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A. PRELIMINARY RESULTS FROM THE 1970 AIRBORNE

METEOROLOGY EXPEDITION

During the month of June 1970, the engineering prototype of the Nimbus-E micro-

wave spectrometer, a prototype of the Nimbus E-infrared temperature profile radiom-

eter, and a scanning microwave radiometer, together with several auxiliary experiments,

were flown in a Convair 990 based at Ames Research Center (NASA), Moffett Field, Cali-

fornia. Experimenters from the Research Laboratory of Electronics, M. I. T. , the Jet

Propulsion Laboratory, the Environmental Science Service Administration, and the

Goddard Space Flight Center participated. Ten flights were made over various terrain

and cloud conditions, including two flights over Arctic ice and one over the Gulf of

Mexico. This report presents some of the results of processing the microwave spectrom-

eter data to obtain an estimate of the temperature profile and other parameters of the

atmosphere below the aircraft.

The microwave spectrometer, which was built at the Jet Propulsion Laboratory, has

5 configurationally identical channels with local-oscillator frequencies 22. 235, 31.4,

53. 65, 54. 9, and 58. 8 Ghz. These frequencies are in the water-vapor absorption

band, a microwave window, and at 3 points in the oxygen absorption band, respectively.

The inputs to the Dicke-switched radiometers were switched periodically between the

antennas, ambient loads, and temperature-controlled hot loads. The radiometer cali-

bration, that is, the determination of the equivalent temperatures referenced to the

antenna of the calibration loads, is the crucial part of the experiment. For this pur-

pose, absorbers at ambient and at liquid-nitrogen temperatures were placed beneath the

antennas before and after each flight. A number of difficulties that still have not been

resolved were encountered with the nitrogen-cooled absorber, so it was necessary
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instead to set aside a part of the data, obtained over a known atmosphere, as a calibra-

tion for the 02 channels. The cooled antenna load was used, in spite of the uncertainty,

for the calibration of the two low-frequency channels because accurate humidity mea-

surements were not available at the time.

H (km)

FREQUENCY

Fig. III-1. Temperature weighting functions.

Figure III-1 shows the temperature weighting functions for the three 0 2 channels,

from a height of 12 km (approximately 200 mb). These indicate the relative contribu-

tion of air temperature as a function of height to the brightness temperature looking

down, at each frequency.

The problem can be defined as an inversion of the equation of radiative transfer;

the method is a linear regression parameter estimation algorithm. This has been

described in detail by Waters and Staelin. Briefly, the estimated vector of param-

eters T is given by a linear operation on the data vector D, which is the vector of

microwave antenna temperatures, augmented with a constant for bias:

T =A .

The matrix of coefficients, A, is determined by minimizing the expected square of

the error in the estimate of each parameter, on a statistical basis. Estimates were

QPR No. 99



(III. RADIO ASTRONOMY)

made for temperature at intervals of 50 mb, for integrated water vapor, and

for integrated liquid water. Figure 111-2 and Table III-1 show the rms errors

which were computed for these parameters on the basis of the statistics, which

were approximately 300 radiosonde records from Oakland, California, Cold Bay,

Alaska, and Balboa, Panama. The rms errors for antenna temperatures assumed
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Fig. III-2. Residual estimate errors for temperature.

Table III-1. Residual estimate errors for liquid water and water vapor.

Parameter RMS Estimate A priori
Error Standard Deviation

(gm/cm2) (gm/cm 2

Integrated
water vapor .11 1. 15
in clear air

Integrated
water vapor .24 1.71
in the presence
of clouds

Integrated .01 .06
liquid water

during these computations were 1. 50 for the three 02 channels and 10 for the other two

channels. The surface was assumed to be smooth sea water.

Figures 111-3, 111-4, and III-5 show atmospheric temperature profiles over water.

The profile in Fig. I1-3 was in clear air over the Pacific Ocean; in Fig. 111-4, in clear

air over the Gulf of Mexico; in the case of Fig. 111-5, there were heavy clouds associated

with a Pacific frontal system between the surface and 500 mb. In each case, the dotted

line is the temperature estimate produced from the microwave spectrometer data, and
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Fig. III-3. Temperature profile over Pacific Ocean.
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the solid line is the air temperature measured by the aircraft instrumentation as the

plane flew at various altitudes. The difference between the two is plotted on the right.

