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A. CHANNEL MEASUREMENT RECEIVERS FOR SLOWLY

FADING NONDISPERSIVE MEDIA

1. Introduction

The concept of channel measurement as an optimal decision problem is developed

in this report. The resulting model is applied to digital communications over a slowly

fading nondispersive diversity medium, for which both the optimum receiver and

error performance bounds are derived in the case of M-ary orthogonal signalling. These

results are applicable to the study of heterodyne receivers for optical communication

through a turbulent atmosphere.

2. Channel Measurement as a Decision Process

It is known that the reliability of communication through a randomly varying medium

may be increased by performing some kind of channel measurement at the receiver.I

Channel measurement receivers are conventionally dichotomized into an estimation sec-

tion and a decision unit that functions parametrically on the estimates to reach decisions.

This approach requires that an estimation criterion be assigned, and often the

assignment is not directly related to the over-all communication objective. For

digital communication with a minimum per-baud probability of error criterion, the

channel-measurement problem may be formulated directly as an optimal decision prob-

lem operating on both present and past received data. The resulting receiver computes

the likelihood function of the data (present and past), conditioned upon a particular

hypothesis, for each of the hypotheses.

3. Measurement Receiver for a Slowly Fading Nondispersive Channel

The assumption of slow fading is that the received process differs from the trans-

mitted signal in these two respects: the signal suffers a constant (random) gain and
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(VII. PROCESSING AND TRANSMISSION OF INFORMATION)

phase shift, and is added to an independent noise process. In the remainder the gain

and phase processes are taken to be slow relative to several baud times. Assuming L

statistically independent diversity paths and M equi-energetic orthogonal signals, a

sufficient statistic for the n t h baud is the set of complex envelope samples

j6o
rm(n) = Za e j + w (n): 1 m M (1)

1414cL

where

1 < m < M indexes the signals

1 -< < L indexes the diversity paths

Z = rms received signal-to-noise ratio/diversity path

m(n) = transmitted message at the nt h baud

ap = fading amplitude on path J

06 = fading phase on path f

6 = Kronecker delta function

w = N(0, 1) complex Gaussian random variable having w m(n) w m,(n')
6 6 6 m m
mm 6' nn'

Let n be an age index so that successively higher integral values represent corre-

spondingly older data (n = 0 represents the present). Then the variables in (1) taken

for n = 0, 1, ... , N constitute a sufficient statistic for the decision at baud 0, given

the data on bauds 0 through N.

The assumptions about the fading processes are the following.

1. The 06 are uniform and statistically independent.

2. The aQ each have density p( - ) and are statistically independent.

3. Gain and phase (ap and 60) are all statistically independent.

4. ap= 1.

Occasionally, (1) will be required in quadrature form:

rm(n) = Xm (n) + jym (n). (2)

Let an underscored variable denote the set of all variables by that name. For example,

r = {rm (n)} , m = {m(n)}, etc.
m n'm, H, n

Let H k be the hypothesis that m(o) = k, k = 1 .... ,M and let Vk be the set of all
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m such that m(o) = k. The likelihood functions for the resulting M-ary hypothesis

testing problem are

Ak = p(r IHk); k=1, ... , M.

Expressions for the Ak are derived next.

Since the wmf(n) are all mutually independent, it follows that

p(rla, , m) = n
f, m, n

p(r m(n) a, 6, m(n))

= (2 )-LM(N+1)
n

e, m, n
exp - -r (n) - Za

ex 2 m2 f
j6

e

2

m, m(n)
(4)

The result of the average over phase (0) may be expressed in terms of the modified

Bessel function Io( " ) and a function, K(r), of the data.

- ! r (n)i
K(r) = (2w) - LM(N + l) I

2, m, n

p(r a, m) = p(r a, 0, m)-

= K(r) 1 e
-1 (N+l)Z a2 Z

1I a fZ . x m(n) (n) + ~Ym(n)(n)Z

(6)

Note that the argument of Io( " ) in (6) reflects coherent addition

samples along the assumed message sequence m.

rmf = Z [xm(n) f(n)+jym(n) f(n)

n

of the complex received

This makes it reasonable to define

(7)

so that (6) may be written

1 2 2
- (N+1)Z az

p(r a, m) = K(r) I e 1 o(a Z rm ). (8)

