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A. CHILDREN'S PERCEPTION AND IDENTIFICATION OF

STRESS CONTRASTS

Children are believed to perceive and produce stress and other prosodic features of

language very early in life. Yet, we have little knowledge of what they actually know

about rules of stress at various ages, or by what age this learning process has been

completed. There has been very little research examining-the acquisition of any of the

stress rules in a language like English. This experiment was designed to determine

children's competence at different ages with regard to one aspect of American English

stress - that of the perception and identification of two types of phrases which, in the

adult language, are minimal pairs with respect to stress. The first type is a compound

noun which has a primary-secondary stress pattern, as seen in the example greenhouse,

a hothouse for flowers. The second type is a noun phrase comprising an adjective fol-

lowed by a noun. This phrase has a secondary-primary stress pattern, as seen in the
/ 1

example green house, a house painted green.

1. Procedure

A total of 160 children in Kindergarten through Grade 8 in school, whose ages were

from 5 to 13 years, were the subjects in this study. An additional 18 adults were tested

in an identical manner for comparative purposes. All subjects were native speakers of

English who were residents of the Boston area.

A stimulus tape was recorded of the experimenter producing 6 pairs of phrases that

would be familiar to children and which could be pictured. These pairs were the

following.

This work was supported in part by the National Institutes of Health (Grant

5 ROl NB04332-08), and in part by the U.S. Air Force Cambridge Research Laborato-
ries, Office of Aerospace Research, under Contract F19628-69-C-0044.
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Compound Nouns Adjective Plus Noun

greenhouse green house

redhead red head

highchair high chair

blackboard black board

Red Sox red sox

hot dog hot dog

Each of the 6 pairs was presented 5 times making a total of 30 items, of which 15 were

compound nouns and 15 were phrases with adjective plus noun. The 30 stimuli were

arranged in 5 sets of 6 items in such a way that one member of each of the 6 contrasting

pairs was presented once in each set. The order of phrases within each set was random.

All phrases to be tested were introduced to the children before the stimulus tape was

played. The experimenter showed a picture of one item of the minimal pair, explained

what it was, and then named it. This same procedure was repeated for the picture of

the other member of the pair. The pictures and pronunciations of each pair were con-

trasted several times to maximize the differences. Children were given answer sheets

containing sets of pictures of the minimal pairs. The order of these pictures matched

the order of stimuli on the tape. Children then heard the stimulus tape and were asked

to identify what they heard each time by marking the appropriate picture. For example,

if the stimulus were hot dog, children would have to choose between a picture of a

frankfurter on a bun and a dog panting in the hot sun. Each item was presented twice

before children were asked to make a judgment.

Listeners were tested in small groups rather than individually, since an earlier pilot

study had indicated that there were no differences in performance between subjects tested

individually and subjects tested in small groups. Each group had approximately 10 chil-

dren and one or more adults.

In order to test whether or not the experimental results reflected linguistic skill

rather than just an ability to perform a mechanical task, a separate test was given to

51 of the youngest children who were in Kindergarten and Grade 1. The same stimulus

tape was played to the children, but instead of making their responses by choosing

between pictures on their answer sheets which depicted minimal pairs, they chose

between pictures of maximally different items. Thus, for example, if the stimulus were

hot dog, the children would have a choice of a frankfurter on a bun and another item

such as a greenhouse. The results of this task comprehension test showed that only 2

kindergartners were not able to perform the task. These 2 children were subsequently

eliminated from the study. The average percentage of correct responses for the

remaining 49 subjects was 97% correct for Kindergartners and 100% correct for First

Graders. On the basis of these results it is evident that children can perform the task.
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2. Results

Results from the stress identification test indicate that the ability to correctly

identify these minimal pairs increases with age. Figure IX-1 shows the percentage of

correct responses plotted against grade and age. Measures of standard deviation are

also given for each group. The grade groups on the abscissa are prefixed by "mid-" or

"pre-" because some children were tested at the middle of the school year and some

were tested at the beginning of the school year.2 The ages given are average ages for
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Fig. IX-1.
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Percentage of correct responses according to grade and
age with standard deviation plotted for each point.

the group of children in each grade. This figure indicates that Kindergartners are only

producing 49% correct responses, while children in Grades 6, 7, and 8, as well as adults,

produce responses approaching 100% correct. Between these extremes there is a

consistent developmental trend with the percentage of correct responses increasing with

age and grade.
3

Chi-Square analysis indicates that the Kindergarten group is not scoring signifi-

cantly more correct than incorrect responses; the Grade 1 group's number of correct

responses is significantly greater than chance at the 0. 05 level. Grade 2 and all higher
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grades produced significantly more responses than chance at the 0. 001 level of

significance. The greatest developmental change is between age 5, where the group does

not perform significantly above chance, and age 7, where the group is producing 73%

correct responses.

We might ask whether a child acquires the ability to identify these contrasts all at

once or whether he seems to develop this skill gradually. The results shown in Fig. IX-2

shed some light on this question. This figure shows the percentage of children who

individually scored a total number of correct responses significant above chance as

determined by chi-square analysis. Two levels of significance are shown. The solid
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Fig. IX-2.

