

erf (x) = Tr -
2. 515517 + . 802853T + . 010328j

2 3'
1 + 1.432788 + . 188269] + . 001308]

n= In ,

also requires lengthy calculation.

In order to compare the second and third methods, three tests were conducted on

sets of numbers produced by each of the two methods. In these tests the parameters

used in the power-residue method were selected for ease of computation, and were y =
n 36 18

2 2 and x = 2 + 3 = 262,147. The multiplier x was chosen near \ as suggested

in reference 1. The period of repetition was 234; in each test only a small fraction of

a period was used. The random number was selected as the eight high-order bits of z, and

the random variable ranged from -128 to 127. Only yl was used in the Chartres method,

and the two values N = 12 and N = 21 were used in the sum method.
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First, 512 populations of 214 = 16, 384 random numbers were generated by each

method. Each population from the sum method was compared against a normal distri-

bution with a chi-square test, and similarly against the theoretic distribution of the sum

of N independent uniform random variables. Each population from the Chartres method

was compared against a normal distribution with a chi- square test. The resultant value

from each chi-square test was converted to a point, z, on a standardized normal curve

using the approximation 4

z= - \/2(d. f.) - 1.

Figure XI-6 shows a histogram of the values of z for each of the five cases.

Comparison of Fig. XI-6a and XI-6b shows that the medians of the two histograms

are separated by approximately . 2 standard deviations. This indicates that the theo-

retic distribution of the sum of 12 independent uniform random variables is a much

better fit to the population of this process than the Gaussian distribution. Comparison

of Fig. XI-6c and XI-6d shows that the medians of the two curves are about equal.

This indicates that the theoretic distribution of the sum of 21 independent uniform

random variables is quite similar to that of Gaussian distribution. Finally, com-

parison of Fig. XI-6c, and XI-6e shows that the median of the histogram of the

Chartres method is at least approximately . 1 standard deviation lower than that of

either of the sum methods.

These three results indicate that the Chartres method produces a more Gaussianlike

population than the sum method. In order to produce a given number of populations that

pass a chi-square test at the a% confidence level, more attempts (on the average) must

be taken when using either of the sum methods than with the Chartres method. For

a = 90-95% level, the difference is approximately 20-50% more attempts; for a > 99%
level, the difference is approximately twice as many attempts or more.

Second, in order to test the statistical independence of the samples, each method

generated 512 sequences of 27 = 128 random numbers. The power density spectrum of

each sequence was computed with the aid of the Fast Fourier transform. 5' 6 Figure XI-7

shows the sum of the spectra of each set of 512 sequences as normalized dimensionless

quantities. If the random process were to generate statistically independent samples,

then the process would be white noise, and the spectrum at any one frequency would

be of chi-square distribution with 1023 degrees of freedom, except for DC and the 6 4 th

frequency, which would have only 511 degrees of freedom. The distribution across the

65 frequencies was similar to such a chi-square distribution in every case tested

according to a Kolmogorov- Smirnov test at the 10% confidence level.

The third test was performed to compare the running times that are necessary for

each of the two methods. The sum method required -440 is to generate a Gaussian

QPR No. 99 142



w

u

Z

W ,

cc

Histograms of the results of chi-square tests converted to a point

on a zero-mean, unit standard deviation normal curve. All points

that are more than two standard deviations from the mean are

shown as two standard deviations from the mean. (a) Sum method,
N = 12, populations compared with normal distribution, median =

. 07. (b) Sum method, N = 12, populations compared with distribu-
tion of sum of 12 independent uniform random variables, median =
-. 14. (c) Sum method, N = 21, populations compared with normal

distribution, median = . 10. (d) Sum method, N = 21, populations
compared with distribution of sum of 21 independent uniform ran-

dom variables, median =. 09. (e) Chartres method, populations

compared with normal distribution, median = -. 02.

QPR No. 99

Fig. XI-6.

I _ I _ -

143



NORML I7EL FREOdENC'
(b)

[ rq L 1-r- F -0 -1

NORM'L LIZED FREQUENCF
(C)

Fig. XI-7. Normalized average spectra of populations
of pseudo-random numbers. (a) Sum method,
N = 12. (b) Sum method, N = 21. (c) Chartres
method.
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number with N = 12, and 740 ps with N = 21; and the Chartres method, ~340 p.s. Only

the first number was used in the test with the Chartres method because there was some

concern about the independence of the Gaussian numbers. This concern was unnecessary

in principle, and probably in practice also. If both numbers had been used, approxi-

mately 190 ps would be required to generate each Gaussian number. The computer was

PDP-9 with a 1-p.s cycle time and an EAE unit (hardware multiply), but this feature was

relatively unimportant.

In conclusion, it seems that the Chartres method is a relatively fast and simple pro-

cedure for generating statistically independent Gaussian pseudo-random numbers.

I would like to thank John Jagodnik for his aid with Calcomp subroutines that were

used in preparing the figures. John Doles and Steven Robbins read the manuscript and

made helpful comments and suggestions.

R. E. Greenwood

References

1. I. B. M. Publication C20- 8011 (1959); see references within it.

2. B. A. Chartres, Technical Report 5, Brown University, 1959.

3. C. Hastings, Approximations for Digital Computers (Princeton University Press,
Princeton, N. J., 1955).

4. B. W. Lindgren and G. W. McElrath, Introduction to Probability and Statistics
(Mac Millan Company, New York, 1959), p. 192.

5. J. W. Cooley and J. W. Tukey, Math. Comp. 19, 297 (1965).

6. G-AE Subcommittee on Measurement Concepts, IEEE Trans. Audio and Elec., Vol.
AU-15, p. 45, 1967.

QPR No. 99 145



(XI. COGNITIVE INFORMATION PROCESSING)

C. TEXT-TO-SPEECH CONVERSION

For some time we have been working on those aspects of speech synthesis that have
direct application to the development of a reading machine for the blind. While this task
still provides a large measure of motivation, the emphasis has recently shifted in the
direction of broader contexts. Currently, we view our efforts as directed toward the
general problem of text-to-speech conversion with particular attention being paid to the
consideration of engineering techniques for such conversion as a model for the cognitive
aspects of reading. In this way, we are studying the fundamentals of an important trans-
formation between language representations while also investigating human reading
behavior, which provides the performance standard that we are trying to achieve algo-
rithmically. In this report, we set out our goals and line of investigation, together with
a summary of present progress. Future reports will give details of particular aspects
of the research.