The average over a may be expressed in terms of the "generalized frustra-

tion function. "2-4
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F (a, ) = Op(u) I (2p\a u) e - au
0

where p( ) is the probability density of a positive random variable,

fading amplitude a . Thus

a
p(r Im) = p(r a, m)

= K(r) I F N+I
, P p

in this case,

2 _mi
Z , - l .1/ (N+1)

Now, according to (3),

mIV k
A k = p(r m)-

If all messages have a priori probability

at each baud, then the probability of the

1
for each n, and are

n -N
event (mIVk) is M .

chosen independently

Hence

-NA k = M-N K(r)

mEV
- k

Irm
2 m
Z (N+)
Z -,?--( + I

(12)

Discarding hypothesis-independent terms and taking the logarithm yields a sufficient

statistic

qk(r) = In

Sk
S p

1Zm(N+i
, Z(N l)

The optimum receiver chooses H k when

q kr) > qi(r) V i * k.

4. Performance Bounds

We shall now find an upper bound to P(e). The bound is left in a doubly para-

metric form, since optimization over the parameters is analytically intractable.

First of all, note that

P(e H k ' q k
) = 1 - Pr qi<qk Hk ' k i k }

= 1 - [-Pr{qi>qk Hk, qk}]M-l; i # k. (15)
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For convenience the explicit dependence of qi and qk upon the data r has been dropped
in (15) and is reinstated later where needed. A well-known form of bound for (15) is

in (15) and is reinstated later where needed. A well-known form of bound for (15) is

0 1 p < 1, (16)

and consequently

qk IHk
P(e IHk) MP[Pr {qi> qk Iqk , Hk}]P

Define

Q(a) Pr {qi> a a, Hk}.

= U_ 1 (q.-a)

Application of a Chernov bound yields

0 < t< oo.

Equation 19 can equally well be written as an average over r IHk.

L.(r) = e
1-

q i(r)

First define

1 i< M.

Then

1Hk
-ta tqi(r)

Q(a) -< e e

r IHk
e-ta [L.(r)]

-NK
dr M K(r) Lk(r)[Li(r)]t-ta= e e ...

-ta -1W
= e e

where
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)Lk (r)[L(r)]t.-Yl(t) = In ... dr M-N K(r

Now (17) can be written

qk Hk
P(e Hk) < MP[Q(qk)]P

_ r Hk
SMP tqk(r) -

The average in (24) is of the form

py l(t)

rI Hk
sqk(r)

rHk

= [Lk(r)]s

... dr M-NK(r) Lk(r)[Lk(r)]

dr M-NK(r)[Lk(r)]s+1

which is abbreviated

rlHksqk(r)
e

Equations 24 and 26 combine to yield

0 < p < 1, t > 0.

(25)

(26)

(27)

Because of the assumptions about a priori probabilities, (27) is also the bound to the

unconditional error probability P(e).

Kennedy and Hoversten 6 have shown (for the "no measurement" case, N = 0) that

(28)y (s) = YI(S+1)

and additionally that the choice

1
t

l+p

is optimum, which results in the single-parameter bound
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P(e) " M P exp (1+p) i 1 . (30)

At present, it is not known whether the choice (29) optimizes the bound in (27).

5. Applications

The optimum receiver, (13) and (14), and the error bound (27) are applicable to

heterodyne reception of optical communication signals transmitted through the turbulent

atmosphere. Amplitude and phase coherence time of the order of milliseconds have

been determined for this channel, so that essentially constant fading over large num-

bers of adjacent bauds is a reasonable prospect. For the atmosphere the amplitude

density appearing in the frustration function is log-normal with parameter 0; that is,

1 (o + in u)2

p(u)= exp - 2 ; u > 0. (31)
f2%2-7 L-u 2o 2

The results may be extended to include correlated baud-to-baud fades, and nonuni-

form phase densities.

R. S. Orr
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B. VARIABLE-RATE OPTICAL COMMUNICATION THROUGH

THE TURBULENT ATMOSPHERE

1. Introduction

The prospect of communicating at optical frequencies through the Earth's turbulent

atmosphere is often discounted: atmospheric fading tends to degrade system perfor-

mance below acceptable levels. In this report, we shall examine two adaptive laser

communication schemes over an Earth-to-Space link which circumvent the effects of

atmospheric turbulence. These heterodyne communication systems exploit atmospheric

reciprocity and the relatively long coherence time of the turbulence to monitor the tran-

sient state of the Earth-to-Space channel by using a satellite beacon signal and making

appropriate measurements at the ground terminal. Optimal variable-rate strategy

based on this channel-state information results in significantly improved performance

over nonadaptive optical communication systems.