6+

Percentage of subjects with individual scores better than chance
at two significance levels. The solid line indicates the proportion
of children who individually scored over 70% correct responses
(better than chance at p < 0. 05), and the dashed line indicates the
proportion who scored over 85% correct responses (better than
chance at p < 0. 001).

line indicates the proportion of children who individually scored over 70% correct

responses (better than chance at p < 0. 05), and the dashed line indicates the proportion

who scored over 85% correct responses (better than chance at p < 0. 001). In Grades 2

through 5 we observe a considerable variability between the percentage of children

whose individual scores reached the two levels of significance. This variability
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suggests a gradual learning process. For example, in Grade 2, where the greatest dif-

ference occurs, approximately three-fourths of the children in the group had a score

of at least 70% correct responses (p< 0. 05), but only one-fourth of these children with

scores of over 70% correct had a score as high as 85% or more correct responses

(p<0.001). Hence, one-half of the Grade 2 group performed at a level high enough to

indicate that they had some proficiency with the identification skill, because they could

correctly identify 70% of the stimuli, but they had not mastered it completely, because

they could not correctly identify as high as 85% of the stimuli. Thus the gap between these

two levels of significance as shown in Fig. IX-2 represents the percentage of children

who have begun to acquire the skill of identifying these phrases, but who are not yet

able to respond correctly with a high degree of consistency.

Figure IX-2 also shows that, although the general picture is one of increasing ability

with age, there is some individual variation in Grades 1 through 5. Thus, a few chil-

dren as early as 6 years old performed almost as well as adults, and a few children as

late as 10 years old did as poorly as 5-year olds. In Kindergarten, however, there were

no children who scored significantly better than chance, and in Grades 6 and above all
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subjects scored better than chance at the 0. 001 level.

The general results also show sex differences at certain ages. Figure IX-3 shows

the average percentage of correct items plotted against age and grade according to sex.

There is a consistent trend for girls to score better than boys in grades below Grade 6.

These differences are significantly in favor of the girls for Grades Pre-1, 3, and 4. Girls

produce significantly more correct than incorrect scores in Grade 1, but boys do not do

this until Grade 2. Also, girls approach the 100% level of correct responses earlier in

the age range than boys.

3. Discussion

The results of this experiment suggest that the developmental trend in the ability to

identify these noun phrases correctly and consistently is mainly due to an increasing

knowledge of the rules of stress dealing with the distinction between these phrases,

and/or an ability as listeners to use these rules. These stress rules are learned mainly

as a function of age; and, although an awareness of what we call stress appears to be

acquired very early in life, these particular rules are not learned until relatively late in

the language acquisition process. Girls, generally, acquire proficiency with these rules

at slightly earlier ages than do boys, and there is also some individual variation, but in

general, the picture is a developmental one. A child at age 5 will not yet have acquired

these rules; a child at age 11 will have acquired them, and the older a child is between

these age extremes, the more likely it is that he will have learned the rules and will be

able to use them consistently. 4

The experimental data also suggest that the ability to use the rules consistently is

acquired gradually. A child who can disambiguate the minimal pairs used in the exper-

iment 70% of the time must have internalized the rule. Since this child still has 30%

incorrect responses, however, he is not yet applying the rule consistently. This sug-

gests that at this stage the rule is not an obligatory rule, but an optional one. An addi-

tional longitudinal study with individual children would be helpful to confirm this

conclusion.

Since prosodic rules of various kinds (e. g. , intonation of declaratives vs questions)

apparently play a role in earlier periods of language acquisition, we might ask why the

stress rules used to differentiate compound nouns from noun phrases are mastered rel-

atively late in the language development process, and why they sometimes seem to be

optional rules in the early stages of their being learned. The main reason which might

be suggested is that the phonetic patterns which differentiate these phrases may not

always be realized in the acoustic signal. This is true even of the adult model when the

rules are clearly possessed. Adults may not always make the distinction in production

because of various performance factors, and because the semantic content of the sen-

tence usually carries enough information to make comprehension possible without the
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help of this acoustic distinction. Or, perhaps more importantly, the lack of phonetic

differentiation between these phrases may result from interference by constrastive or

emphatic stress shift. For example, although the stress normally would fall on the noun

in the noun phrase green house, describing a house that has been painted green, in the

contrastive sentence, "It was a green house, not a brown house," the contrastive stress

rule would create a shift of stress to the adjective, making the noun phrase acoustically

closer to the compound noun greenhouse. Factors like the commonly occurring contrast-

ive stress rule, therefore, might confuse the child and make the learning of the compound

noun and noun phrase stress rules more difficult, or might make the rules appear

optional. This would help to explain why children master these stress rules relatively

late in the language acquitision process.

The late acquisition of these stress rules raises interesting questions about the

developmental relationship between rules of stress and rules of syntax. There is a close

connection between these two aspects of language, but we do not know whether knowledge

of stress is prerequisite to or an aid in the acquisition of syntax or vice versa; perhaps

both are acquired simultaneously. It is generally agreed that children have syntactic

competence with compound nouns and noun phrases by age 5 or earlier. Thus, the exper-

imental results which show that children do not master the stress rules that distinguish

these phrases until much later suggest that the acquisition of the syntactic rules is prior

to the acquisition of the stress rules. This indicates that the stress rules cannot be an

aid to the acquisition of the syntax of these phrases. This type of priority may not exist

with other prosodic and syntactic aspects of language, but it does appear to exist in the

case of noun compounds and noun phrases.

I would like to thank Mr. Peter M. Close, Director of the M. I. T. Day Camp, and

Miss Norene Casey, Director of the Bartlett School, for providing subjects for this

study, and also Dr. A. W. F. Huggins for advice concerning the statistical analysis.

Kay Atkinson-King

Footnotes

1. Several linguists have discussed this contrast between compound nouns and noun
phrases, and recently the rules involved have been formalized in Noam Chomsky
and Morris Halle, The Sound Pattern of English (Harper and Row, New York, 1968).

2. Grades Pre-7 and Pre-8 were combined because they were both smaller than the
other grade groups, and showed no significant differences in performance.