It is important to establish initially the goals for converting text to speech. Any
(English, in this case) text should be allowable as input, although we have not emphasized
conversational dialogues and poetry. This means that all of the words of a language must
be recognized. Not only is there a large number of such words, but they are constantly
changing with time. Thus "earthrise" has been recently coined. To be useful, speech
must be generated in real time, by which we mean a comfortable reading rate of approx-

imately 150 words per minute. Since storage is expensive, it is desirable to perform

the task with a minimum amount of data, and instead, to use rules of the language to

derive the speech output control parameters. Finally, the output speech must be not
only intelligible but also sufficiently natural to permit long-term use.

These requirements cannot be met by the use of stored recordings of words, even
in encoded form, and it appears to be necessary to first derive the phonetic specification
of a sentence from its underlying linguistic form, and then convert this description into

the actual acoustic waveform corresponding to the speech. These demands are not easy

to meet, but we shall present the form of a solution, and report on the present level of
progress.

Assuming that we are given sentences as strings of words, which in turn are com-

posed of strings of letters, we have to somehow relate this information to a stream of

speech sounds. We first note that written words are not just random strings of letters,

but that they have an internal structure made up of parts, which we can think of as

atomic, since they are often the minimum units of grammatical form. This structure

arises in two ways. First, many words are formed from root words by adding prefixes

and suffixes, such as "engulf, books, miniskirt, finalize, restarted," etc. Second, and

this is very free in English, two roots may be concatenated together to form a compound

word, as in the previously mentioned "earthrise" and "handcuff, bookcase, outfit," etc.
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In view of this internal structure present in words, it is wasteful to store speech

representations for all inflected and compound words of the language. Instead, an algo-

rithm is used to decompose words to prefixes, suffixes, and roots by performing a

longest-match-first search from the end of the word in an attempt to isolate the con-

stituents of the word. The algorithm is also able to compensate for consonant-doubling

effects, as in "bidding." Recently, we have added to the power of the algorithm by

recognizing two forms of "pseudo-roots." One is the so-called functional root, such as

"pel" in "impel, repel, dispel, compel, propel," where "pel" clearly does not occur

alone. The other case arises with suffixes such as "-ate," and "-ation" which can form

(among others) "agitate" and "agitation", but "agit" may not exist alone. To remove

this apparent redundancy, only "agitate" need be stored, and detection of "-ation" in

"agitation" automatically causes a search for the same residual root (here "agit") which

ends with "-ate."

By means of such decomposition techniques, an order-of-magnitude reduction in the

number of words that have to be stored can be realized. At present, an interactive ver-

sion of the decomposition algorithm has been coded. Starting with a "base" diction-

ary of roots, prefixes, and suffixes, the entire Brown Corpus of approximately

50, 000 words will be decomposed into the nascent lexicon. This is achieved by first

sorting the Brown Corpus by length of word, shortest words first. Each word of the

Corpus is then presented to the decomposition algorithm and the lexicon existing at that

moment. If decomposition succeeds, there is nothing to do, but if it fails, a decision

must be made about whether the word should be added to the lexicon. The new lexicon

is sorted, and the next Corpus word is presented for decomposition. Clearly, in the

initial stages of this process, most Corpus words will be added to the lexicon, but as

this growing dictionary embraces more of the short high-frequency roots, fewer words

will be added. There will still be, however, a large number of roots in the lexicon, and

yet some new words may not decompose into dictionary entries. Additionally, decompo-

sition must occasionally be blocked, to prevent such mistakes as "scarcity" - "scar" +

" city."

In order to cope with new words, and to minimize the required dictionary size, we

have developed a set of letter(s)-to-sound rules that allow the calculation of a word's

pronunciation directly from its letters. Since English spelling is notoriously inconsis-

tent, it might seem that this method would be doomed to failure, but it turns out that

most of the irregular words are of high frequency, which warrants their inclusion in

the dictionary. For example, "f" is completely regular in the 20, 000 most frequent

words of English except for the single word "of". Thus the dictionary includes the

"closed" word classes (articles, auxiliaries, prepositions, pronouns, and conjunctions),

prefixes and suffixes, functional roots, high-frequency monosyllabic words, and phoni-

cally irregular words and exceptions. The philosophy underlying this choice is that the
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size of the dictionary should be minimized and that the sound specification should be

computed by rule when possible. We have developed a complete algorithm for consonant

conversion. It should be mentioned, however, that by far the most difficult problems

with letter-to-sound correspondences are the medial vowel digraphs, such as "ea" in
"reach, leather, steak, reality." Decomposition removes, however, many occurrences

such as in "reagent" and "changeable." The "decomposed" Brown Corpus word list will

be used to study these letter groups.

Once words are either decomposed into dictionary entries or converted to speech

representation by letter-to-sound rules, it remains to provide a complete phonetic tran-

scription of the sentence. Dictionary entries contain the phonemes or basic sounds of

the word plus parts-of-speech information and word-level stress information. If a word

has been decomposed into dictionary entries, then an algorithm computes the parts-of-

speech of the word and the word-level stress. The phoneme string for the word is also

obtained from those for the constituent parts. If decomposition does not occur, then the

letter-to-sound rules provide only the phoneme string and some rough stress informa-

tion.

Before further progress can be made toward synthesizing the speech, it is necessary

to parse the sentence to reveal its constituent structure. This information is used to

disambiguate stress in noun/verb ambiguities ("refuse"), allow pauses to be inserted

appropriately, compute phrase-level stress contours, and derive the intonation contour

of the sentence. The present parser operates very fast, uses less than 2K of computer

memory, and provides a complete bracketing of the sentence, including embedding, ellip-

sis, and other involved transformational effects.

By means of linguistic and phonetic rules, values for vowel duration and pitch are

computed, as a function of phonemic content and syntactic structure. In this way, over-

all sentence intonation is provided, as well as the appropriate correlates for stress.

Intonation, stress, and juncture are often referred to as the prosodic features of speech,

or those that extend over several segments of speech. They are necessary to provide

the listener with information about the structure of the sentence, so that he will "hear"

the stress and intonation correctly. Listeners can often compensate for poor segmental

or phonemic information when they know the context of the entire sentence.