The aircraft temperature sensor has been compared against an infrared measurement

of local temperature, which was one of the other experiments on board, and during level

flight the two measurements differed by less than 20 C.

As was expected, fine structure in the temperature profile cannot be recovered from

the radiometric data. All three graphs show a curving of the estimated temperature

profile near the surface, but this is built into the estimate by the choice of statistics.

Some large-scale errors are evident in the figures, and these indicate that the cali-

bration is not correct. This is believed to be due to the temperature dependence of

the radiometer calibration, and efforts will be made to correct for this.

Estimates for water vapor and liquid water were also made, but accurate direct mea-

surements of these parameters for comparing the estimates have not been established.

P. W. Rosenkranz, D. H. Staelin, F. T. Barath,

J. C. Blinn, E. J. Johnston

[F. T. Barath, J. C. Blinn, and E. J. Johnston are at the Jet Propulsion Laboratory, C.I.T.]
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B. WATER-VAPOR EMISSION FROM VARIABLE STARS

Anomalous water-vapor emission at 1. 35 cm has been observed from two classes

of galactic objects: H II regions and late type stars (Knowles et al. , and Schwartz

and Barrett 2 ) . H II region sources are known to be time variable on time scales of from

a few days up to a year (Buhl et al. 3). At the present time, however, no periodicity,

regularity or correlation between water vapor and OH emission has been observed in

H II regions (Sullivan4). Our observations indicate that, for the class of water-vapor

sources associated with late type stars, most are identifiable with long-period optical

variables and the variable water-vapor emission from these objects is strongly corre-

lated with the optical and infrared variation of the star.

In addition to the three long-period variables with water-vapor emission that we have

discussed elsewhere, W Hya, U Her and R Agl, we have detected three new sources

associated with this type of object (Schwartz and Barrett2). The Mira variables U Ori

and S CrB and the late type short-period variable RX Boo all show microwave water-

vapor emission. U Ori is known also to be a main-line OH emission source but does

not emit at the 1612-MHz satellite line. The two other sources are apparently not

OH sources (Wilson5). U Ori and S CrB both obey the rule proposed in our earlier

QPR No. 99



(III. RADIO ASTRONOMY)

paper that the microwave line lies between the star's emission and absorption lines in

radial velocity. In RX Boo, the microwave line is at approximately the same velocity

as the star's absorption lines.

Spectra of U Ori, S CrB and RX Boo are shown in Fig. I1-6. It is interesting

to note that these three sources are the weakest water-vapor emission sources yet

detected. The intrinsic luminosity of RX Boo is at least 10- that of the strongest

water-vapor source, W49.

Observations of variable star/H20 sources over a period of one year have

shown dramatic time variations in the emission line which appear to be corre-

lated with the optical variability of the star. A decrease of almost a factor

of ten in the peak flux of R Aql was observed between maximum and minimum

optical light; U Her and W Hya have also exhibited similar variations, although

of smaller amplitude. Although the data are not complete, it appears as if

the other sources also undergo this type of variation. In Fig. III-7a the micro-

wave light curves of R Aql, U Her, and W Hya are shown as a function of

optical phase (zero phase is defined as the maximum of the light curve). For

comparison, the optical light curves of R Aql and U Her are shown in Fig. III-7b. No

light curve is available for W Hya.

The general behavior of long-period variables as a function of phase is quite

complicated. The optical and infrared components of the continua of these stars

usually vary out of phase, with the infrared lagging the optical by up to 0. 2

of a period. Two micron water-vapor absorption bands are usually observed

in this type of star and these bands usually vary in intensity with phase. The

absorption bands tend to be out of phase, however, with the optical light, with

maximum absorption usually occurring at a phase of from 0. 4 to 0. 6 (Frogel6).

Our observations indicate that the microwave line only slightly lags the opti-

cal maxima, perhaps by as much as 0. 1 of a period at the most, and is thus

out of phase with the infrared water-vapor absorption bands.