3. There are apparently two minor exceptions to this upward trend in performance.
These are the inversions that occurred between the two groups of Grade 1 and among
Grade 6 and Grades 7 and 8. The difference between the two groups of Grade 1 is
not significant. It is due primarily to the exceptional performance of one girl in
Pre-1, which was a smaller group than Mid-grade 1. Pre-1 had only 10 subjects,
whereas Mid-grade 1 had 30 subjects. The slight dip occurring at Grades 7 and 8
is also not significant, and is probably due to the small number of subjects in
Grades 6 through 8.

4. This experiment, of course, reveals nothing about children's use of stress rules in
producing these minimal pairs. Further experiments are now being conducted to
study the production aspect of these phrases.
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B. AUTOMATIC ANALYSIS-BY-SYNTHESIS OF VOWELS

Recent work in characterizing speech samples for the recognition of the speakerl

has indicated a need for a rapid, reliable facility for analyzing vowel spectra in terms

of formant frequencies. Toward this end, a program for manual and automatic analysis-

by-synthesis of vowels (VABS), has been implemented on the PDP-9 computer facility

of the Speech Communication Group. This program is an extension of the analysis-by-

synthesis techniques originally developed on the TX-0 computer.2-4

In an analysis-by-synthesis procedure, a spectrum based on hypothesized formant

locations is compared with the spectrum of the vowel to be analyzed, and the hypothe-

sized parameters are varied until the two spectra match. The process of varying these

parameters may be done by the experimenter in an interaction with the analysis-by-

synthesis program or by a strategy subprogram.

The analysis-by-synthesis program is designed to be used with a spectrum analyzer

and fundamental frequency extractor. It is specifically written for the equipment shown

in Fig. IX-4, but in principle it could be modified to function with any functionally equi-

valent configuration. At present, spectrum analysis is performed by a 36-channel filter

bank covering 150-7025 Hz, and fundamental frequency is estimated by lowpass-filtering

the speech above the first harmonic and measuring the intervals between zero crossings.

] CRT
DISPLAY

M
P SPECTRA -

dB/°ct D -KNOBS
AND -TOS

36 CHNL. PROGRAMS -- TOGGLES

FILTER BANK Fo -- TELETYPE
,---i

LPF A MRETEURENCYI SYNTHESIS

Fo H--. PARAMETERS

2 kHz

LSPEECH INPUT

Fig. IX-4. The computer facility as configured for spectrum analysis
and vowel analysis-by- synthesis.

The synthesis phase of the vowel analysis-by-synthesis is accomplished by generating

a short segment of synthetic vowel and analyzing it with the 36- channel spectrum ana-

lyzer. This synthesis is represented by the lower branch in Fig. IX-4. The vowel
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generation is performed by a five formant cascade 10-kHz sampled data vowel synthesis

program which was adapted from TASS, a speech synthesizer written by W. L. Henke. 5

The duration of the synthetic vowel need only be long enough that the filter band outputs

reach steady-state values; 30 ms is sufficient for this.

The method of spectrum synthesis is the essential difference between this and the

former analysis-by-synthesis implementation. In the original TX-0 version, the syn-

thetic spectrum was computed in two stages. First the log magnitude of the Fourier

transform of the vowel was computed at 100-Hz intervals, corresponding to the harmon-

ics for an assumed fundamental frequency of 100 Hz. Then the response of the filter

bank for such a vowel spectrum was computed. In the present version, this laborious

calculation is eliminated by having the spectrum analysis performed by the same hard-

ware that analyzes the speech input. This saving and the greater speed of the PDP-9

computer result in a much faster analysis. The analyzing filters below 3 kHz have band-

widths comparable to the spacing of the harmonics in normal speech. Hence the output

of each filter is affected by the positions of the harmonics within its passband, as well

as by the spectral envelope of the speech signal. In the present version, the synthetic

spectrum can be derived from a signal with the same fundamental frequency as that mea-

sured in the original speech, rather than with an assumed fixed value. The synthetic

spectrum is thus a more faithful replica of the spectrum it is intended to match. The

main limitation on the accuracy of the synthesis lies in the quality of the glottal source

approximation.

In the synthesizer, the glottal excitation is produced by exciting a digital glottal

shaping filter with a train of impulses. The glottal filter used in the present version has
-1

complex conjugate poles at an equivalent s-plane position of ar = ZTn(iZ5) sec-1 and w =
-1 6

+2Tr(200) sec . The resulting pulse shape and spectrum envelope are shown in Fig. IX-5.

Optionally, the poles may be moved along a line of constant Q through the point given

above. This changes the time scale of the pulse shown in Fig. IX-5a and the break fre-

quency of the spectrum in Fig. IX-5b, but not the shape of either. The synthesis

parameter GBF (glottal break frequency) is the value of w/2Tr. This parameter was

originally intended to compensate for interspeaker variations in glottal source spectrum,

but it has not been proved appropriate. Consequently, a fixed value of GBF = 200 has

been used.

1. Description of Program VABS

The analysis-by-synthesis procedure is under the control of up to three nested sub-

routines, depending on the degree of automation desired. The lowest level subroutine,

VABSM, provides the most basic analysis-by-synthesis service. It generates the vowel

waveform from a table of parameters given by the calling program, outputs it through a

digital-to-analog converter, performs the spectrum analysis, and compares the
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spectrum of the synthetic vowel with a spectrum specified by the calling program. This

subroutine is called by the higher level subroutines, and it can also be called directly

by a user who wishes to vary the synthesis parameters manually. For instance, through

programmed use of pushbuttons and knobs, any parameter can be varied by turning a

knob. When running continuously, a manual analysis-by-synthesis program can produce

and display approximately 4 iterations per second, so the user can observe the effect

of each parameter variation directly on the cathode-ray tube display. The synthesis

parameters to be specified are fundamental frequency (the measured value is normally

used), the frequencies and bandwidths of the first four formants, and the glottal source

break frequency.

