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Abstract. In this paper, we first establish a regularity criterion for the strong so-
lutions to the density-dependent incompressible MHD system with zero resistivity in
a bounded domain. Then we use it and the bootstrap argument to prove the global
well-posedness provided that the initial data u0 and b0 satisfy that (d− 2)‖∇u0‖L2 +
‖b0‖W1,p are sufficiently small with d < p < 2d

d−2
(d = 2, 3). We do not assume the

positivity of initial density, it may vanish in an open subset (vacuum) of Ω.
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1 Introduction

Magnetohydrodynamics (MHD) studies the interaction of electromagnetic fields
and conducting fluids. In this paper, we consider the following density-depen-
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dent incompressible MHD system:

∂tρ+ div(ρu) = 0, (1.1)

∂t(ρu) + div(ρu⊗ u) +∇
(
π +

1

2
|b|2
)
− µ∆u = (b · ∇)b, (1.2)

∂tb+ u · ∇b− b · ∇u = η∆b, (1.3)

divu = divb = 0 in Ω × (0,∞), (1.4)

u = 0, ηb · n = 0, ηrotb× n = 0 on ∂Ω × (0,∞),

(ρ, u, b)(·, 0) = (ρ0, u0, b0)(·) in Ω ⊂ Rd (d = 2, 3). (1.5)

Here ρ denotes the density, u the velocity field, π the pressure, and b the
magnetic field, respectively. µ is the viscosity coefficient and η is the resistivity
coefficient. Ω is a bounded domain in Rd with smooth boundary ∂Ω, n is the
unit outward normal vector to the boundary ∂Ω. We will assume that the
initial data satisfy the following compatibility condition:

−µ∆u0 +∇
(
π0 +

1

2
|b0|2

)
− b0 · ∇b0 =

√
ρ0g (1.6)

with g ∈ L2(Ω).
Wu [1] shows the local well-posedness of strong solutions to the problem

(1.1)–(1.5) under the condition (1.6). When η > 0 and d = 2, Huang and
Wang [5] (also see [6]) prove the global well-posedness of the strong solutions.
Fan-Li-Nakamura [2] showed a regularity criterion. Fan-Zhou [3] proved the
uniform-in-µ(η) local well-posedness of smooth solutions when Ω := Rd. The
aim of this paper is to prove some similar results when η = 0. We will prove

Theorem 1. Let d = 2, µ = 1, η = 0, u0 ∈ H1
0 ∩H2, 0 ≤ ρ0 ∈ W 1,q, b0 ∈ W 1,p

with 2 < q, p <∞ and divu0 = divb0 = 0 in Ω. If b satisfies
b ∈ L∞(0, T ;W 1,p)for some 2 < p <∞, then

u ∈ L∞(0, T ;H2) ∩ L2(0, T ;W 2,p), ut ∈ L2(0, T ;H1),
√
ρut ∈ L∞(0, T ;L2),

ρ ∈ L∞(0, T ;W 1,q), ρt ∈ L∞(0, T ;Lq),
b ∈ L∞(0, T ;W 1,p), bt ∈ L∞(0, T ;Lp)

(1.7)
for any given T > 0.

Theorem 2. Let d = 2, µ = 1, η = 0, u0 ∈ H1
0 ∩H2, 0 ≤ ρ0 ∈ W 1,q, b0 ∈ W 1,p

with 2 < q, p <∞ and divu0 = divb0 = 0 in Ω. If ‖b0‖W 1,p is sufficiently small,
then the problem (1.1)–(1.5) has a unique strong solution (ρ, u, b) satisfying
(1.7).

Remark 1. Here we do not assume smallness of the initial velocity u0.

Remark 2. We denote C1 :=
∫ T
0
‖u‖W 2,pdt, then we can take

‖b0‖W 1,p =
δ

2
exp(−C1) =: δ1.

We need not assume that C1 is uniformly bounded as δ → 0, say, we take
C1 = 1

δ , then we have δ1 → 0 as δ → 0. Although it is not difficult to prove
that C1 is uniformly bounded as δ → 0 and we omit the details here.
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Theorem 3. Let d = 3, µ = 1, η = 0, u0 ∈ H1
0 ∩H2, 0 ≤ ρ0 ∈ W 1,q, b0 ∈ W 1,p

with 3 < q, p < 6 and divu0 = divb0 = 0 in Ω. If u and b satisfy

∇u ∈ L∞(0, T ;L2), b ∈ L∞(0, T ;W 1,p)

with 3 < p < 6, then (1.7) holds true.