An interesting simplistic model for the behavior of that anomalous water-vapor

emission line can be derived by assuming that the inverted length of the masering

region aL = A varies with phase as

A
A = I20 [+cos ( + ],

where T is star's period. For a saturated maser, an inhomogeneously broadened

line depends in intensity upon the square of the inverted length:

I~ A
2
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Fig. III-7. (a) Peak flux of the microwave water-vapor line as a function of time for R Aql,
U Her, and W Hya. The solid curve represents the model discussed here.

(b) Optical light curves of R Aql and U Her provided by the American Asso-

ciation of Variable Star Observers, Cambridge, Mass. (Mayall7).
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Thus the intensity of the masered emission from a star might be expected to vary

as

I = + cos ( + + I I .

This curve with I o , I and 4 adjusted to maximize the fit is the solid line plotted

in Fig. III-7a.

P. R. Schwartz, A. H. Barrett
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C. MEASUREMENT OF THERMAL EMISSION FROM

MESOSPHERIC 02

The oxygen molecule contains two unpaired electrons whose resulting magnetic

moment interacts with the magnetic moment arising from end-over-end rotation of

the molecule and produces a band of resonance lines centered at a frequency of approx-

imately 60 GHz (5 mm wavelength). 1 At the center of this band the terrestrial atmo-
-20

sphere is quite opaque with a transmissivity of less than 10 , and the full width of

the band between 1 Np opacity points is approximately 15 GHz. Z Below 50 km altitude,

individual linewidths are dominated by collisional broadening with halfwidth varying

between ~1 MHz at 50 km and ~10 3 MHz at the surface. Above 50 km altitude Zeeman

splitting of the individual lines by the Earth's magnetic field produces a halfwidth of

~1 MHz, and the O Z emission from this region is polarized and anisotropic.3 On the

edge of the 02 absorption band thermal radiation from the relatively narrow lines in

the upper atmosphere can penetrate the lower atmosphere, thereby providing a means

of ground-based monitoring of upper atmospheric conditions. The intensity of the radi-

ation received will depend both upon atmospheric temperature and number of
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0 2 molecules in the line of sight of the observation. Computations of atmospheric emis-

sion for lines on the low-frequency edge of the 0 2 absorption band and for conditions as
4

specified by the 1962 U. S. Standard Atmosphere are shown in Fig. 111-8. The 02

absorption coefficient of Meeks and Lilley 2 was used in the calculations. The fre-

quency resolution of Fig. III-8 is too coarse to show fine structure associated with

-H k-20 MHz

1'K

51,509 52,026 52,546 53,067 53,596 54,129 54,673 MHz

Fig. 111-8. Atmospheric emission at high angular momentum 02

transitions. Calculated for ground-based observation
at 0' zenith angle. (80-km upper limit on integrations.)

Zeeman splitting, and the various lines have been shifted in absolute intensity to a com-

mon baseline. The vertical scale of the figure is the brightness temperature of the

radiation (proportional to intensity in the millimeter wavelength range for atmospheric

conditions), and the boxed integers along the horizontal scale are the rotational quan-

tum numbers associated with the various lines. The minus subscript on each quan-

tum number indicates that during a transition the total angular momentum of the

molecules changes from J = N to J = N - 1, where N is the rotational quantum num-

ber. The symmetry of the 02 molecule allows only odd values of N, and another series

of lines, N+, exist for the transitions J = N + 1 to J = N.

The 27_ line attributable to upper atmospheric oxygen was reported as observed in

absorption against the sun by Kahan.5 Measurements described here show this line in

thermal emission with a signal-to-noise ratio significantly higher than that of Kahan's
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data. A block diagram of the radiometer-spectrometer used for the measurements is

shown in Fig. 111-9. A conventional Dicke-switched superheterodyne microwave radiom-

eter was used with a 10' beam-width standard gain horn as an antenna. The radiom-

eter had a double-sideband noise temperature of 10,000°K and no intermediate

frequency image rejection. The local oscillator was frequency-stabilized by a two-

stage feedback loop whose frequency standard was the internal reference for the first-

stage synchronizer. Measured frequency stability was better than our measurement

accuracy of 0. 1 MHz at 53, 000 MHz and completely adequate for the experiment as the

resolution of the spectrometer was 1. 0 MHz. Spectral resolution of the radiation was

performed by a bank of twenty filters in the intermediate-frequency section of the

radiometer covering the frequency range 35 to 85 MHz. The outer ten filters had full-

widths at half-power of 4 MHz and the inner ten had full-width of 1 MHz. Each filter

was a single-pole RLC circuit and overlapped its neighbor at the half-power point. The

detected output of each of the filters was connected to one channel of a digital

synchronous-detector system. 6 This system recorded data on punched paper tape which

could then be analyzed by computer.