The next higher level subroutine, VABSA, performs automatic analysis-by-synthesis,

given a vowel spectrum to be matched and a parameter table of an initial approximation

to the vowel. The strategy of varying the synthesis parameters was taken almost directly

from Paul.3, 7 The parameters that are varied are the first four formant frequencies and

the first three bandwidths. VABSA contains a flag that, if set by the calling program, will

cause the subroutine to vary GBF every 4 t h iteration for lowest error. As we have

stressed this has not been proved useful.

The error measure which the analysis-by-synthesis strategy attempts to minimize

is the sum of squared differences, on a filter-by-filter basis, of the two spectra over

the frequency range of interest. This range is a parameter given to the subroutine, typ-

ically the range 0-3175 Hz. The spectra are normalized for zero mean error before

the squared error is calculated. The squared error as a function of the formant fre-

quencies has local minima, corresponding to formants being placed in incorrect peaks

of the spectrum. The initial approximation to the vowel to be analyzed need only posi-

tion the formant frequencies close enough to their true positions that the strategy algo-

rithms will not move a formant into an incorrect peak. The bandwidth values are not

critical; they may be safely set to average values.

The program iterates the procedure of calculating new parameter values, synthe-

sizing, and comparing with the spectrum to be matched until one of three conditions is

satisfied: (a) the strategy algorithms produce no change in all parameters; (b) the iter-

ation number is 15 and the best match has a squared error of less than 2 dB 2 per filter

in the specified range, or (c) the iteration number is 20. The program performs approx-

imately 5 iterations per second. After the analysis is completed, the parameter table

in the calling program is overwritten with the new values of the parameters.

The third subroutine entrance, VABSI, arrives at an initial approximation and then

effectively calls VABSA. VABSI requires a separate subprogram comprising stored

spectra and values of the first three formants associated with them. The squared error

between the given spectrum and each stored spectrum is computed, and the values of F l ,

F 2 , and F 3 associated with the best match are used, together with fixed values of
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F 4 , GBF, and BW1-BW4 , as the initial approximation. A data subprogram containing

one example of each of 12 vowels from the data on adult males from Peterson and

Barney8 and Stevens and House, 9 plus three additional versions of the vowel /i/, has

given good initial guesses in the analysis of vowels from adult males. The initial value

of F 3 in /i/ seems to be fairly critical, since it is often close to F and F 4 and not

visible as a separate peak. If vowels spoken by females or children were to be analyzed,

the data subprogram could be changed or augmented.

2. Example of the Use of VABS

VABS is currently being used in connection with SPADE, a general-purpose speech

spectral analysis program available to users of our computer. Figure IX-6 shows two

display photographs illustrating two stages in the use of VABS. The cursor is positioned

I F:q I = 30
2 -:]] F2 .12250

3 F3= 290

4 F4= 35C

5 GSF 20
81. so

129

I ,: Fl= [ ---.

6 1. 50q P4
7] 82= 240.'L

.. 

.. 

.. II

.9 

94= 15

Fig. IX-6.

SPADE display photographs showing two

stages in the analysis-by-synthesis of an
example of the vowel /i/. (a) After the

initial approximation (b) Final result of

the analysis. The two graphs in the lower
halves represent low-frequency energy and
fundamental frequency as functions of time.
The vertical cursor shows the point in the
utterance corresponding to the spectrum
shown above. The points on the vertical
axis of the spectrum represent 2-dB steps
in amplitude; each horizontal point repre-
sents one of the 36 filter outputs. Two
spectra are shown superimposed. The nat-
ural vowel spectrum is displayed with
slightly more intense (larger) points. The
difference between the spectra is shown on
the abscissa.
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in the vowel /i/. Figure IX-6a shows the results after the initial approximation phase of

VABSI. The spectrum to be analyzed is displayed with intense points, and the synthetic

spectrum is superimposed with less intense points. The difference between the two is

displayed on the abscissa. The two markers on the abscissa delimit the frequency

range over which the match is made; in this case, 0-3175 Hz. The squared error

(E= 327) and the values of the synthesis parameters (all in Hz) are displayed at the left

of the spectrum.

Figure IX-6b shows the results after the strategy algorithms of VABSA have per-

formed their task. The two spectra are virtually identical over the frequency range of

the match.

3. Discussion

This vowel analysis-by-synthesis program is now being used to analyze the vowels

of 21 adult male speakers. Analyses for some speakers result in significantly higher

error scores than for others, thereby indicating that the synthesis model is not as good

for their vowels. These discrepancies are probably due to differences in the glottal

source spectrum. For the majority of speakers, however, the error scores for the

vowels examined thus far, /i/, /I/, /a/, and /@e/, are at least comparable to those

reported earlier for only 3 speakers. 4

J. J. Wolf
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C. AN INTERACTIVE COMPUTER GRAPHICS AND AUDIO

SYSTEM SANS LARGE BUDGETS AND GREAT FUSS

We shall report on the present status of certain aspects of the Speech Communication

Group's computer system, and a few specific applications of that system. A second

objective is to show by these examples what can be easily realized, with a small amount

of judicious system design, in the area of interactive computer graphics on a quite

modest system.

The notion is still quite prevalent that rather extensive hardware complemented by

much systems software is a prerequisite for interactive computer graphics. The machine

costs implied are generally in the vicinity of several hundred thousand dollars or

greater. To this, then, may be added several man-years of graphics-oriented system

programming in addition to the standard software system. Often whole new graphics-

oriented languages are called for which entail the additional development of the language

processors. Our point here is that such discussions should not discourage the small-

system user from thinking almost in as large terms as his brethren who have many

boxes of expensive hardware and a staff of system programmers.