Theorem 4. Let d = 3, µ = 1, η = 0, u0 ∈ H1
0 ∩H2, 0 ≤ ρ0 ∈ W 1,q, b0 ∈ W 1,p

with 3 < q, p < 6 and divu0 = divb0 = 0 in Ω. If ‖∇u0‖L2 + ‖b0‖W 1,p is
sufficiently small, then the problem (1.1)–(1.5) has a unique strong solution
(ρ, u, b) satisfying (1.7).

Remark 3. Our results also hold true when Ω := Rd (d = 2, 3) without any
difference and difficulty. Concerning regularity criteria for the MHD system,
we refer to [4, 7, 8] and references therein.

Remark 4. Our results also hold true for compressible MHD flows without re-
sistivity and thus we omit the details here.

Remark 5. In [3], they proved the following regularity criterion
∇u ∈ L1(0, T ;L∞(Ω)), or u ∈ L2(0, T ;L∞(Rd)) and ∇u ∈ L1(0, T ;L∞(Rd)),
which is different from ours. We are unable to use it to prove a global small
result. The novelty of this paper is that we can use our regularity criterion to
show a global small result by a bootstrap argument.

To prove Theorems 2 and 4, we will use the following abstract bootstrap
argument or continuity argument [9, Page 20] (see also [10,12]).

Lemma 1. ( [9]). Let T > 0. Assume that two statements C(t) and H(t) with
t ∈ [0, T ] satisfy the following conditions:

(a) If H(t) holds for some t ∈ [0, T ], then C(t) holds for the same t;

(b) If C(t) holds for some t0 ∈ [0, T ], then H(t) holds for t in a neighborhood
of t0;

(c) If C(t) holds for tm ∈ [0, T ] and tm → t, then C(t) holds;

(d) C(t) holds for at least one t1 ∈ [0, T ].

Then C(t) holds for all t ∈ [0, T ].

2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Since the local strong
solutions to the problem (1.1)–(1.5) was established in [1], we only need to
show a priori estimates (1.7).

First, it follows from (1.1) and (1.4) that

0 ≤ ρ ≤M <∞. (2.1)

Math. Model. Anal., 24(1):95–104, 2019.
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Testing (1.2) by u and using (1.1) and (1.4), we see that

1

2

d

dt

∫
ρ|u|2dx+

∫
|∇u|2dx =

∫
(b · ∇)b · udx. (2.2)

Testing (1.3) by b and using (1.4), we find that

1

2

d

dt

∫
|b|2dx =

∫
(b · ∇)u · bdx. (2.3)

Summing up (2.2) and (2.3), we get

1

2

∫
(ρ|u|2 + |b|2)dx+

∫ T

0

∫
|∇u|2dxdt ≤ 1

2

∫
(ρ0|u0|2 + |b0|2)dx. (2.4)

Testing (1.2) by ut, using (1.1), (1.4) and (2.1), we derive that

1

2

d

dt

∫
|∇u|2dx+

∫
ρ|ut|2dx− d

dt

∫
b⊗ b : ∇udx

= −
∫
ρu · ∇u · utdx−

∫
∂t(b⊗ b) : ∇udx

≤ ‖√ρut‖L2‖√ρ‖L∞‖u‖L∞‖∇u‖L2 + C‖b‖L∞‖bt‖L2‖∇u‖L2

≤ C‖√ρut‖L2‖u‖L∞‖∇u‖L2 + C‖u · ∇b− b · ∇u‖L2‖∇u‖L2

≤ C‖√ρut‖L2‖u‖L∞‖∇u‖L2 + C(‖u‖L∞ + ‖∇u‖L2)‖∇u‖L2

≤ 1

2
‖√ρut‖2L2 + C‖u‖2L∞‖∇u‖2L2 + C‖∇u‖2L2 + C. (2.5)

On the other hand, we have

d

dt

∫
|b⊗ b|2dx ≤ C‖b‖3L∞‖bt‖L1 ≤ C‖u · ∇b− b · ∇u‖L1

≤ C‖∇u‖L2 ≤ C‖∇u‖2L2 + C. (2.6)

We will use the following logarithmic Sobolev inequality [11]:

‖u‖L∞ ≤ C(1 + ‖∇u‖L2 log
1
2 (e+ ‖u‖H2)). (2.7)

Doing (2.5)+(2.6)C1 with C1 suitably large and using (2.7), we have∫
|∇u|2dx+

∫ t

t0

∫
ρ|ut|2dxds ≤ C(e+ y(t))C0ε, (2.8)

provided that ∫ T

t0

‖∇u‖2L2dt ≤ ε << 1

with y(t) := sup
[t0,t]

‖u(s)‖H2 and C0 is an absolute constant.