Measured atmospheric spectra at the 27_ 02 transition frequency for observations

at 100 and 600 elevation angles are shown in Fig. III-10. (The calculated spectral line

intensity of Fig. III-10 is half the brightness temperature of the radiation as the radiom-

eter calibration signal appeared in both the image and signal RF passbands, whereas

the spectral line radiation appeared only in the signal passband.) Also shown are cal-

culated spectra for these elevations. Detailed agreement between the experimental and

calculated spectra is not expected because (i) in the calculation Zeeman splitting was

neglected; this will change the shape of the line to a flat-topped feature with width

as indicated in Fig. III-10, and (ii) the upper limit on integrations for these calcula-

tions was selected somewhat arbitrarily at 80 km. For sea-level observations the

strongest signal from the mesospheric 27_ transition occurs at an elevation angle

of 900, the elevation at which lower atmospheric absorption has its minimum value of

1. 3 Np. At 100 elevation the mesospheric radiation is reduced in amplitude by more

than two orders of magnitude from its 600 elevation value, and can barely be dis-

tinguished on the scale of Fig. III-10. The observations described here were made

during clear sky conditions between 7 July and 15 July 1970 from the roof of the Compton

Laboratory building at the Massachusetts Institute of Technology. The spectrum of

Fig. III-10a has an equivalent integration time of approximately 2 hours, and that of

Fig. III-10b an integration time of approximately 1 hour. Because of time spent for

calibration and comparison measurements, the actual observing time was five times

the equivalent integration time. The ripples in the 100 elevation spectrum, Fig. III-10b,

are compatible with the theoretical radiometer noise and indicate the accuracy of the

measurement. It should be noted that the frequency of the spectral line observed here
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7
is in good agreement with the recently calculated value of 53, 066. 8 MHz by Wilheit, and

differs by less than 3 MHz from the values given by Kahan 5 and by Meeks and Lilley. 2

The method of obtaining a spectrum consisted in repeating cycles, each of which

had ten 4-min steps. At the end of each step the contents of the digital synchronous

detectors were recorded on punched tape. The first two steps of a cycle were spent

for calibration with the mechanical waveguide switch of Fig. III-9 in position (0), and

the calibration noise tube first off and then on. The 20, 000 0 K noise tube attenuated by

a factor of 200 gave a 1000 K calibration signal, which is the intensity reference for

all experimental spectra described here. (The components in the calibration circuit

had values specified to an accuracy better than ±10%, which is within the accuracy of

the measurements.) The next eight steps in the observing cycle were spent with the

mechanical switch in position (1) connecting the radiometer to the horn antenna. On

alternate steps the horn was covered with a block of waveguide absorber for a compar-

ison spectrum. On steps when the horn was uncovered, balance noise was added so that

millimeter wave radiation entering the mechanical switch had intensity approximately

equal that from the reference matched load on the ferrite switch. In this manner, sen-

sitivity to radiometer gain fluctuations is reduced, since the synchronous detectors mea-

sure only differences with respect to the reference load. Computer analysis of the data

then calibrated the spectra in terms of the 1000K calibration signal and subtracted the

comparison spectra (obtained with the absorber in front of the horn) from the signal

spectra (obtained with the horn unblocked). Data from many cycles were then averaged

to reduce noise. During each observing session, short observations were made without

balance noise to measure the absolute intensity of the atmospheric radiation. The abso-

lute intensity measurements indicated in Fig. III-10 are accurate to ±100 K.