The system under discussion comprises integrated hardware and system software

combined with a body of programming techniques.

The hardware of the system contains an 18-bit word central processor (a PDP-9

computer, which is considered to be a fairly small machine) with 24K core memory, a

small disk, and small magnetic tapes (DEC tapes) for auxiliary storage. Graphical

input is provided for by a tablet. Graphical output is provided by a cathode-ray tube

display monitor driven by an in-house designed display processor with a parts cost of

approximately $3000. 1 There are also extensive real-time audio input/output facilities.2

The general software of the system has a file system and input/output monitor,

editors, a relocating loader, an on-line debugger, a macro assembler, and various

problem-oriented languages. FORTRAN IV is the language of all of the examples

reported here. Other high-level languages available are SNOBOL (a text string processing

language), FOCAL (a "desk calculator" type of interpreter), and a form of DYNAMO

(which will be discussed in this report).

The FORTRAN IV language is used primarily because of its availability, both on this

specific small machine and many others. It is not inherently well adapted to interactive

graphics programming, having poor syntax and limited semantics, but since it is a

procedure-oriented language, its semantics can be effectively extended by procedure

calls on an integrated system library. Of major importance for the applications shown

here are library packages for the creation and manipulation of display output; for the

accessing of interactive inputs such as on the tablet, knobs, and switches; and for the

input/output of real-time audio. A major conceptual expansion is machinery for the

QPR No. 98 126



(IX. SPEECH COMMUNICATION)

creation and processing of "plexes" (linked data structures and lists). Primitive pro-

cedures provide for the accessing of such data structures from a FORTRAN

language environment, and a free-storage package furnishes the necessary storage

accounting functions which allow completely arbitrary types of data structures to

be built and manipulated.

1. Sample Applications

Figures IX-7, IX-8, and IX-9 illustrate some present applications and demonstrate

the capabilities of the graphics system. They are photographs made from the on-line

CRT display.

Fig. IX-7.

Excerpt from an educational motion picture film
showing electromagnetic radiation from a
dipole. The advantage of producing computer-
generated animated films on-line is one of pro-
gramming time. Many functions, such as adding
title to scenes, selecting parameters, and
determining sequences, can be executed during
the actual filming. The result of this is that the
production of simple types of computer-
generated films becomes very quick and inex-
pensive. A three-minute film might thus have a
total cost of only one man-hour for designing
the script and writing the computer program,
one man-hour for filming on the computer, and
$10 for the film.

Fig. IX-8.

This computer display of a segment of the
orchestral score for Mahler's Fourth Symphony
was generated by using an experimental musical
score editor. The upper part of the picture
shows voices currently in the display (here,
voices 2, 3, 7, and 8). The lower part of the
display contains a "command menu" which is
used in conjunction with the tablet to request the
execution of editing functions and to pick out
items (e.g., notes) to be place'd on the staves.
Associated synthesizers, initially implemented
in software, input such scores and output acous-
tical renditions of the same. This work is part
of a project to develop an interactive computer
facility for the creation of electronic music.
(This "traditional score" editor was a work of
Walter Bilofsky.)
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(a) (b)

Fig. IX-9. M. V. Cerrillo has proposed that facial images can be constructed
by specifying points in a base triangle and then transforming these
points to each of several triangles arranged in an image grid. By
implementing the transformational algorithms on a computer, an
almost instantaneous artist's transformational sketch pad can be
realized to easily experiment with such proposals. (a) Shows a
base triangle, an image grid, and sketched-in points; in (b) the
image grid has been removed to give a better view of the image
constructed from this set of points. (Project of James F. Smith.)

2. DYNAMO

One particular project, a DYNAMO implementation, will be described in greater

detail in Section IX-D. Here we shall give a brief overview of that project.

DYNAMO is a continuous system simulator originally oriented toward industrial

management activities. It has been implemented on several large machines during the

last eight years.

The modeling of the interaction of various activities can be represented by a block

diagram. In a usual DYNAMO implementation, the user specifies his model in the

"DYNAMO language" which is a unit text record-oriented notation. In the present

implementation, the model is specified graphically by using a tablet and display. We

expect that most users will find the graphical notation more intuitive and therefore much

easier to learn than the usual text-oriented notation.

Since DYNAMO is a simulator, the ability to quickly modify the model on the basis

of observations is a desirable feature that distinguishes this on-line interactive imple-

mentation from the usual off-line usage. In addition to its interactive graphical nature,

another very significant economic aspect of this implementation is that it was done on

a fairly small system, and in less than two man-months of time by a person who had
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negligible programming experience when he began.

Since DYNAMO is basically a continuous system simulator, the internal functions

can easily be adapted to the simulation of other continuous systems, e. g. , electric cir-

cuits, and we expect to exploit this property in the future. We also expect to use the

general graphical block diagram layout procedures for the specification of interconnection

diagrams for other applications, a prime example being that of music and speech syn-

thesizer configurations. Such synthesizers can then be quickly realized by using digital

signal-processing programs for experimental implementation.

3. Programming Techniques and the System Library

We feel that an important aspect of the system is what might be called a style of pro-

gram design or body of programming technique. By encouraging users to think in terms

of modeling their problem rather than in terms of "bit shuffling" on a computer, we

believe that a large reduction in programming time on most projects can be achieved.

Such a culture is embodied in the design of our system - particularly the system library

which, although small, we believe provides services organized in such a way as to help

the user think about his problem rather than harass him with comnputer-oriented details.