On the other hand, (1.2) can be rewritten as

−∆u+∇
(
π +

1

2
|b|2
)

= f := b · ∇b− ρut − ρu · ∇u. (2.9)
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By the H2-theory of Stokes system, we observe that

‖u‖H2 ≤ C‖f‖L2 ≤ C‖b · ∇b− ρut − ρu · ∇u‖L2

≤ C + C‖√ρut‖L2 + C‖u‖L4‖∇u‖L4

≤ C + C‖√ρut‖L2 + C‖u‖
1
2

L2 · ‖∇u‖L2 · ‖u‖
1
2

H2 ,

which gives
‖u‖H2 ≤ C + C‖√ρut‖L2 + C‖u‖L2‖∇u‖2L2 , (2.10)

whence ∫ t

t0

‖u‖2H2ds ≤ C(e+ y(t))C0ε. (2.11)

Taking the operator ∂t to (1.2), testing by ut, using (1.1) and (1.4), we have

1

2

d

dt

∫
ρ|ut|2dx+

∫
|∇ut|2dt = −

∫
ρt|ut|2dx−

∫
ρtu · ∇u · utdx

−
∫
ρut · ∇u · utdx−

∫
∂t(b⊗ b) : ∇utdx =:

4∑
i=1

Ii. (2.12)

We use (2.1), Gagliardo-Nirenberg inequality and the Hölder inequality to
bound Ii (i = 1, . . . , 4) as follows:

I1 = −
∫
ρu · ∇|ut|2dx ≤ C‖u‖L6‖√ρut‖L3‖∇ut‖L2

≤ C‖u‖L6‖√ρut‖
1
2

L2‖
√
ρut‖

1
2

L6‖∇ut‖L2 ≤ C‖u‖L6‖√ρut‖
1
2

L2‖∇ut‖
3
2

L2

≤ 1

16
‖∇ut‖2L2 + C‖u‖4L6‖

√
ρut‖2L2 , (2.13)

I2 = −
∫
ρu · ∇(u · ∇u · ut)dx ≤ C‖

√
ρut‖L6‖u‖L6‖∇u‖2L3

+ C‖√ρut‖L6‖∆u‖L2‖u‖2L6 + C‖∇ut‖L2‖∇u‖L6‖u‖2L6

≤ C‖∇ut‖L2‖u‖2H1‖u‖H2 ≤ 1

16
‖∇ut‖2L2 + C‖u‖4H1‖u‖2H2 , (2.14)

I3 ≤ C‖
√
ρut‖2L4‖∇u‖L2

≤ C‖√ρut‖
2
3

L2‖
√
ρut‖

4
3

L8‖∇u‖L2 ≤ C‖√ρut‖
2
3

L2‖ut‖
4
3

L8‖∇u‖L2

≤ C‖√ρut‖
2
3

L2‖∇ut‖
4
3

L2‖∇u‖L2 ≤ 1

16
‖∇ut‖2L2 + C‖∇u‖3L2‖

√
ρut‖2L2 ,

I4 ≤ 2‖b‖L∞‖bt‖L2‖∇ut‖L2 ≤ C‖u · ∇b− b · ∇u‖L2‖∇ut‖L2

≤ C(‖u‖
L

2p
p−2
‖∇b‖Lp + ‖b‖L∞‖∇u‖L2)‖∇ut‖ ≤ C‖∇u‖L2‖∇ut‖L2

≤ 1

16
‖∇ut‖2L2 + C‖∇u‖2L2 . (2.15)

Inserting the above estimates into (2.12) and integrating it over (t0, t) and using
(2.8), (2.10), and (2.11), we arrive at∫