Several tests were performed to make sure the observed spectral feature was not

due to instrumental effects. (The narrowness of this feature is in itself a significant

test as it has a Q of ~10, 000 - much higher than expected from any components in the

millimeter wave circuitry.) The local-oscillator frequency was shifted and the position

of the line in the spectrometer channels was observed to change as expected for a fea-

ture at 53, 066. 8 MHz; this insured that the line was not due to any instrumental feature

anywhere in the system behind the mixer, and also proved that the line was at that fre-

quency and not the image frequency of 52, 946. 8 MHz. The local oscillator was also

changed so that no line position was in the IF passband and no line was observed. Obser-

vations were then made with the balance noise adjusted so that millimeter wave radiation

entering the mechanical switch was in one case hot, and in the other case cold with

respect to ambient. Any instrumental feature behind the coupler for the balance noise

should reverse polarity for these two cases. The observed feature was the same polar-

ity and amplitude in both cases, thereby proving that it came from in front of the

balance coupler. Finally, the waveguide section connecting the horn to the balance
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coupler was changed from a 600 bend to a 100 bend and a reflector plate was positioned

in front of the horn to give an effective observation angle of 600. The spectrum obtained

in this manner was identical, within measurement accuracy, to that obtained with the

horn at 600 elevation. These tests, plus the correct elevation dependence shown in

Fig. III-10, prove that the spectral feature is not instrumental.

The 600 elevation spectrum of Fig. III-10 is an average of approximately equal day-

time and nighttime observations. Fig. III-11 shows separate spectra obtained during

night and day. The daytime spectrum is significantly narrower and slightly stronger

than the nighttime spectrum, thereby indicating a warmer upper atmosphere during the

day. The width of the daytime feature indicates that it originated from altitudes above

approximately 50 km. Because of demands by other projects, sufficient time with the

electronic equipment was not available to check whether the diurnal variation shown

in Fig. III-11 is repeatable. This variation is, however, in phase with radar measure-

ments of atmospheric temperature at 250 km which show a 30% diurnal variation with

warmest temperatures at 1600 local time.8 Individual spectra obtained during our

observations suggest significant variations in upper atmospheric temperature over a

time period of I hour, but the sensitivity of the radiometer used for these observations

was not adequate to make a definite statement concerning these variations. With state-

of-the-art components -the radiometer used here was constructed from components

available in our laboratory at the time - it should be possible to construct a radiometer

more sensitive by a factor of ten. Such an instrument should provide convenient ground-

based measurements of atmospheric temperature for altitudes between the regions now

measured by balloon and by radar.

To quantitatively predict the ultimate accuracy in inferring mesospheric tempera-

ture by the technique described here, the matrix theory of radiative transfer developed

by Lenoir, or a similar theory, must be used and Zeeman-splitting of the 0 2 tran-

sitions taken into account. The high-rotational angular-momentum states that produce

the transitions are quite sensitive to temperature through molecular energy-level pop-

ulation by collision: a 1% change in atmospheric temperature produces a 5% change

in intensity for the 27_ line. Other 0 transitions, those shown in Fig. III-8 and the

corresponding lines on the high-frequency side of the 02 band, have a slightly dif-

ferent temperature dependence, and many of these lines are sufficiently intense to

measure radiometrically from the ground. Altitude resolution, however, is expected

to be poor above 50 km because the individual Zeeman components (159 components

for the 27_ transition) are smeared by Doppler broadening and the over-all linewidth is

only very slightly dependent on altitude. Calculations that include the Zeeman effect

are now being performed to numerically test the feasibility of this method for deter-

mining upper atmospheric temperature.

I am indebted to M. L. Meeks for suggesting the possibility of measuring the
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27_ 02 transition, to J. W. Barrett for engineering the frequency stabilization of the

local oscillator in the radiometer, and to D. H. Staelin and A. H. Barrett for

helpful discussions.

J. W. Waters

References

1. J. H. Van Vleck, "The Absorption of Microwaves by Oxygen," Phys. Rev. 71, 413
(April 1, 1947).

2. M. L. Meeks and A. E. Lilley, "The Microwave Spectrum of Oxygen in the Earth's

Atmosphere," J. Geophys. Res. 68 (6), 1683 (March 15, 1963).

3. W. B. Lenoir, "Microwave Spectrum of Molecular Oxygen in the Mesosphere,"
J. Geophys. Res. 73 (1), 361 (January 1, 1968).

4. Handbook of Geophysics and Space Environments (McGraw-Hill Book Company,

ew York, 19-65).

5. W. Kahan, "Detection of the Microwave vZ7 - Line of Molecular Oxygen Produced

in the High Atmosphere," Nature 195, 30 (July 7, 1962).