Once the prosodic "frame" is known, the individual sounds or phonemes must be

realized. Given the name of a phoneme, a synthesis-by-rule algorithm computes the

control parameters that are needed by a terminal analog synthesizer to produce the

physical speech waveform. This program must compute the spectral correlates cor-

responding to the vocal-tract configuration used to produce the sounds of the sentence.

Recently, our efforts have focused on improved synthesis of stops and fricatives. Much

work remains to be done in this area, particularly in the realization of con-

textual effects.
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While, at present, a terminal analog synthesizer is being used, a digital synthesizer

would provide increased flexibility and reliability. The synthesizer is the only special-

purpose piece of hardware required by the system, since all of the other algorithms can

be computed by a general-purpose computer.

The process by which we have described the conversion of text to speech has been

found to be fundamentally sound. Certainly, much work must be done to reveal the lin-

guistic and phonetic regularity of our language. The present prospects are very encour-

aging, however, and warrant a continued strong effort in this area.

We believe that this procedure for converting text to speech may have some validity

as a partial model for reading. High-frequency, phonically irregular words are "read"

as chunks, and words are decomposed into roots and affixes when possible. The less

frequent words are not stored in any lexicon, but converted directly to speech by rules

of the language. Hence both "phonic" and "whole-word" techniques are used. An exper-

iment is under way which seeks to discover further information about the letter-groups

within words that are perceived as units. Four-letter monosyllabic "words" such as

"flon" and "Wtad" have been selected which contain consonant clusters that are either

legitimate or not English. Tachistoscopic presentation will then be used and subjects

will be asked to spell the "word." Error analysis of the results should reveal whether

or not legal consonant clusters function as perceptual units.

J. Allen
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D. SOME SYLLABIC JUNCTURAL EFFECTS IN ENGLISH

The problem of defining a syllable in general is probably an impossible problem. The

reason for this is that the syllable may have a definition on at least three different func-

tional levels. First, it may be defined graphemically, so that printed words may only be

broken at the end of a line at a "syllable juncture." Second, it may be defined morphe-

mically, and the syllable boundaries may be placed at morph boundaries. Third, it might

be defined acoustically, with syllable boundaries placed at locations of acoustical sig-

nificance, that is, the "spoken" syllable boundary. Clearly, these three levels of defi-

nition are somewhat related, but it is not exactly clear what this relationship might be.

The problem that this report seeks to address is that of the effect, if any, of syllable

junctures on the acoustic correlate of segment duration. Hence interest must lie in the

third kind of syllable, the "acoustic" syllable. The hypothesis of its existence must be

somewhat like this: There are many different-sized segments that are identifiable in
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spoken speech. These include the phoneme (functional segment), the morph, the word,

the phrase (derived constituent), the sentence, and so forth. There is no question that

subjects do not have trouble identifying word boundaries in the sentences that they per-

ceive; likewise, they can identify syllables. This does not mean that there is universal

agreement among subjects about the precise location of syllable boundaries; certainly,

there is not, but it may be said that, for all practical purposes, there is universal

agreement about the number of syllables perceived and which vowels make up each syl-

lable nucleus. This, of course, could be an entirely perceptual phenomenon. It could

also be due to the subject's identification of sequential vowels, and assigning one syl-

lable to each. But, it could also be due to the direct interpretation of some acoustical

correlate for syllabification. Certainly, it is not unreasonable to expect, inasmuch as

subjects recognize the existence of syllables in spoken speech, thay they might well have

some direct acoustic cue for syllables in their speech.

It would be naive to think that we must choose only one of these three possible expla-

nations for the perception of syllables. As in most speech phenomena, it is undoubtedly

true that some combination effect leads to the perceptual result, and, in many cases,

the direct acoustic cues for syllables may be optional. If, however, there are cases in

which the syllabic acoustical phenomenon is not optional, clearly these cases should be

studied.

The present study was concerned with three elements of the syllable problem. The

first of these was the effect of a syllable boundary on vowel duration. In particular, the

author has shown that vowel duration could be considered as a function of structure and

phonemic context.1 The phonemic context really is simply that the duration of a partic-

ular vowel is greatly influenced by the following consonant. The hypothesis of the pres-

ent study is that if a syllable boundary exists between a vowel and the following

consonant, then the effect of that consonant on the duration of that vowel would be greatly

reduced. If this hypothesis should prove to be true, it would help to explain certain

previous experimental results.

The second element of interest lies in a general phenomenon reported in two
2, 3

studies. These authors sought to investigate syllabic junctural effects by studying

words and phrases that differed only in their word or syllable junctures (night rate vs

nitrate). These authors claimed that, generally, phonemes tended to be lengthened

toward the beginning of a syllable and shortened toward the end. It should be noted, how-

ever, that these studies did not succeed in their attempted format, for, in general, not

only did they vary syllabic junctures but also derived constituent structures (stress),

and, as has been seen previously, stress can be a determining factor in duration. Hence

we desired to check whether the phenomenon so reported is really general.

The last element of this study was to try to throw some light on the problem of the

definition of "syllable" in an acoustic context. In particular, we desired to study how
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a subject varied his acoustic correlates depending on where he thought the syllable junc-

ture should be placed. This problem will be discussed in more detail as the experiments

are described.

1. Experiment

The experiment was divided into two parts. In the first part, subjects were asked

to read single words into a tape recorder microphone. The words were written on flash

cards, one on each card, and held up individually for each subject to read. In the second

part, subjects were given a list of the words they had just read from the flash cards.

They were asked to "mark the place in each word where you think you say the syllable

boundary." After they had completed this task, the subjects were asked to read the words

again, this time from the list they had just marked. In both parts of the experiment,

spectrograms were made of each test word on a Kay Sonograph, and the durations of each

phoneme in each word were measured and tabulated.

The list of words used in the experiment is shown in Table XI- 1. The main purpose

of this experiment was to check whether a vowel' s duration was less affected by the fol-

lowing consonant if that vowel were separated from that consonant by a syllable boundary.