2. Channel Measurement

Consider an optical communication link between the Earth and a synchronous satel-

lite as shown in Fig. VII-1. The antennas in the ground and satellite terminals are

represented by the parallel planar apertures R 1 and R 3 , whose axes are assumed to

PLANE R2

APERTURE RI APERTURE R2

Fig. VII- 1. Channel model for optical
al a2  Earth-to-Space communi-

cation link.
ATMOSPHERE FREE SPACE

t 1  t2  t3

GROUND SATELLITE

be in line. The infinite plane R 2 is parallel to the other planes and tangent to the

top of the atmosphere. Propagation between planes R 1 and R2 occurs through the

clear turbulent atmosphere, while propagation between planes R2 and R 3 is through

free space.

We want to measure the atmospheric fading over the Earth-to-Space link by trans-

mitting a pilot-tone from the satellite to the ground terminal and exploiting atmospheric

reciprocity. This technique is feasible because the width dl of the atmospheric layer

around the Earth is of the order of a kilometer, and the coherence time of the tur-

bulence is often of the order of a millisecond or more.1 Consequently, the round-trip
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atmospheric propagation time, from R 2 to R 1 to R 2 , is substantially less than the

coherence time of the turbulence; we shall therefore consider only a single transient

atmospheric state here, suppressing the time dependence of our equations. We shall

be concerned only with the complex envelopes of the fields, and for convenience we shall

use arrows pointing to the right under fields propagating from the ground to the satellite,

and conversely for satellite-to-ground transmissions.

Suppose a laser in the ground terminal is used to transmit a collimated plane wave

through aperture R 1 in the direction 6:

jkO. rl 2 r
Ul(r ) K e k = r R 1 . (1)

Let ha(r 2 , r) denote the impulse response characterizing field propagation through

the atmosphere from R 1 to R 2 . Similarly, define hf(r 3 , r 2 ) for free-space propa-

gation from R 2 to R 3 . Then the field incident on satellite aperture R 3 is

jk - r 1

U3(r 3 ) = K h (r, rl) h (r3, r ) e drdrZ; r 3 ER 3  (2)
1 2

Assume that an optical heterodyne detector in the satellite extracts the single spatial

mode U4( ) of the field received at the satellite2:

-jk r r3dr
U4 = U 3 (r 3 ) e dr

Sjk(O r - r3RK h (r 2 ,rl) h (r 3 ,r 2 ) e drldr 2 dr 3 . (3)
R Z R3a2 3 3

Now suppose a satellite beacon probes the state of the atmosphere by transmitting

a collimated plane wave through aperture R 3 in the direction -4:

-jk - r 3U 3 (r 3 ) = K' e r 3 E R 3 .  (4)

Define h a(r , r 2 ) and hf(r 2 , r 3 ) in a manner analogous to our previous usage, and

let an optical heterodyne detector in the ground terminal extract the spatial mode

U (-6) of the field Ul(r 1 ) incident on aperture RI:
-o

nU KI h h ) jk(6 - r1 -- r3
U (-6) = K' R (r , r 2 h f ( r r 3 ) e drldrZdr 3  (5)

1 2 3
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The reciprocal nature of the turbulent channel over an atmospheric coherence inter-

val has been demonstrated theoretically,3 and free space is known to be reciprocal for

optical transmissions. Therefore, the atmospheric and free-space impulse responses

satisfy the reciprocity conditions

ha (rr,,r) r 4,r rI  E R1' r ( R2 , (6)

hf(r 3 , r ) = hf(r 2 r 3 ); ) r" E  r 3 R r 3 .E R (7)

We can therefore conclude that

U ( - 6) = 4 (#). (8)

Since U 4 (p) represents all of the effects of atmospheric fading for our optical Earth-to-

Space link, Eq. 8 tells us how to interpret the satellite pilot tone received at the ground

terminal in order to measure the transient state of this channel.