6. L. P. A. Henckels, "A Digital Output Unit for a Multichannel Radiometer," S. M.

Thesis, Department of Electrical Engineering, M. I. T., May 1968.

7. T. T. Wilheit, Jr., "Studies in Microwave Emission and Absorption by Atmospheric

Oxygen," Ph.D. Thesis, Department of Physics, M. I. T., February 1970.

8. J. S. Nisbet, "Neutral Atmospheric Temperatures from Incoherent Scatter Obser-

vations," J. Atmos. Sci. 24, 586 (September 1967).

D. SEARCH FOR INTERSTELLAR SULFUR MONOXIDE

On August 4, 5, 6, 14, 15 and 16, 1970, observations of several galactic radio sources

were made with the 37-m Haystack antenna to search for the J = 0, K = 1 to J = 1, K= 0,

30. 00016 GHz1 ground-state transition of the SO radical. No line was detected.

The total-power radiometer was constructed and installed in two weeks. It comprised

a crystal-mixer front end, a phase-locked klystron, and an IF whose output was fed

into the new Haystack digital correlator. The analog-to-digital conversion of the detec-

tor output voltage before correlation eliminated the need for Dicke switching. The

observing bandwidth was determined by the correlator to be either 4 MHz or 20 MHz.

Typical system temperature was 2000 *K, single-sideband.

The 20-MHz bandwidth was used to observe SO and the H recombination line at

29. 7 GHz. Interference, which may be due to local television station carrier signals,

made interpretation of the spectra difficult, however.

The results of the observations with the 4-MHz bandwidth are presented in

Table III-Z. We used the following observing procedure: Calibration with a gas tube

attenuated to 100'K at the start of each new source (approximately every 4 hours);

then alternation between 10-min on-source runs and 10-min off-source runs. An
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Table III-2. Results of observations of galactic radio sources.

Date Source Duration Velocity Range T AT
sys pp

(1970) (h) km/s ( 0 K) (0 K)

8/4 W3 2. O0 -65 -25 1900 0. 8

8/4 Ori A 1. 2 -20 - 0 2070 1.4

8/5 Sgr B2 0. 8 40 - 80 2080 1. 6

8/5 Cas A 1. 3 -20 20 1770 1. 2

8/6 W75 (N) 1. 3 20 - 60 1840 0. 9

8/6 Sgr B2 1. 3 40 80 2060 1. 1

8/6 Sgr A 0. 8 40 - 80 2060 1.4

8/15 W75 (N) 3. 8 20 - 60 2640 0. 9

8/16 Ori A 4.0 20 60 1800 0. 9

azimuth offset of +1. 00 was used for the off-source runs. The differences between the

on-source and off-source spectra were averaged together for all runs free of serious

interference. The listed duration is the total time length of on-source runs included

in the average. The range of Doppler-shifted frequencies chosen to fall within the 4-MHz

band corresponds to the range of SO velocities (with respect to the local standard of rest)

listed in Table 111-2. For each source, the observed velocity range includes veloc-

ities at which OH or H20 radio emission has been detected. The peak-to-peak tem-

perature, AT pp, was measured near the band center of the mean-difference spectrum.

The system temperature, Tsy s , single-sideband, was measured at the time of calibra-

tion.

We wish to thank the staff of the Haystack Observatory, of Lincoln Laboratory,

M. I. T. , for engineering and observing assistance.
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E. OBSERVATIONS OF PULSAR SPECTRA

1. Introduction

Observations of pulsar spectra yield information about the intrinsic radiation prop-

erties of pulsars, and about the intervening interstellar medium. In an effort to sep-

arate and study these two aspects of pulsar spectra, we have observed since 1968 the
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spectra of those pulsars within the range of the National Radio Astronomy Observatory' s

300 ft transit telescope in Green Bank, West Virginia. The spectrometers each had

50 channels with bandwidths of 100, 30, or 10 kHz, or had 40 channels with bandwidths

of 1 MHz. The center frequencies of the filter banks ranged from 110 MHz to 550 MHz,

and all 40 or 50 channels were sampled with 8-bit accuracy every 30 ms. Subsequent

computer analysis yielded the spectra of individual and average pulses. Additionally,

in May 1970, both the 300 ft transit telescope and the 140 ft fully steerable telescope in

Green Bank were used in conjunction with the 384-channel autocorrelation receiver to

achieve frequency resolution as high as 1 kHz.