Hence an experimental environment that allowed variations in syllable boundary position

and following consonant for the same vowel and the same stress configuration was

necessary. Therefore we decided to use only two syllable words having stress on the

first syllable and the same vowel, /i/, as the nucleus of their syllable. Likewise, these

words were chosen so that the /i/ in their first syllable was always followed by a stop

consonant, either voiced or unvoiced. The reason for this was that previous work had

shown that as far as their durational effect on the preceding vowel is concerned, the

voiced- stop consonants could be considered as a group and the unvoiced stop consonants

could also be considered as a group.1

As we have stated, there is no general agreement about where the syllable boundaries

lie in many words. Hence the word list was divided into three groups. The first group

contained words for which there was general agreement that the syllable boundary lay

between the first vowel and the following consonant. The second group included words

for which there was general agreement that the syllable boundary lay after the first

vowel's following consonant. These two groups clearly represent the main test of the

hypothesis. The third group of words comprised those for which there is no general

agreement about the location of the syllable boundary. The results from this last group

were intended to test whether these words could be considered acoustically part of

Group #1 or Group #2, or whether they fall somewhere in between.

In the second part of the experiment we intended to see what effects a subject's

knowledge that he was being tested on syllable effects, and his attempts to acoustically

support his own syllabic markings, had on his previous results. It is important to
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Table XI- 1. Test words in syllable experiment.

Group #1 Group #2Z Group #3

Open Syllables Closed Syllables Questionable Syllables

Decoy feetless beaters

Despot meetless beater

Beebee seatless beetle

Cetane neatness heater

Detail (noun) needful meeting

Detour needless meter

Veto seedling peter

Cedam speedless needle

Cedar meekness . beader

Cetus cheekness deeded

Heclion beakness beaker

Pekoe cheapness cheeky

Sego deepness speaker

Cecal feeblish

Ceacum seepage

Deacon peeper

Beacon keeper

Decrease (noun) deeply

Fecund cheaply

Sequel seta

Secant feeble

Sepoy Phoebe

understand that there was no real interest about where the subjects marked their syl-

lable boundaries, since they were untrained subjects doing an ambiguous task and hence

their results would probably not be consistent. What was of interest was the effect

that these markings, whatever they happened to be, would have on the previous results.

All of these tests were taken by 10 subjects. All subjects were native speakers of

English, though probably not of the same dialect. Six of the subjects were male and

four were female.

2. Results for Vowels

Before presenting the results of this experiment, two general points should be made.

First, in setting up the experiment, we assumed that as far as their effect on the
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previous vowel's duration is concerned, unvoiced, and likewise voiced, stop consonants

could be considered as a group. This assumption was tested for each of the subjects

and found to be acceptable. Hence, in presenting the vowel-duration data, no differences

will be noted among the stop consonants, other than the group to which they belong

(voiced or unvoiced).

The results of the vowel-duration tests in the first part of the experiment for one

subject are shown in Fig. XI-8. Recall that the main hypothesis was that if a syllable

boundary could be said to fall between the vowel and the following consonant (Group # 1),

GROUP# 1

(SYLLABLE BOUNDARY

FOLLOWS VOWEL )

OPEN SYLLABLE

FOLLOWING FOLLOWING

CONSONANT CONSONANT

VOICED UNVOICED- .i

GROUP#2

(SYLLABLE BOUNDARY

FOLLOWS CONSONANT)

CLOSED SYLLABLE

FOLLOWING FOLLOWING

CONSONANT CONSONANT

VOICED UNVOICED

I I

GROUP# 3

(SYLLABLE BOUNDARY

UNCLEAR )

QUESTIONABLE SYLLABLE

FOLLOWING FOLLOWING

CONSONANT CONSONANT

VOICED UNVOICED

I I

100 -

Fig. XI- 8. Vowel durations for Subject 1 as a function of Group and following
consonant type. Straight lines are averages.

then the effect of the following consonant would be greatly reduced; that is, the average

vowel duration before voiced consonants would be almost the same as before unvoiced

consonants. As can be seen from Fig. XI-8, not only is the voiced-unvoiced difference

reduced in Group #1, it is almost nonexistent. But in Group #2, where the vowel and

the following consonant are assumed to be in the same syllable, the voiced-unvoiced

splitting effect is still very much in evidence. Hence, at least from the point of view

of this subject's data, the hypothesis is strongly supported.
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Now notice the results from Group #3. This is the group in which there was no gen-

eral agreement about the location of the syllable boundary. One hypothesis about these

data might be that each of these words, "acoustically," really belongs either to Group #1

or Group #2, and there is simply no known way to predict which. If this were the case,

the points on the "voiced" side of Group #3 could be expected to break into two separate

groups, one centered around the average of the voiced side of Group #1 and one around

the average of the voiced side of Group #2. This is not the case, however. What is

closer to being true is that there is one group of points centered somewhere in between

the averages for Group #1 and Group #2. This would appear to indicate that Group #3

may represent a separate acoustic phenomenon from either Group # 1 or Group #2.

Another point is that the durations of vowels before unvoiced stop consonants

and the durations of vowels directly before syllable boundaries (Group #1) all seem to

be about the same. Hence, for this subject at least, it would appear that following a

vowel by a syllable boundary is durationally almost equivalent to following it by an

unvoiced stop consonant.

Figure XI-9 shows the results for another subject. Notice that there are several

GROUP#

( SYLLABLE BOUNDARY

FOLLOWS VOWEL )

OPEN SYLLABLE

FOLLOVING FOLLOV ING

CONSONANT CONSONANT

VOICED UNVOICED

180

160

140

120

GROUP# 2

(SYLLABLE BOUNDARY

FOLLOWS CONSONANT )

CLOSED SYLLABLE

FOLLOV ING FOLLOV ING

CONSONANT CONSONANT

VOICED UNVOICEDI I

GROUP# 3

( SYLLABLE BOUNDARY

UNCLEAR )

QUESTIONABLE SYLLABLE

FOLLOWING FOLLOWING

CONSONANT CONSONANT

VOICED UNVOICED

I j

Fig. XI-9. Vowel durations for Subject 2 as a function of Group and following
consonant type. Straight lines are averages.
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important differences between this subject and the last subject. First, note that all of

his vowel durations are longer. This is probably just a personal idiosyncrasy. Second,

notice that once again the original hypothesis is strongly supported by Group #1 and

Group #2, but note that, this time, there is more splitting in the Group #1 averages than

before. Hence, for this subject it can be said that the syllable boundary greatly reduces

the effect of the following consonant, but does not completely destroy it.