3. Fixed-Rate Heterodyne System

We now specialize the Earth-to-Space link to the case wherein = = 0, and intro-

duce time dependence into our equations. Assume that the ground terminal transmits

a signal with no time-varying spatial modulation, and that channel multipath can be

neglected.4 Then the complex envelope of the output of an optical heterodyne receiver

in the satellite for a single transmission is a random process of the form

r(t) = U4 (0) s(t) + n(t); t E (0, T), (9)

where s(t) is a narrow-band waveform, and the signal baud time T is much smaller

than the channel coherence time. The noise term n(t) is a complex, zero-mean Gaussian

random process, whose real and imaginary parts are assumed to be statistically inde-

pendent, each having spectral height No/2. 5

Denote the areas of apertures R 1 and R 3 by A l and A 3 , respectively. For a syn-

chronous satellite, the separation d 2 of planes R 2 and R 3 is generally great enough

relative to the magnitudes of Al and A 3 that aperture R 3 subtends a negligible solid angle

in comparison with the far-field beamwidth of aperture R 1 in the absence of turbulence.

Consequently, by exploiting the atmospheric reciprocity condition of Eq. 6, Eq. 3 becomes

jkd 2

KA3e RZ r 2 ]
U4 (I) = kd ha(r r 2 ) dr dr 1 ,  (10)

where the term in brackets is the atmospheric perturbation of an infinite plane wave
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propagating from R 2 to R16

It is convenient to introduce the definition

ue h (r, r2 ) dr dr. (11)A IR I YR -- a1 2 1

When A l is small relative to a spatial coherence area of fR2 ha (r , r2) dr2 in plane R 1,

it can be shown that u is a log-normal random variable; that is, u = exp X, where X

is a Gaussian random variable. On the other hand, if Al is large relative to the spatial

coherence area above, we can demonstrate theoretically that u is essentially a Rayleigh

random variable. In both cases, the phase term i tends to be uniformly distributed

over (0, 2rr).

Restricting ourselves to binary, equi-energy orthogonal signalling, and using inco-

herent detection on the received signal r(t), the probability of error on a single
8

transmission is

1  2Nexp u , (12)

where

222
KAA 3  T

Es = 22 Is(t) 2 dt= /R F .  (13)
2  0 PX dz  0

In Eq. 13, we denote the fixed bit rate for continuous signalling by R F = 1/T, and the

average signal power received at the satellite in the absence of turbulence by Ps
Performing the expectation in Eq. 12 and solving for RF , we can show that

P

N f ( 1); log-normal u = e
ox

R = (14)
F

s - 1); Rayleigh u,

2

where or- is the variance of X, and fi (E1 ) can be determined from computer-generated

curves of E as a function of E/2N0 for the case wherein u is log-normal and the
o 1 a as/oN_

energy-conservation condition u = 1 is satisfied.

4. Optimal Variable-Rate Techniques

From Eqs. 8, 10, and 11, we find that

QPR No. 98



(VII. PROCESSING AND TRANSMISSION OF INFORMATION)

XdZu U (). (15)
K'A A 3 -o1A3

Now that we know how to use a satellite beacon to track the Earth-to-Space channel fading

parameter u, we want to devise an adaptive variable-rate scheme to optimize the per-

formance of our communication link. As in the fixed-rate system, we shall confine our

attention to the continuous transmission of binary, equi-energy orthogonal signals. The

signal baud time T will now be varied, however, for each transmission according to

some mapping T(u) of the transient value of u, while the average transmitted power

is kept constant. We assume that T(u) is always much less than the coherence time

of the fading channel.

Denote the transient bit rate when the channel fading parameter is u by

R(u) = 1 bits/sec, (16)
T(u)

and assume that the fading process is ergodic. Then the average signalling rate is

R = R(u) u bits/sec. (17)
avg

For incoherent detection, the probability of error on a single transmission conditioned

on the corresponding channel state depends only on the transient value of u, and is given

by

P u

P[EJU] = exp s (18)
ZN R(u)

Since we are signalling continuously at a variable information rate, the bit error rate

may be expressed as

E2  R(u) exp s bit errors/sec, (19)
2N R(u)

which means that the fraction E3 of bit errors to total bits received by the satellite is

given by

3 = E /Ravg bit errors/received bit. (20)

Our design objective is to choose R(u) to maximize Ravg for any given E2 ,

keeping Ps and N fixed. Using the Lagrange multiplier technique, we can show

that the optimal solution is
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R(u) = C(E ) u ; V p(u), (21)

where C(E 2 ) depends only on the desired bit error rate. Note that this result is inde-

pendent of the actual probability density p(u). Denoting Ravg for the optimal variable-

rate system by R V, we have

RV =- u in ; p(u). (22)

By comparison, since E3 
= 1 for the fixed-rate system, clearly

S In (- f (E 3 ); log-normal u = eX,

R I ( 3) If, ~(23)
RF 1 - 1 3n Rayleigh u.