In order to give the flavor of programming when using the system, we include two

excerpts from the documentation for the system library. Figures IX-7 through IX- 10

have shown the graphical aspects of the system, and so these excerpts pertain to other

aspects: a free-storage management package oriented toward data structure design, and

an audio input/output package used by digital signal-processing programs.
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HIS MANUAL FREE STORAGE MANAGEMENT 6/70 PAGE I

IDENTIFICATION: FREE

FREE STORAGE PACKAGE, FOR DYNAMIC STORAGE ALLOCATION.
W. HENKE, OCT. 69

THE FREE STORAGE PACKAGE PROVIDES FOR THE CREATION AND
PROCESSING OF "PLEXES" (LINKED DATA STRUCTURES AND LISTS) BY
FURNISHING A STORAGE MANAGEMENT SERVICE. PRIMITIVE FUNCTIONS,
SEE THE "RVLV" PACKAGE, PROVIDE FOR THE ACCESSING OF SUCH DATA
STRUCTURES FROM A FORTRAN LANGUAGE ENVIRONMENT.

EXPLICIT CALLS ARE PROVIDED FOR REQUESTING BLOCKS OF FREE
STORAGE AND FOR RETURNING BLOCKS TO FREE STORAGE. WHENEVER A
BLOCK OF SPACE IS RETURNED IT IS COALESCED WITH ANY OTHER
CONTIGUOUS BLOCKS CURRENTLY IN FREE STORAGE SO AS TO MINIMIZE
THE SHATTERING PROBLEM.

THE CORE AREA USED FOR FREE STORAGE IS THAT LEFT BY THE LOADER
AFTER ALL PROGRAM UNITS HAVE BEEN LOADED AND ALL NAMED COMMON
BLOCKS HAVE BEEN ALLOCATED. IT IS THE SAME AREA THAT THE
LOADER REGARDS AS BLANK OR UNNAMED COMMON. THUS ANY CORE LOAD
WHICH USES THE FREE STORAGE PACKAGE SHOULD NOT USE BLANK
COMMON, BUT INSTEAD USE NAMED COMMON BLOCKS WHEN THE COMMON
FACILITY IS DESIRED.

MOST VALUED FUNCTIONS OF THIS PACKAGE ARE CONCEPTUALLY OF TYPE
"POINTER", AND SHOULD BE DECLARED OF TYPE "INTEGER" IN A
FORTRAN ENVIRONMENT. ALL SIZES ARE OF TYPE INTEGER.

CALL FRINIT -- INITIALIZE FREE PACKAGE.
MUST BE CALLED ONCE BEFORE ANY OTHER FREE PACKAGE CALLS,
AND MAY BE CALLED AGAIN TO REINITIALIZE, I.E.,
EFFECTIVELY RECLAIM ALL ORIGINAL FREE STORAGE FOR A
FRESH START.

FREEP = FREZF(SIZE) F4 -- "FREE ZEROED", GETS A ZEROED BLOCK
OF "SIZE' WORDS, VALUE IS A PTR (POINTER) TO THE BLOCK.

NEWFP = FRECF(SIZE, COPYP) F4 -- "FREE COPIED INTO", GETS A
BLOCK OF 'SIZE' WORDS, COPIES BLOCK OF COPYP INTO NEW
BLOCK, AND RETURNS PTR TO NEW BLOCK.

CALL FRETF(SIZE, RETPTR) F4 -- "FREE RETURN", RETURNS TO FREE
STORAGE THE BLOCK OF 'SIZE' WORDS POINTED TO BY
'RETPTR'.

NEWOBP = FRECOB(OB) F4 -- COPY THE GIVEN OB INTO A NEW BLOCK
FROM FREE STORAGE, VALUE IS PTR TO COPY OF OB. AN OB IS
A BLOCK OF WORDS HEADED BY ITS WORD COUNT. WORD COUNT
DOESN'T INCLUDE ITSELF, SO BLK SIZE IS WDCNT+1.

CALL FRETOB(OB) F4 -- RETURNS AN OB TO FREE STORAGE.

SIZE = FREL() F4 -- RETURNS THE SIZE OF THE LARGEST AVAILABLE
REMAINING BLOCK OF FREE STORAGE.
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HIS MANUAL REAL-TIME AUDIO I/0, SS PACKAGE 5/70 PAGE 1

IDENTIFICATION: SSDWAS

SS PACKAGE, "SAMPLED SIGNAL TO/FROM REAL-TIME SIGNAL STORE"
W. HENKE JAN 70

THIS PACKAGE PROVIDES A FACILITY TO DO REAL-TIME ANALOG SIGNAL

(TYPICALLY AUDIO) INPUT/OUTPUT FROM A SPECIAL DIGITAL
"REAL-TIME" SIGNAL STORE. THE DIGITAL REPRESENTATION OF THE

ANALOG SIGNAL CONSISTS OF A SEQUENCE OF DIGITIZED SAMPLES

UNIFORMLY SPACED IN TIME AT THE SAMPLING RATE.

ONE ENTRY -- SSPRD (SS PLAY, RECORD, AND DISPLAY) -- PROVIDES
THE REAL-TIME FUNCTIONS OF PLAYING (OUTPUTTING AS AUDIO),
RECORDING (INPUTTING AS AUDIO), AND DISPLAYING (WAVEFORMS AND
SPECTRA) TO/FROM THIS SIGNAL STORE.

OTHER ENTRIES -- SSOUT AND SSIN -- PROVIDE THE USER A MEANS TO

ASSEMBLE A SIGNAL IN THE SIGNAL STORE FOR SUBSEQUENT OUTPUT

(PLAYING) OR TO ACCESS THE SIGNAL STORE TO READ A PREVIOUSLY
INPUTTED (RECORDED) SIGNAL.