Now notice the results for Group #3. Here, as was not the case before, the Group #3

voiced section does split into two well-defined groups. Hence, for this subject it might

be argued that all words really belong to either Group #1 or Group #2, but it should be

noted that this was the only subject who exhibited this characteristic. It should also be

noted that the average vowel duration before unvoiced stop consonants in Group #3 is

longer than the average before unvoiced stop consonants in either Group # 1 or Group #2.

This was a characteristic exhibited by four of the ten subjects, and will be shown in the

section on consonant durations to have a direct correlation with the duration of the fol-

lowing stop consonant.

Figure XI-10 shows the experimental result of another subject. This subject is

included for three reasons. First, once again there is strong evidence in favor of the

GROUP# 1

SYLLABLE BOUNDAR
v

FOLLOS VOWEL )

OPEN SYLLABLE

LOVING FOLLO'ING

JSONANT CONSONANT

CED UNVOICED

I I

GROUP#2

( SYLLABLE BOUNDARY

FOLLOVS CONSONANT

CLOSED SYLLABLE

FOLLOV ING FOLLU1NG

C SOSONANT CONSONANT

VOICED UNVOICED

I I

GROUP#3

( SYLLABLE BOUNDAR
V

UNCLEAR

QUESTIONABLE SYLLABLE

)LLOV ING FOLLO ING

DNSONANT CONSONANT

©ICED UNVCICEDI I

Fig. XI-10. Vowel durations for Subject 3 as a function of Group and following
consonant type. Straight lines are averages.
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hypothesis. Second, the general level of vowel durations is much shorter than for

either of the two previous subjects, which clearly illustrates why subjects must be

considered separately. Third, this subject has the same long vowel duration before

unvoiced stop consonants in Group #3, as did the last subject.

0 50

0*

0 0

20
F

302 Fig. XI-11. Results for all ten subjects.20Z
z

rB 10

10 510
Z 0

DIFFERENCE BETWEEN AVERAGE VOWEL DURATIONS BEFORE VOICED

AND UNVOICED CONSONANTS FOR GROUP # 1

These three subjects were presented because they illustrated most of the phenomena

related to a vowel duration which were observed in the first part of the experiment.

Figure XI- 11 is a plot of the difference in the average vowel durations between vowels

followed by voiced and unvoiced stop consonants for Group #1 against the same difference

for Group #2. This plot is not presented to suggest any functional relation between these

two quantities, but only to show that the differences plotted for Group #2 are always

greater than those for Group #1. This strongly supports the hypotheses for all ten

subjects.

To summarize, it may be said that the results of this experiment all strongly

support the hypothesis that the presence of a syllable boundary between a vowel

and the following consonant greatly reduces the effect of that consonant on the

vowel's duration. Likewise, an additional result was that, for all subjects, the

average duration of a vowel before a stop consonant tended to be the same for

Group #1 and Group #2.

The results for Gioup #3 may be said to be that in general the difference between

the durations of vowels before voiced and unvoiced stop consonants fell somewhere

between Group #1 and Group #2. For six of the subjects, the average duration of a vowel

before an unvoiced stop consonant was very close to that for Group #1 or Group #2. For

four of the subjects, this average duration was longer.
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3. Results for Consonants

The general hypothesis concerning consonants, suggested by Lehiste2 and by Hoard, 3

was that consonants near the beginning of a syllable tend to be longer than they are near

the end. In this experiment, the stop consonants in Group #1 were all at the end of the

first syllable, while those in Group #2 were all at the beginning of the second syllable.

Hence one would expect that if the average duration for the stop consonants in Group #1

minus those in Group #2 were plotted as in Fig. XI- 12 then the average results should be

K D

S • NOT NOT
ENOUGH ENOUGH
DATA DATA

Fig. XI-12.

Average duration for stop consonant in
Group #1 minus average duration for stop
consonants in Group #2.

positive. It can be seen from Fig. XI- 12 that this is not the case. What would appear to

be true is that there is no measurable average difference between the stop consonants

in Group #1 and Group #2. Hence Lehiste's and Hoard's results are not supported.

20 --

B

NOT

ENOUGH

DATA

G

NOT

ENOUGH

DATA

O

** , *

Fig. XI-13.

Average durations for stop consonants in
Group #1 minus those for Group #3. Circled
points are for 4 special subjects.

Figure XI-13 is a plot of the average durations for stop consonants

minus those in Group #3. Two things are worth noting in this plot. First,

subjects the results were essentially the same as for Group #1 and Group

there was no measurable effect on consonant durations as a function

in Group #1

for 6 of the

#2; that is,

of syllable
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boundaries. Second, for four of the subjects, however, the consonant durations were

quite short. It turns out that these are the same four subjects who exhibited long vowel

durations for Group #3. In particular, with longer vowel durations and shorter stop-

consonant durations, the durations of the combinations remain nearly constant. There

is no clear explanation why this occurred, but the data are included for completeness.

4. Results for Syllable Markings

In the second part of the experiment, subjects were asked to choose where they

"thought they said the syllable breaks," and were then asked to read the words again

from their marked list. The idea behind this part of the experiment was not to see where

subjects marked syllable breaks because, as untrained subjects with an ambiguous task,

they could not be expected to perform well. For those who are interested, however, the

Table XI-2. Results of syllable placement tests.

GROUP FOR WORD

GROUP GROUP GROUP
#1 #2 #3

GROUP #1 88% 8% 64%

GROUP CHOSEN GROUP #1 = V/C
BY SUBJECTS GROUP #2 = VC/

GROUP #3 = ?

GROUP #2 12% 92% 36%

Table XI-3. Results of syllable boundary placement tests for vowels.

VOWEL DURATION CHOSEN

LONGER SAME SHORTER

VOWEL DURATION
FOUND LONGER 52% 36% 31%

SAME 24% 20% 12%

SHORTER 24% 44% 57%

SAME: Subject chose word to be a member of the same Group as experiment
(within 10 ms (±5 ms)).

LONGER: Subject chose word to be a member of a Group with longer vowels
than experiment; that is, member of Group #1 or Group #3 with
voiced-stop consonant chosen as a member of Group #2.