ρ|ut|2dx+

∫ t

t0

∫
|∇ut|2dxds ≤ C(e+ y(t))C0ε,

Math. Model. Anal., 24(1):95–104, 2019.
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whence
‖u‖H2 ≤ C(e+ y(t))C0ε,

and thus

‖u‖L∞(0,T ;H2) ≤ C, ‖√ρut‖L∞(0,T ;L2) + ‖ut‖L2(0,T ;H1) ≤ C (2.16)

by taking C0ε ≤ 1
2 . On the other hand, it follows from (2.9) that

‖u‖W 2,p ≤ C‖f‖Lp ≤ C‖b · ∇b− ρut − ρu · ∇u‖Lp

≤ C + C‖ρut‖Lp + C‖u‖L∞‖∇u‖Lp ≤ C + C‖∇ut‖L2 ,

and thus
‖u‖L2(0,T ;W 2,p) ≤ C. (2.17)

Now it is easy to show that

ρ ∈ L∞(0, T ;W 1,q), ρt ∈ L∞(0, T ;Lq),
b ∈ L∞(0, T ;W 1,p), bt ∈ L∞(0, T ;Lp).

(2.18)

This completes the proof. �

3 Proof of Theorem 2

This section is devoted to the proof of Theorem 2. Since it is easy to prove the
existence and uniqueness of local smooth solutions to the problem (1.1)–(1.5),
we only need to prove a priori estimates (1.7). To this end, we shall use the
bootstrap argument.

Let δ > 0 be a fixed number, say ‖b0‖W 1,p ≤ δ. Denote by H(t) the
statement that, for t ∈ [0, T ],

‖b‖L∞(0,t;W 1,p) ≤ δ (3.1)

and C(t) the statement that

‖b‖L∞(0,t;W 1,p) ≤ δ/2. (3.2)

The conditions (b)–(d) in Lemma 1 are clearly true and it remains to verify
(a) under the condition that ‖b0‖W 1,p is small. Once this is verified then the
bootstrap argument would imply that C(t), or (3.2) actually holds for any
t ∈ [0, T ] and then we can prove (1.7) hold true.

Now we assume that (3.1) holds true for some t ∈ [0, T ]. By Theorem 1, we
have

u ∈ L2(0, T ;W 2,p). (3.3)

Testing (1.3) by |b|p−2b and using (1.4), we infer that

1

p

d

dt
‖b‖pLp ≤ C‖∇u‖L∞‖b‖pLp ,

whence
d

dt
‖b‖Lp ≤ C‖∇u‖L∞‖b‖Lp . (3.4)
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Taking ∇ to (1.3), testing by |∇b|p−2∇b and using (1.4), we observe that

1

p

d

dt
‖∇b‖pLp ≤ C‖∇u‖L∞‖∇b‖pLp + C‖b‖L∞‖∆u‖Lp‖∇b‖p−1Lp

≤ C‖∇u‖L∞‖∇b‖pLp + C(‖b‖Lp + ‖∇b‖Lp)‖∆u‖Lp‖∇b‖p−1Lp ,

which implies

d

dt
‖∇b‖Lp ≤ C‖∇u‖L∞‖∇b‖Lp + C(‖b‖Lp + ‖∇b‖Lp)‖∆u‖Lp

≤ C‖u‖W 2,p‖b‖W 1,p . (3.5)

Summing up (3.4) and (3.5), we have

d

dt
‖b‖W 1,p ≤ C‖u‖W 2,p‖b‖W 1,p ,

which yields

‖b‖W 1,p ≤ ‖b0‖W 1,p exp

(∫ t

0

‖u‖W 2,pds

)
≤ C‖b0‖W 1,p ≤ δ

2
. (3.6)

This proves that (3.2) holds true for any t ∈ [0, T ]. Thus, we arrive at

‖b‖L∞(0,T ;W 1,p) ≤
δ

2
. (3.7)

This completes the proof.
�

4 Proof of Theorem 3

We only need to show a priori estimates (1.7). First, we still have (2.1) and
(2.4). Similarly to (2.5), we observe that

1

2

d

dt

∫
|∇u|2dx+

∫
ρ|ut|2dx− d

dt

∫
b⊗ b : ∇udx

= −
∫
ρu · ∇u · utdx−

∫
∂t(b⊗ b) : ∇udx

≤ ‖√ρut‖L2‖√ρ‖L∞‖u‖L6‖∇u‖L3 + 2‖b‖L∞‖bt‖L2‖∇u‖L2

≤ C‖√ρut‖L2‖∇u‖
1
2

L2‖u‖
1
2

H2 + C‖u · ∇b− b · ∇u‖L2

≤ C‖√ρut‖L2‖u‖
1
2

H2 + C(‖u‖
L

2p
p−2
‖∇b‖Lp + ‖b‖L∞‖∇u‖L2)

≤ C‖√ρut‖L2‖u‖
1
2

H2 + C. (4.1)

Similarly to (2.10), it follows from (2.9) that

‖u‖H2 ≤ C + C‖√ρut‖L2 . (4.2)

Math. Model. Anal., 24(1):95–104, 2019.
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Inserting (4.2) into (4.1) and integrating it over (0, T ), we obtain

‖u‖L2(0,T ;H2) + ‖√ρut‖L2(0,T ;L2) ≤ C.