THUS SIGNAL GENERATION PROGRAMS CAN CALL THE SS PACKAGE WITH
EACH SAMPLE AS IT IS GENERATED. THE SEQUENCE OF SAMPLES SO

SPECIFIED IS ASSEMBLED INTO THE STORE. SSPRD() MAY BE
SUBSEQUENTLY CALLED TO PLAY AND VISUALLY DISPLAY THE WHOLE
SIGNAL WHICH HAS BEEN THUS CONSTRUCTED.

THE SECONDARY STORAGE DEVICE USED FOR THE SIGNAL STORE IS THAT

ASSIGNED TO LOGICAL I/O UNIT #1. A HIGH DATA TRANSFER RATE IS

NEEDED FOR REAL-TIME I/O FROM THE STORE, AND OF THE CURRENT

HARDWARE ONLY THE DISK HAS THE NEEDED RATE. THUS A DISK

HANDLER (DKA OR DKD) SHOULD BE ASSIGNED TO I/O SLOT # I.

DECTAPE MAY BE USED FOR SSOUT, AND ALSO FOR PLAYBACK USING

VERY LOW SAMPLING RATES. AN ABSOLUTE ADDRESSED PORTION OF THE

ASSIGNED SECONDARY STORE IS USED FOR SIGNAL STORAGE. ANY OTHER
DATA (E.G., FILES) WHICH EXISTED ON THAT PORTION WILL BE

OVERWRI TTEN.

FOR SAMPLED SIGNALS THAT NEED NOT BE ACCESSED IN REAL-TIME,
STORAGE AS FILES IN FORTRAN BINARY FORMAT IS SUGGESTED INSTEAD

OF THE SINGLE SPECIAL PURPOSE REAL-TIME SIGNAL STORE.

THE SS PACKAGE GETS CORE BUFFER SPACE FROM THE FREE STORAGE
PACKAGE, SO USERS SHOULD NOT USE "BLANK" COMMON IN ANY CORE

LOAD WHICH USES THE SS PACKAGE. "NAMED" COMMON SHOULD BE USED

INSTEAD. (THE SPACE REQUESTED IS CURRENTLY 6200 WORDS.)

CALL SSPRD F4 -- SS PACKAGE PLAY, RECORD, AND DISPLAY.

PLAYS AND RECORDS FROM/TO THE SIGNAL STORE, AND DISPLAYS
WAVEFORMS AND SPECTRA OF THE SIGNAL. SEE THE

DOCUMENTATION FOR "DWAS" (RLE QPR #95, P 69, +
APPENDMENTS) FOR THE HARDWARE INPUT COMMANDS TO SSPRD.

NOTE THAT AFTER SSPRD HAS BEEN CALLED IT RETAINS CONTROL
UNTIL THE ESCAPE COMMAND (BUTTON 35) IS ISSUED, WHICH
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HIS MANUAL REAL-TIME AUDIO I/0, SS PACKAGE 5/70 PAGE 2

CAUSES CONTROL TO BE RETURNED TO THE CALLING PROGRAM.
THE SAMPLING RATE IS DETERMINED BY THE SETTING OF THE
HARDWARE SWITCH "CLOCK2". AUDIO OUTPUT APPEARS AT THE
"DA/CBO" JACK ON THE AUDIO PATCH PANEL, AND AUDIO INPUT
SHOULD BE SUPPLIED TO THE "MPX4" JACK. FOR MOST
APPLICATIONS THE ANALOG SIGNAL SHOULD BE LOW-PASS
LIMITED AT ONE-HALF THE SAMPLING RATE (ANALOG FILTER
JACKS ARE AVAILABLE ON THE PATCH PANEL).

SINGLE SAMPLE AT A TIME ACCESS TO THE SIGNAL STORE:

THESE ENTRIES TRANSFER SIGNAL SAMPLES TO/FROM THE USERS SIGNAL
PROCESSING PROGRAM AND THE "REAL-TIME" SIGNAL STORE.

CALL SSOINI(ERRLBL,ERCODE) F4 -- SAMPLE OUT TO SIGNAL STORE
INITIALIZE.

SSOINI MUST BE CALLED BEFORE USING USING SSOUT.

ERRLBL: A STATEMENT LABEL TO WHICH CONTROL WILL BE
TRANSFERED IF ANY SUBSEQUENT CALLS TO THE SS PACKAGE
ENCOUNTER ERRORS. [NOTE THAT ACTUAL ARGUMENTS OF TYPE
LABEL CAN BE REALIZED IN FORTRAN USING THE "ASSIGN N TO
LABELVAR" CONSTRUCT WHERE LABELVAR IS OF TYPE INTEGER.]

ERCODE: AN INTEGER VARIABLE WHICH WILL BE UPDATED WITH
THE ERROR CODE WHEN AN ERROR OCCURS, I.E., JUST BEFORE
PROGRAM CONTROL IS TRANSFERED TO ERRLBL.
ERROR CODES ARE:
0 NO ERROR
I SIGNAL STORE FULL

CALL SSOUT(SAMPLE) F4 -- SINGLE SAMPLE OUTPUT TO SIGNAL
STORE.

SAMPLE: IS APPENDED TO THE SEQUENCE OF SAMPLES BEING
ASSEMBLED. IT IS AN INTEGER VARIABLE WHICH SHOULD BE
SCALED SO THAT PEAK VALUES OF THE REPRESENTED SIGNAL ARE
JUST WITHIN A RANGE OF + TO - 131,071 (2**17 - 1).

CALL SSFINI() F4 -- FINISH AN SSOUT RUN.

MUST BE CALLED TO TERMINATE ANY SSOUT OUTPUT, INCLUDING
THOSE WHICH MUST BE TERMINATED DUE TO A FULL SIGNAL
STORE.