SHORTER: Member of Group #2 or #3 with voiced-stop consonant chosen as a
member of Group #1.
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results of the syllable markings are shown in Table XI-2. The real point of this experi-

ment was to see if subjects could be forced to vary their outputs in order to support their

syllabic markings. The hypothesis for vowels was the following: If a subject chose an

open or a questionable syllable as closed, we would expect his vowel duration before a

voiced consonant to be longer to support this claim; likewise, if a subject chose a closed

or a questionable syllable as open, then we would expect the vowel duration before a

voiced consonant to be shorter. The composite results for all subjects are shown in

Table XI-3.

Table XI-4. Results of syllable boundary test for stop consonants.

STOP CONSONANTS CHOSEN

LONGER SAME SHORTER

STOP CONSONANTS
FOUND LONGER 27% 7% 12%

SAME 56% 71% 47%

SHORTER 17% 22% 41%

SAME: Subject chose same Group as experiment (within 10 ms (±5 ms)).

LONGER: Subject chose a member of Group #2 or #3 to be part of Group #1.

SHORTER: Subject chose member of Group #1 or #3 to be a member of
Group #2.

Two points should be made concerning the results of this experiment. First, statis-

tically, there is a noticeable tendency to uphold the hypothesis. Second the results are

comparatively weak, however, and there is also a definite tendency not to change the

way the word was said. This is particularly true concerning the consonants as shown in

Table XI-4, where the majority of the consonant durations remain the same regardless

of the syllable marking chosen by the subject. Once again, the second part of the exper-

iment seems to support the hypothesis for vowel durations, but does not support any

hypothesis for consonants.

T. P. Barnwell III
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E. TACTILE PITCH FEEDBACK FOR DEAF SPEAKERS

1. Introduction

Several investigators have reported the problems of profoundly deaf speakers with

pitch control. The characteristic difficulties include abnormally high average pitch

(Angelocci, Kopp, and Holbrookl), and unnatural intonation patterns (Martony2). These

anomalies are sufficient in themselves to make deaf speech sound unnatural and even

unintelligible (Brrild3).

To help deaf speakers acquire better pitch control, various researchers (Dolansky,

et al.,4 Risberg,5 Martony2) have devised and tested visual pitch displays. While visual

displays have certain inherent advantages, they are limited to use in training ses-

sions and necessarily interfere with lipreading by their users. No work has been done

with tactile pitch displays, although this modality has a potential for continuous feed-

back from wearable displays and could supplement lipreading without handicapping it.

Our research 6 was a pilot study, intended to explore the utility of simple pitch detec-

tors and simple tactile displays.

2. Apparatus

The prototype pitch detector is straightforward. A throat microphone detects voiced

speech; its output is amplified, lowpass-filtered, and converted to a square-wave pulse

train by a Schmitt trigger. The pulse train is gated for a fixed time, and pitch fre-

quency is determined from a zero-crossing count on the gated pulse train. The pitch

measurement is quantized into one of 8 channels. The first seven channels are adjusted

to correspond to the range 100-240 Hz in bandwidths of approximately 20 Hz each. The

eighth channel corresponds to all pitch frequencies above 240 Hz. Counts in each

channel are recorded for analysis of a speaker's pitch distribution. The speech input

is sampled periodically for durations of 50, 100, 200 or 400 ms. Immediately after

sampling, the pitch is displayed to the speaker for 50 ms. Thus the total cycle time

from the beginning of one display to the next is variable in steps of 100, 150, 250,

and 450 ms, and feedback performance as a function of display rate can be inves-

tigated. Note that the feedback is in quantized, sampled-data form.

The display is also quite simple. Solenoids poke the fingers of the speaker to

provide the tactile feedback. The eventual goal of research in tactile pitch feedback

is the design of a wearable speech aid, and an important criterion for such an aid

is that it be simple and consequently inconspicuous to the user. Therefore, the dis-

plays that we used employed only two ana three solenoid pokers. Switching circuits

allow the experimenter to assign counts in any channel to any tactor. Thus, the

eight channels can be grouped for display into "high," "low," and "ok" bands when

three pokers are used, or into "high" and "low" bands when two are used.
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Fig. XI-14. System diagram.

Fig. XI-15. Experimental arrangement.
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Figure XI-14 is a block diagram of the system. Figure XI-15 shows the experimental

arrangement: a subject holds the throat microphone with his left hand and touches the

tactile display with his right.

3. Experiments

Two sets of experiments were conducted with 26 profoundly deaf boys and girls, 13-

17 years old, participating at the Boston School for the Deaf. All subjects had suffered

sensorineural hearing losses for all or most of their lives. Each spent one-half hour

per week with the device over a period of up to 4 weeks. In the first series of experi-

ments, a three-tactor display was used. The experimenter would assign one of the eight

channels to the "ok" tactor and the remaining channels to the "high" and "low" tactors,

as appropriate. The subject would place his hand on the display and attempt to sustain

a hum in the selected target channel. These experiments used humming as a way to

avoid linguistic influences of speech on voice pitch. By varying the target channel and

the display rate, the experimenter could investigate the pitch control characteristics of

the closed-loop system composed of subject, pitch detector, and display. The subjects'

natural pitch distributions could be recorded by having the subject hum or speak without

using the display.

In the second series of experiments a two-tactor display was used. In these cases,

the 8 channels were grouped into "high" and "low" bands. The subjects were asked to

repeat their names or read certain text passages or word lists while simultaneously

maintaining voice pitch in the "low" region. The upper limit on allowable pitch and the

display rate could be varied to observe the effects of changes in display parameters.

These experiments were designed to simulate the conversational environment in which

a wearable speech aid would function.

4. Kinesthetic Referent Hypothesis

During these experiments, two pitch problems manifested themselves. One, noted

previously (Martony2), is the tendency of deaf speakers to begin breath groups at abnor-

mally high pitch, then to quickly slide down to a more natural level. The other

is a tendency to increase average pitch when the difficulty of the required utterance

increases. These phenomena, and their dependence on display parameters, prompted

a viewpoint that explains the unnatural pitch of the deaf speakers as a by-product of their

attempts to increase the amount of internal feedback that is available during voicing.

It is known (Pickett 7 ) that high pitch is produced by increased tension in the crico-

thyroid muscle and by increased subglottal air pressure. The extra vocal effort that

is needed to generate high-pitched sounds leads to an increased kinesthetic awareness

of voicing beyond that possibly available from residual hearing. We suggest that deaf

speakers generate high-pitched tones as a way of better marking the onset of voicing
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and the progress of voicing. The behavior of the subjects during experimental sessions

also suggests that they generate high-pitched tones to serve as a reference or calibration

which they use to "tune" their voices. Because the internal feedback is provided by the

kinesthetic sense and appears to be used for frequency and voicing reference, the

explanation for the use of high pitch was dubbed the "kinesthetic referent hypothesis. "

This hypothesis provides an appealing framework for understanding the successes

achieved with the tactile display.