We still have (2.12). We bound I1, I2, and I4 by the same method as that
in (2.13), (2.14) and (2.15). We bound I3 as follows.

I3 ≤ C‖√ρut‖2L3‖∇u‖L3 ≤ C‖√ρut‖L2‖√ρut‖L6‖u‖H2

≤ C‖√ρut‖L2‖∇ut‖L2‖u‖H2 ≤ 1

16
‖∇ut‖2L2 + C‖u‖2H2‖

√
ρut‖2L2 .

Inserting the above estimates into (2.12) and using the Gronwall inequality, we
arrive at (2.16). We still have (2.17) and (2.18). This completes the proof. �

5 Proof of Theorem 4

This section is devoted to the proof of Theorem 4, which is very similar to that
in Section 3. Let δ > 0 be a fixed number, say

2‖∇u0‖L2 ≤ δ, 2‖b0‖W 1,p ≤ δ.

Denote by H(t) the statement that, for t ∈ [0, T ],

‖∇u‖L∞(0,t;L2) ≤ δ, ‖b‖L∞(0,t;W 1,p) ≤ δ (5.1)

and C(t) the statement that

‖∇u‖L∞(0,t;L2) ≤ δ/2, ‖b‖L∞(0,t;W 1,p) ≤ δ/2. (5.2)

The conditions (b)–(d) in Lemma 1 are clearly true and it remains to verify
(a) under the condition that ‖∇u0‖L2 + ‖b0‖W 1,p is small enough. Once this is
verified then the bootstrap argument would imply that C(t), or (5.2) actually
holds for any t ∈ [0, T ] and then we can prove (1.7) hold true.

Now we assume that (5.1) holds true for some t ∈ [0, T ]. We still have (3.3),
(3.4), (3.5), (3.6) and (3.7). We still have (2.1) and (2.4). Similarly to (4.1),
we have

1

2

d

dt

∫
|∇u|2dx+

∫
ρ|ut|2dx− d

dt

∫
b⊗ b : ∇udx

≤ ‖√ρut‖L2‖√ρ‖L∞‖u‖L6‖∇u‖L3 + 2‖b‖L∞‖bt‖L2‖∇u‖L2

≤ C‖√ρut‖L2δ
3
2 ‖u‖

1
2

H2 + Cδ2‖u · ∇b− b · ∇u‖L2

≤ C‖√ρut‖L2δ
3
2 ‖u‖

1
2

H2 + Cδ2(‖u‖
L

2p
p−2
‖∇b‖Lp + ‖b‖L∞‖∇u‖L2)

≤ C‖√ρut‖L2δ
3
2 ‖u‖

1
2

H2 + Cδ4. (5.3)

On the other hand, similarly to (4.2), we have

‖u‖H2 ≤ C‖f‖L2 ≤ C‖b · ∇b− ρut − ρu · ∇u‖L2

≤ Cδ2 + C‖√ρut‖L2 + C‖u‖L6‖∇u‖L3

≤ Cδ2 + C‖√ρut‖L2 + Cδ
3
2 ‖u‖

1
2

H2 ,



Density-Dependent Incompressible MHD 103

which gives
‖u‖H2 ≤ Cδ2 + C‖√ρut‖L2 .

Inserting the above estimates into (5.3) and integrating over (0, t), we con-
clude that∫

|∇u|2dx ≤
∫
|∇u0|2dx+2

∫
b⊗ b : ∇udx−2

∫
b0 ⊗ b0 : ∇u0dx+ Cδ4T

≤
∫
|∇u0|2dx+

1

2
‖∇u‖2L2 + Cδ4 − 2

∫
b0 ⊗ b0 : ∇u0dx,

which gives∫
|∇u|2dx ≤ 2

∫
|∇u0|2dx− 4

∫
b0 ⊗ b0 : ∇u0dx+ Cδ4 ≤ δ2

4
(δ ≤ 1).

This completes the proof. �
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