As indicated in Fig. VII-2, the gain in average signalling rate, RV/RF, is particularly

significant for low bit error rates.

As a final exercise, we can find the optimal burst communication system, which

operates as follows. The ground terminal divides its time scale into consecutive,

104  RAYLEIGH ; LOG-NORMAL ie X , = 1.0

RF RRF
RV x

2 -- ;LOG NORMAL p =eX , a =0.2
10 R RF

B
R ' RAYLEIGH p

10- 5 10- 4  10- 3  10- 2 10-  1/2 100

63

Fig. VII-2. Gain in average signalling rate of adaptive vs fixed-rate
optical heterodyne communication link over an Earth-to-
Space channel, with turbulent fading parameter u.

nonoverlapping, T-second time slots. A data signal is transmitted in a given time slot

if and only if the corresponding value of u exceeds a preselected threshold 'q; otherwise,

no signal is sent in that particular time slot, and the information is stored until the next

acceptable transmission interval appears. We must, of course, hope that the associated

transmitter buffering problem is not too severe. Because the time slots have a fixed

periodicity, the satellite receiver should be able to acquire and maintain bit
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synchronization quite readily. If the signal-to-noise ratio, Ps/No, is sufficiently large,

the satellite receiver should be able to decide correctly most of the time whether it

is receiving noise or a data signal corrupted by noise in a particular time slot.

In our previous notation, our problem is to optimize R(u) over the class

1
R(u) = U_ (U-1), (24)

where U_ (- ) is a unit step function. When u is Rayleigh, we have the following para-

metric solution, with parameter p.

2 -2 /( 1) Ravg R = (uZPs/2No) e-p/(P+l)

(25)

T = 2NuP/UPs E3 = [1/2(+1)]e ( ).

As is evident from Fig. VII-2, the optimal burst communication system performs

almost as well as the optimal variable-rate system.

5. Conclusions

We have demonstrated that a satellite beacon can be used to measure the atmo-

spheric fading over an optical Earth-to-Space communication link. We have also

shown theoretically that an adaptive variable-rate laser communication system will per-

form favorably over this channel. Similar results are available for the more general

case wherein the ground terminal makes a noisy estimate of the channel state.10

B. K. Levitt
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C. POISSON PROCESS AS A STATISTICAL MODEL FOR

PHOTODETECTORS EXCITED BY GAUSSIAN LIGHT

In the literature of optical communication, it has frequently been assumed

that the output statistics of an ideal photodetector, excited by a signal plus inde-
1-6

pendent background noise, can be modelled by a Poisson process. The argu-

ments used to support this assumption have been less than precise, usually hinging

on a qualitative statement about the strength and bandwidth of the background

noise. In this report we present a set of criteria through which a quantitative

measure of the "Poisson-ness" of the detector output can be obtained, for Gaussian

background noise.

In an idealized quantum photodetector, the conditional probability of detecting

k events, or "counts," in the time interval (0, T], given the incident radiation,

can be shown to obey a Poisson law, with the rate function proportional to the intensity

of the field.6, 7 When the incident radiation is a Gaussian process, the photocount proba-

bility distribution, conditioned only on the mean of the radiation process, can be obtained,

although in general it is in the cumbersome form of an infinite convolution of Laguerre

distributions.6 The counting distribution can be described, however, by its cumulants,

which are simple, closed-form expressions in general. The cumulant representation for

the photocount distribution is very suggestive of comparisons with a pure Poisson dis-

tribution because the cumulants of the latter are all the same. If a set of conditions can

be found under which the cumulants of the general photocount distribution are equal, then

it can be claimed that the distribution is Poisson. This is the essence of our approach.