5. Experimental Corroboration

The use of high pitch as a kinesthetic referent appeared in both the humming and

speaking experiments. In the former, the use of high pitch at the start of breath groups

manifested itself in the data as a large number of counts in the highest channel, Chan-

nel 8. It was the dependence of this high Channel 8 count on display parameters that

first suggested the hypothesis. We found that the subjects generally had a "natural"

channel or group of channels in which they could hum fairly consistently. But when the

target channel was chosen to be a more "unnatural" channel, confusion arose and

performance became much more dependent on the monitoring information supplied

by the tactile display. Performance at slower display rates was generally worse

than that at high rates - at the slower rates, the subjects were observed to resort

more to use of high pitch at the start of breath groups, presumably to supplement

the frequency calibration data that was appearing in insufficient amounts on the tactile

display. Figure XI-16 indicates the increasing reliance on the high-pitched referent

as the display rate was slowed. Figure XI-17a and XI-17b illustrates the increasing

reliance on the high-pitched referent as the target channel was moved farther from

the "preferred" channel (in this case, Channel 5). Figure XI-17c and XI-17d demon-

strates that for an easy pitch control task, that is, one in which the target channel

is the most comfortable channel, good performance can be achieved even with slower

feedback rates. These results are typical of the evidence from the humming exper-

iments, which suggests the kinesthetic referent hypothesis.

Further evidence that deaf subjects generate their own pitch references comes

from the need for referents on the part of normal hearing subjects in discrimination

experiments. Stewart 8 noted:

The trained ear can cope with five or six degrees of length (Jones, 1956)
and can manage at least four pitch levels without difficulty, but only if

these length and pitch distinctions are manifested in some sort of sys-

tem. Given a largely random sequence of pitch or length factors to sort

out, analysis by ear breaks down: deprived of meaningful relativity the
ear fails to measure in absolute terms.

Analogously, we suggest that deaf speakers, when confused about the interpretation

QPR No. 99 163



u 50
z

D
U

U 40
0

z
U

20

0

2 3 4 5 6 7 8

(a)

1 2 3 4 5 6 7 8

CYCLE TIME: 100 ms

TARGET CHANNEL: 7

CHANNEL
1 2 3 4 5

(c)

CYCLE TIME: 150 ms

TARGET CHANNEL: 7

CHANNEL S-- 7i -3 - 1

r- r- nr

CYCLE TIME: 250 MS
TARGET CHANNEL: 7

E
6 7 8

Enl
1 2 3 4 5 6 7 8

CHANNEL

CYCLE TIME: 450 ms

TARGET CHANNEL: 7

CHANNEL
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of the display or when receiving insufficient data from it, used a high-pitched tone as

a fixed frequency reference, from which they could adjust their pitch downward toward

the target channel.

Similar pitch behavior was noted in the second series of experiments, in which the

subjects spoke rather than hummed. Figure XI-18 presents 7 successive experiments

that indicate the dynamics of pitch modification and the tendency to resort to high pitch

at low display rates. The first histogram shows the natural pitch distribution for the

utterance, which was the subject's name; the rest were performed with tactile feedback.

Note the effects of adjustment to the feedback and to changes in the display rate.

Also observed in the experiments involving speaking was a dependence of the average

pitch on the type of utterance required. In general, the average pitch when the subject

hummed was lower than that when he repeated his name, and this in turn was lower than

the average pitch when reading text. The primary cause for the increases in average

channel were increases in the Channel 8 component. In terms of the hypothesis, we

would cescribe the subjects as increasing their monitoring data rates to match the

increasing information content of their utterances. Figure XI-19 illustrates this depen-

dence of pitch on complexity of utterance for two subjects.

We speculate that the closer monitoring of voicing achieved by use of high pitch might

be caused by tension. In the setting of a school for the deaf, all occasions for reading

aloud might readily be transformed into rather difficult tests of the students' abilities

to achieve correct speech. The observed behavior of the subjects led the authors to con-

clude that tne deaf students had lost - or never acquired - the ability to read aloud

casually. The obvious undercurrent of strain, even when the subjects read aloud

without using the system, brought to mind the subjects' first encounters with the

authors and the system. In many cases, the first session nervousness gave rise to

pitch distributions that were abnormally high even for the subjects. Figure XI-20

shows some marked changes in pitch distribution for the same experiments performed

first in the initial session and repeated one week later. We suspect that a similar

type of tension might become associated with reading aloud and, after a period of

years, become habitual. The results of the experiments using the tactile display

indicate that the tendency to use high pitch can be controlled.

6. Results with Tactile Feedback

If the kinesthetic referent hypothesis is a good model for the pitch behavior of

the profoundly deaf, it also provides a basis for hope that the pitch problems can

be corrected. The sensitivity of the results of the humming experiments to the dis-

play rate suggests the answer: If sufficient feedback is provided via the tactile chan-

nel, this information can substitute for that otherwise provided by the kinesthetic

sense.
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(XI. COGNITIVE INFORMATION PROCESSING)

The results of tests using the tactile aid confirm this concept of sensory substitution.

Not every subject learned - or had enough time to learn - to use the binary tactile dis-

play to eliminate the use of abnormally high pitch at the start of breath groups. But

many did come to understand the concept of pitch and to acquire sufficient motor control

to limit their pitch to lower frequencies. In Fig. XI-21 some experiments performed

with and without binary tactile feedback are compared, and the extent of the changes that

are possible are indicated.

Experiments were also conductd in which the subjects were given no feedback but

urged to speak with as low a pitch as possible. The extent of the shifts in pitch distribu-

tion produced in this way were often of the same order as those achieved with the dis-

play. Some subjects could not lower their pitch, however, by any means other than use

of the display. For others, use of the display helped shift the pitch distribution downward

beyond what could be accomplished unaided. These results suggest that continuous use

of a wearable aid would provide a sufficient reminder to use proper intonation, and might

be abandoned as soon as the user internalizes the motor controls for acceptable pitch.