The present report describes the results of manual analyses of the spectra of four

pulsars, CP0328, CP0834, CP1133, and CP1919. A more complete analysis of all

of the spectral data is in preparation.

2. Widths of Spectral Features

Typical data obtained with the multichannel filter systems are presented in Fig. 111-12.

These data were processed by computer, displayed on a cathode-ray tube, and

then photographed. Each resolution element in these photographs represents the

average of several pulses within a single channel. The three light levels represent rela-

tive pulse energy thresholds of 1, 2, and 4. Figure III-12 illustrates how the spectral

features in each pulsar develop and change.

Similar data derived from the autocorrelation technique are given in Fig. III-13. The

two light levels represent intensity levels in the ratio of 2 to 1. The photographs show

only 364 of the 384 frequency channels, the rest have been blanked out because of

their greater noise.

One parameter of interest in these spectra is the frequency dependence of spectral

feature width. Feature widths were determined by averaging the visually determined

instantaneous full widths at half-maximum, B, for a large number of spectral features

at each frequency. Typical feature widths observed with the autocorrelator for these

four pulsars are listed in Table III-3 as a function of frequency and are plotted in

Fig. III-14. The feature widths B are assumed to vary as v a. Least-squares fits

for a yield the numbers in Table I1-3. The quoted errors are estimated maximum devi-

ations from the mean fit. The three pulsars, excluding CP1133, are fairly consis-

tent with the value a = 4. A v 4 dependence is generally consistent with the results

reported by Rickett, l Staelin,2 and Lang,3 and apparently inconsistent with those reported

by Huguenin et. al. 4 Some of the widths reported here are less than those reported

by others, possibly because a cluster of narrow features can resemble a single broad

feature.

A v4 dependence of feature width is predicted by scintillation theory. In par-

ticular, the v 4 dependence follows if we assume that the antenna intercepts rays that
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Fig. III-12. Representative dynamic spectra for CP0328, CP0834, and CP1919
as observed with 50-channel spectrometers. The light levels repre-
sent relative power thresholds of 1, 2, and 4, in order of increasing
brightness. Time increases from top to bottom, and the scale
markers represent 10 min.
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Fig. III-13. Dynamic spectra of CP0834, CP1133, and CP1919 taken with
384-channel autocorrelation receiver. Relative intensity ratios
of 2:1 are represented by the two brightness levels.
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Wavelength dependence of spectral feature widths. Widths represent
averages of many spectral features, and error bars indicate the total
range of observed feature widths. Arrows and crossbars represent
the limitations of spectral resolution. The sloping lines correspond

to a v4 dependence of feature width.
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have traversed different paths, and that the path lengths differ by a nominal value 6,

where 6 arises geometrically, and is approximately Rs/2, where R is the distance

to the pulsar, and 0s is the rms angle of arrival of the ray at the antenna. This same

model predicts that the spectral feature widths will also be approximately inversely pro-

portional to the square of the dispersion measure, a result that is compatible with the

present observations. Such scintillation models have been discussed by Scheuer, 5

Salpeter, and Uscinski.

Table 111-3. Pulsar spectral feature widths.

Source Frequency B a Source Frequency B a
(MHz) (kHz) (MHz) (kHz)

CP0328 112 <1 ? CP1133 112 <90

168 2 142 <150

267 10 ± 5 168 65 ± 25

350 33 ± 13 230 150 ± 80

405 111 50 350 417 ± 70

560 170 + 70 3.9 + 0. 8 405 692 ± 250 2.6 ± 0.6

CP0834 112 <20 CP1919 112 13 ± 7

142 <150 142 34 ± 10

168 34 ± 9 168 38 ± 20

230 162 ± 35 230 178 ± 60 3. 5 ± 1. 1

258 245 ± 40 4.6 ± 0. 5

3. Drifting of Spectral Features

A very interesting property of some pulsars is systematic drifting of spectral fea-

tures, as illustrated for CP1919 and CP1133 in Figs. III-12 and 1-13. Drifting has

been observed in each of these two pulsars on several occasions, although the phenom-

enon can be readily overlooked if the spectrometer resolution is not appropriate, or

if the operating frequency is such that the drift rate is too slow or obscured by vari-

ations in intrinsic pulsar intensity. Drifting has also probably been observed in CP0834.