First, we introduce some notation by briefly reviewing the Poisson model

for an ideal quantum photodetector. The results and terminology are taken from

Karp and Clark,6 in which detailed proofs and discussions can be found. Accord-

ing to the Poisson model, the detector counting statistic NT at time T, con-

ditioned on a complex function [Eo(t, r); 0 < t < T, re A], obeys a Poisson

law,
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Pr INT=kL[Eo(t,r); 0 <t<T, rEA]}

k
mT -m T

= e (1)
ki

T
m  = a E (t, r) drdt. (2)

Eo(t, r) is the complex envelope of the incident, scalar, narrow-band Gaussian field,

and is assumed to have a real covariance function, and to be normalized to a medium

with a characteristic impedance of unity. a = r/hv, where 11 is the quantum efficiency,

h is Planck's constant, and v is the frequency. The symbol A will be used inter-

changeably to denote the detector surface, and its area.

The probability of k counts in (0, T] is given formally by

1 - o T k  (3
PNT(k) = Ej E-m m T , (3)

where the expectation is taken over the random variable mT. In terms of characteris-

tic functions,

MNT(jv) = E expLmT(ev-1)1}. (4)

Clearly, MN (jv) is simply the moment-generating function of m T,T

M mT (u) = E emTu, (5)

evaluated at u = ejv - 1. By expanding E (t, r) in a time-space Karhunen-Lobve series,

M (u) can be evaluated explicitly in terms of the mean and covariance functionsmT

of Eo
It is assumed for simplicity that, for a fixed time t, the field varies negligibly

over the detector surface; that is, that only one spatial mode of the field (the lowest

order mode) excites the detector. This assumption limits only slightly the generality

of our results; the extension to many spatial modes is straightforward. Under this

assumption, the expansion for E (t, r) can be written

E (t, r) = Ei.i(t, r)O i

= A - 1 / 2 E i t),
i
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where the {i) are orthonormal over [0, T] and A, the {(Ci) are orthonormal over

[0, T], and Ei is given by

E. = E (t, r) l (t, r) drdt

A/2 T
= Al 0 E(t, ro) i(t) dt, r E A.

Thus we have reduced the space-time expansion in the {(}i to a simple time expan-

sion in the { i. Defining a(t) = A E(t, ro ), ro A, we can easily show that

mT = a T (t) 2 dt. (6)
0

It is further assumed that a(t) can be written

a(t) = s(t) + n(t), (7)

where s(t) is a deterministic signal, and n(t) is a zero-mean Gaussian random pro-

cess with finite average energy, and covariance K (t, 7) = E{n(t)n*(T)}. It can be

shown that the eigenvalues of K (t, T) are the same as the eigenvalues of KE (t,T;r,p);
n 0

thus, the trace of K (t, T) has physical meaning as average noise power, and is inde-

pendent of the detector area. On the other hand, the signal power (s,s)= fT Is(t) 2 dt

is directly proportional to the area A.

Returning to Eq. 5, a particularly revealing representation for Mm (u) is in terms

of the cumulants (Ki} of m T , defined by

In M (u) = un ()
mT nn= 1

It has been shown that 6

K. = ai (i-1)! Tr K(i)+i! s K(i-1)s , (9)
1 n n

(i) ,th 6,8
where K is the it h "iterated kernel" (operator product), and

n

T T
(a, Kb) = , a(t) K(t, T) b (T) dTdt

for real, symmetric K. With Jki) the eigenvalues of Kn, and (s i) the coefficients in
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the expansion of s(t) in the Karhunen-Lobve ( i.-basis, we can write K. in the alterna-

tive form,

K = ai(i-1) !
iE

s i-1]. (10)

The cumulants {iK.

shown that 6

of NT are defined by a relation similar to Eq. 8; it is easily

n
K.

K =  A(n, i)

i=l

where

(11)

i

A(n, i) =

k=1

(i )i-k kn> 0.
(k) I k >0.

Now, since the cumulants of a discrete distribution are identical if and only if

it is Poisson, we can gauge the "Poisson-ness" of NT by examining the degree to which

its cumulants ri} are equal. Rewriting Eq. 11,

n
K.

Kn = K + A(n, i!'
i=2

we see that a sufficient set of conditions for the approximate equality of all of the {(i} is

(13)

A(n, i)

i=2

It is instructive

error" K K :
n 1

MN (jv) =
T

K.