Figure XI-22 illustrates the comparison between unaided efforts at pitch control and

efforts assisted by tactile feedback; it also shows another instance of the increasing

dependence on high pitch as the complexity of the required utterance increases, and of

the ability of the deaf speaker to counter this dependence if special attention is called

to it. It should be noted that concentration on use of the display for pitch control some-

times led to deterioration in other aspects of voice quality: Durations of utterances

sometimes increased, loudness occasionally dropped, and articulation sometimes suf-

fered. These problems were neither universal nor severe, and one might suppose that

more extensive familiarity with the device (no child had more than 1 hour of actual feed-

back experience) would correct these difficulties.

7. Conclusions

A simple tactile display driven by an uncomplicated pitch detector has been success-

fully used to correct a common defect in the intonation patterns of deaf speakers. An

interesting dependence of unusually high pitch at the beginning of breath groups on the

complexity of an utterance was observed in the speech of profoundly deaf teenagers. The

dependence of this anomalous intonation pattern on complexity of utterance (and there-

fore, in some sense, on tension) and on display parameters led to a hypothesis that sees

high-pitched tones as kinesthetically monitored referents for voicing and frequency

information. This "kinesthetic referent hypothesis" provides a framework in which to

interpret the pitch problem and the usefulness of the tactile speech aid in dealing with

it. The success of this aid in infrequent test sessions justifies more confidence in the

usefulness of a wearable aid, which could realize the presumed advantages of continuous

feedback. Further work toward a wearable aid should be encouraged. The particular
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(XI. COGNITIVE INFORMATION PROCESSING)

pitch detector used here can be easily miniaturized; the outstanding technical problems

remaining are the choice of tactile display mechanism and the human factors aspects

of the design.

Thanks are due to Sister Kieran and to the staff and students of the Boston School

for the Deaf, Randolph, Massachusetts, for their generous cooperation.

This report is based on a thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science, in the Department of Electrical Engineering,

M. I. T. , August 20, 1970.

T. R. Willemain, F. F. Lee
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F. PROPOSED AUTOMATIC LEUKOCYTE

DIFFERENTIAL ANALYZER

The leukocyte differential count is an extremely common medical test that thus far
has escaped automation. The differential involves the visual classification of white blood
cell types. These types are normally distinguished by size, color, and the presence
or absence of granulation in the cytoplasm of the cells. It has been found I that the spec-
tral extinction and spatial frequency properties of leukocyte images can alone be used
as discriminators in an automatic recognition procedure. Details of these two proper-
ties and their measurement are discussed in this report, and a proposal is made for
an optical processing system to perform the leukocyte differential.

In previous studies the gross spectral differences between white and red blood cells 2

and the particular spectral properties of the white-cell cytoplasm have been analyzed. 3

Spectral extinction of whole white cells can itself be used, however, to separate the indi-
vidual leukocyte classes. Spectral measurements were made on Wright's stained blood
smears using a photometer attached directly to a high-power microscope. The photom-

eter sampling aperture, when projected into the object plane, was approximately 17 pm
in diameter. Fifty white cells were analyzed on this system at wavelengths of 535, 570,
605 and 640 nm. Six features based on these measurements were considered. A signa-
ture analysis of the data showed that 4 leukocyte categories could be distinguished:

(i) Lymphocytes, (ii) Neutrophils, (iii) Eosinophils, and (iv) Basophils and Mono-

cytes. Figure XI-23 shows the confusion matrix for the spectral classifications. There
did not seem to be any way to separate category 4 which would be based on spectral dif-

ferences alone.

Three of the basic leukocyte classes, neutrophils, eosinophils and basophils, have
distinctive granulation in their cytoplasm. Knowledge of the size, color, and number of

IDENTIFICATION

L N E MB

L 9 0 0 1

> N 1 9 1 0

,, E 0 1 9 0

MB 1 2 0 17

L = LYMPHOCYTE E = EOSINOPHIL

N = NEUTROPHIL MB = MONOCYTE- BASOPHIL

Fig. XI-23. Confusion matrix for spectral data.
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these granules is sufficient to determine the type of cell under observation. A possible

technique for recognizing granulation is two-dimensional Fourier analysis. Objects of

constant size and shape have characteristic Fourier patterns. Applying Fourier analysis

to blood cells, then, might yield a useful classification prodcedure for the granulated

classes. Another important reason for consideration of Fourier methods is that certain

optical configurations can perform a Fourier transformation of an input light distribu-

tion.4 A simulation of this technique was performed on a PDP-9 digital computer. Photo-

graphs of Wright's stained leukocytes were taken at wavelengths of 535 and 605 nm. These

colors were chosen to accentuate differences in granular color among cell types. The

processed transparencies were then scanned on a 256 X 256 raster by a flying-spot scan-

ner and stored in the computed memory. The stored picture represented a 25-[Im square

field. A Fast Fourier transform algorithm was applied to the picture and the spatial

frequency intensities in two annular rings were computed. These two values were then

used as features in a recognition procedure. Thirty cells, 10 each of neutrophils, eosin-

ophils, and basophils, were analyzed by this method. Figure XI-24 shows the results

of this analysis.

IDENTIFICATION

N E B

N 8 1 I Fig. XI-Z4. Confusion matrix for Fourier data.
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Ten monocytes were also analyzed in an attempt to separate the monocyte-basophil

category found in the spectral analysis. The monocytes and basophils are nor-

mally easy to distinguish. Basophils are small cells with prominent dark gran-

ules. Monocytes are larger cells with little or no granulation. Fourier analysis

should be able to separate these two cell types. All of the monocytes tested

were classified as either neutrophil or eosinophil. These results suggest that

the two methods, when used in conjunction, could successfully discriminate the

5 basic leukocyte categories.

It has been mentioned that both analysis methods can be realized by an optical pro-

cessing system. Such a system has, together with the near instantaneous speed of
1

all optical devices, two valuable characteristics. It can be shown that the appro-

priate configuration is invariant with respect to lateral motion of the object and small

vertical (focus) motion. This means that the specimen blood cells could be in con-

tinuous motion during processing. The medium itself could be either a prepared
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slide or a suspension of cells such as that described by Kametsky and Melamed.5

In either case, such a system would seem to offer truly high-speed analysis of white

blood cells.

J. E. Bowie
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