Representative observed drift rates for CP0834, CP1133, and CP1919 are 130 Hz/s at

168 MHz, 1 kHz/s at 230 MHz, and 500 Hz/s at 230 MHz, respectively. The drift rates

appear to vary from month to month, and may vary on shorter time scales. The drifts

of both CP1919 and CP1133 have changed directions, and at times different simultaneous

spectral features may have different drift rates.

A simple model for interstellar scintillation yields an understanding of spectral
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drifting. We may assume that the radiation propagating from the pulsar to Earth is

composed of rays, each executing a random walk characterized by Os, the rms angle

between any ray segment and the direct path. These rays converge at the Earth with

different arrival angles and different delays. If many scattering events occur for each

ray, then the propagation delay and the angle of arrival may be weakly correlated, in

contrast to the single thin-screen model.

Consider the case in which the radiation incident upon the Earth is dominated by two

rays. The interference of the rays produces an interference pattern through which the

Earth moves at velocity vo . In this case the lifetime At of a single spectral feature, that

is, the time between half-power points at a single frequency, is the time required for the

Earth to move past one lobe of the interference pattern. That is,

6 vAt

where N is wavelength, and \/8 is an approximate geometrical factor. A frequency

drift can result if the propagation delays for these two rays are different. The phenom-

enon is analogous to the movement of an observer through the frequency-dependent lobes

of a transmitting interferometer. If the delays differ by the reasonable value R 2/2,s
where R is the pulsar-Earth separation, then the feature drift rate v is

/8B
v ovv Rc'

Since the nominal width B is proportional to v4R - 2, it follows that the drift rate v

should be proportional to v3R - 3 / 2. Consistency of these expressions requires ~ B/At,

where B c/R 2 s

By averaging the drift rates of several spectral features, it is possible to estimate

the magnitude and frequency dependence of the drift rates. Since rays of different fre-

quencies have different interstellar propagation paths, and the paths are time-variant,
many observations will be required. For the present limited data the drift rate is

proportional to v3 1. Although the observations are consistent with the R -3/2 depen-

dence upon pulsar distance, the results are not definitive. The drift rate predicted for

CP0328 is approximately 70 Hz/s at 200 MHz, which is too small to be evident in the

spectra of Fig. III-12.

The observations of v can yield an independent estimate of the transverse pulsar

velocity v. We deduce approximate velocities of 100 km/s for all three pulsars using

the drift rate, bandwidths, and equations cited here, and assuming that the interstellar

electron density is 0. 03 cm -3 (Staelin and Reifenstein 9). This equals the velocities

deduced from the feature lifetimes At. For example, for the data of Fig. III-12 and
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Table 111-3, the approximate velocity formula

,, /cRE 1
v 8 vAt

yields for CP0328, CP0834, CP1133, and CP1919 velocities of 100 km/s, within a fac-

tor of two. Rickett1 and Lang3 have deduced similar velocities from their feature-

lifetime data. Further corroboration follows from the measurements by Lang and

Rickett 1 0 of scintillation delay between spectral features observed at Arecibo and

Jodrell Bank, which yielded velocities for CP1133 of approximately 100 km/s.

Since the velocity of the Earth with respect to the interstellar medium within 2 kpc

is generally less than 50 km/s, these data suggest that the average transverse velocity

of these three pulsars with respect to the interstellar medium may be of the order of

100 km/s, which is consistent with the velocities of runaway stars (Gott et al.,, Gunn

and Ostriker, 1 2 and Prenticel3) and of NP0531. More extensive drift rate data and more

accurate theoretical analysis could further strengthen this conclusion.

The consistency of these spectral observations with theoretical models of interstellar

scintillation further supports suggestions of Rickettl 4 and othersl 5' 16 that the observed

slow spectral changes originate in the interstellar medium. Our observations have

extended this conclusion to spectral features of widths ranging from 2 kHz to several

MHz.

We wish to thank J. M. Sutton for helpful conversations and acknowledge the cooper-

ation and assistance of W. Brundage, J. Greenhalgh, and other staff members of the

National Radio Astronomy Observatory.
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