-- <<1,
K1

Mn 2.

to write the characteristic function of N T in terms of the "cumulant

exp .(jv)n

n= 1

,, (jv)n
=exp Kl(e-l) exp ( -KI) n

n= 1

If the conditions (14) are satisfied for n = 2, 3, ... , m, then
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• oo (jv)n
MN (jv) = exp Kl(ev-l1) exp j (R-K 1 ) Ov) (16)

n=m+ 1

This is the characteristic function exp Kl(eJV-1) of a pure Poisson distribution mul-

tiplied by a perturbation factor that approaches unity as m - oo. Equation 15 is closely

related to the Gram-Charlier Type B series 9 for NT; indeed, if Eq. 15 is written

in terms of the central moments {r)i} of mT and Fourier-transformed, the result is

-K

PNT(k) K= I + - Lk-n (K) , (17)

n= 2 1

where Lp(x) is the Laguerre polynomial of degree n and order P. As the { i} are

ncomplicated functionals of s(t) and Kn (t, T) it is more convenient to work with the

characteristic function MN(jv)
T

By using some well-known operator inequalities, we can obtain a set of sufficient

conditions for (14), which are in a form with considerably greater physical significance.

The inequalities are

s, K(i-l)s) -< max(s,S)

(18)

Tr K( ) < k 1I Tr K
n max n

with equality (given a particular s(t)) when all of the nonzero eigenvalues of K are

the same. Xmax is the largest eigenvalue of Kn(t, T). Combining Eqs. 9 and 14, and

using the inequalities (18), we get

n A(n,i)i i- (ss)
+ << 1, Mn > 2,I max Tr K + (s, s)i=2 n

which is certainly satisfied for any s(t) and K (t, T) if

n

A(n, i)ai- i1 << n >, 2. (19)max
i=2

Note that this is a restriction on the noise energy per temporal mode.

If conditions (19) are satisfied for n = 2, 3, ... , m, then Kn = K, n < m, and NT

is "approximately Poisson" with mean K ; however, additional conditions must be

satisfied to ascertain the value of K1 to the order of approximation that we have
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established. In general, K1 = a Tr Kn + a(s, s), but for n < m we have neglected terms

in Eq. 13 involving s(t) and K (t, T), so we must ensure that an insignificant term

has not been retained in K1 . Expanding Eq. 13,

en A(n,) 
ni W n

n 
n

K a Tr K + a(s,s) + a Tr K) + A(n, i) ai(s, K(i)s), (20)n n i n n
i=2 i=2

we obtain four relations by comparing each of the first two terms with each of the

remaining terms. If K 1 is to be approximated by the first two terms in Eq. 20, the

four relations are inequalities that must be satisfied. Two of these are satisfied if

(19) is satisfied for n -< m. The other two are

n

a Tr Kn >> A(n, i) ai(s, K(i-)s

i=2
(21)

A(n,i) 1 (i)
a(s, s) >> -,i) a Tr K

I n
i=2

A sufficient set of conditions for (21) can be obtained by using the inequalities (18); the

result is

-- 1
A(n,i a i- i- s) << A(n, i) ai-1 i -  

(22)
I max Tr K maxn

i=2 n =2

The upper and lower limits define an interval that shrinks as n increases. Thus
(22) is in reality a single inequality, which need be satisfied only for n = m to ensure

that it is satisfied for all smaller n. If the "signal-to-noise ratio" (s, s)/Tr Kn falls

within the bounds of (22), it is then valid to write K1  a Tr K + a(s, s). Otherwise, K1

is better approximated as a Tr Kn or a(s, s) according as (s, s)/Tr Kn is beyond the

lower or the upper limit.

An important example that can be worked for the purposes of illustration is the

case of bandlimited white noise. By taking the first M eigenvalues of K to be then
same (No), and the rest to be zero, (19) and (22) become

A(n, i)(aNo i - << 1, 2 < n < m

i= 2

SA(mi(aN (ss) <<  A(m, i)(aN ) (23)
i= 0 i= 2
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For m = 2, these are

2 aN << 1,

(24)
(s,s) -1

aN << << (Z2aN )
o

which, if satisfied, yield approximately equal mean and variance,

NT = var (NT) ) 'a(s, s) + aM No. (25)

aN , the average number of counts per noise mode, is for visible wavelengths typicallyo -7 -6
of the order of 10 - 10 , so conditions (24) are not unreasonably restrictive.

It should be pointed out that, although Eq. 16 gives a quantitative measure of the

degree to which NT is Poisson, it is not in a form convenient for actual calculation.

Further work remains to be done in the area of finding useful bounds for the difference

between PN T(k) and a pure Poisson distribution.

J. R. Clark, E. V. Hoversten
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