CALL SSIINI(ERRLBL,ERCODE) F4 -- SAMPLE INPUT FROM
SIGNAL STORE INITIALIZE.
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HIS MANUAL REAL-TIME AUDIO I/0, SS PACKAGE 5/70 PAGE 3

SSIINI MUST BE CALL BEFORE USING SSIN

ERRLBL: SAME FUNCTION AS FOR SSOUT.

ERCODE: SAME FUNCTION AS FOR SSOUT.
ERROR CODES ARE:
I END OF SIGNAL IN SIGNAL STORE REACHED

SAMPLE = SSIN() F4 -- INPUT A SINGLE SAMPLE FROM
STORE.

DECLARE SSIN OF TYPE INTEGER. SAMPLE
SEQUENTIAL SAMPLE FROM THE SIGNAL STORE,
SAME AS FOR SSOUT.

SIGNAL

IS THE NEXT
SCALING THE

THE SIGNAL STORE CAN BE OPEN FOR BOTH READING AND WRITING
SIMULTANEOUSLY. AS LONG AS READING (SSIN) IS KEPT AHEAD OF
WRITING (SSOUT) THE NEW SIGNAL BEING WRITTEN WILL NEVER
OVERWRITE THE OLD SIGNAL BEING READ.

ENTRY TO ALLOW USER TO ACCESS SS CORE BUFFER SPACE WHEN IT IS
NOT BEING USED BY THE SS PACKAGE. SSOUT AND SSIN USE THIS
BUFFER, IN ADDITION TO SSPRD, SO THE SPACE SHOULD NOT BE USED
SIMULTANEOUSLY WITH ANY CALLS TO THE SS PACKAGE.

CALL SSBUF(SSBUFP,SIZE) F4

OUTPUT INTEGER ARGS:

SSBUFP: PTR TO THE CORE BUFFER ACQUIRED BY THE SS
PACKAGE.

SIZE: BUFFER SIZE (WORD COUNT).

W. L. Henke
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D. DYNAMO GRAPHIC SYSTEM

DYNAMO 1 ' 2 is a simulation system defined several years ago to simulate the dynam-

ics of industrial activities. Technically it is a continuous system simulation comprising

integrators and several arithmetic functions. As a result, it is capable of being used

for a large class of problems.

The program to enter the DYNAMO flow diagram and display the resulting system

activity was written in the FORTRAN language. It has been run on the R. L. E. speech

computer.

The DYNAMO flow diagram is entered by using the tablet and pen. An example

of such a flow diagram is shown in Fig. IX-11. The rectangles are levels, the hexag-

onal blocks are auxiliary functions, and the functions shaped like =:1 are rates.

Figure IX- 11 is an example of an elementary industrial dynamics situation. If the sales

rate changes, the inventory changes. The company should then change its work force

to react to the new sales rate. This is done via a hire-fire rate.

Figure IX-12 shows the type of output which the computer gives. In this case, 4 func-

tions: work force, production, inventory, and hire-fire rate are plotted. The horizontal

scale is in weeks. At week 10 (in this case) the sales rate changed from 200 to 250. Fig-

ure IX-13 shows the output when the sales rate is a positive ramp starting at week 10.

The following description of the use of DYNAMO is meant to give the flavor of how

it is used.

Figure IX-11 shows a DYNAMO flow diagram as drawn on the CRT face. Initially,

the large blocks are drawn, then the lines having arrowheads are drawn, then the com-

mand to change display size is given. '050' is entered into the keyboard to make the

new blocks one-half of the size of the original one. Then the smaller blocks are drawn.

The rest of the lines are then put in. The text and initial values are also entered.

When an auxiliary (hexagonally shaped block) is drawn, a display such as is shown

in Fig. IX-14 requests the type of auxiliary. The plus sign (+) on the picture denotes

the position of the pen.

When a line is drawn, a display like Fig. IX-15 asks for the line type. The line type

is important when the line enters a level, rate, or equation type of block. In such

cases, the line type determines how the value of the block is determined. For example,

with a level block such as is shown in Fig. IX-16, there are 4 lines entering the block.

They are types 1, 2, 6, and 3.

Type Name

1 + Addition
2 - Addition
3 + Multiply
4 - Multiply
5 + Division
6 - Division
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Fig. IX-11. Model of a sample system.

Fig. IX-12.

Fig. IX-13.

Simulation output for
sample system.

Simulation output for
sample system with a
different sales rate.
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Fig. IX-14.

Model editor requesting type of
auxiliary.

Fig. IX-15.

Model editor requesting type of
input for a branch.

Fig. IX-16.

Fig. IX-17.

Segment of a model displaying
branch input types.

Display showing an inconsis-
tent model with a warning to
the user.
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So the new value of the level will be

L. K = L. J + DT ((Al-A2)A 3 (#A))

where

L. K is the new value of level

L. J is the old value of level

DT is the increment of integration

A. is the value of Auxiliary which has an arrowhead of type i.
1

Figure IX-17 shows the result if there is a chain of auxiliaries that all feed each

other. The computer is not able to compute a new value for the auxiliaries, so it out-

puts the command 'there is a dependency among blocks' after the request for computing

a new graph is made.

Figure IX-16 and IX-17 show how the marked node has displayed with it the node type

(at the upper left-hand side) and the initial value (upper right-hand side).

The graphical DYNAMO system provides the capability of quickly setting up a model

of a continuous system and determining its response to an input. The quick response

makes it easy to note problems in the model and change the system to behave as desired.

Defining the system as a flow diagram rather than through a computer language provides

a very easily comprehended overview of the system being simulated.

F. F. Sellers, Jr.
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