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A. PRELIMINARY RESULTS ON PERFORMANCE BOUNDS

FOR THE DETECTION OF STOCHASTIC SIGNALS

IN ADDITIVE WHITE GAUSSIAN NOISE

1. Introduction

The usefulness of tilted probability distributions and the semi-invariant moment-

generating function i(s) in bounding error performance for the detection of Gaussian

signals in additive Gaussian noise has been considered in recent theses and publica-
1-4

tions. The approach that has been used to obtain p(s) requires that the signal

process be Gaussian, and hence is rather restrictive. In this report, we present a new

approach to computing a(s) that may be quite useful for the class of problems for which

the signal is a non-Gaussian Markov random process.

We consider the following canonical Bayes detection problem. Given observations

{r(t), 0 < t < T}, determine which of the following hypotheses is true:

H 1 : (t) = r(t) = zl(t) + b(t)

H :y(t) = r(t) = z (t) (t) tE =  [0, T], (1)o o

where b(t) is a sample function of white Gaussian noise (with unit spectral density), and

{Zk(-), k=O, 1} is a random process with known (not necessarily Gaussian) probability

distribution such that

j E[zk(t) - Ezk(t) 2 < t E[zk(t)] 2 dt < oo. (2)

Dots on b and y indicate that Eq. 1 represents a formal division by dt of the Ito

equation 5' , 6

Hk: dy(t) = zk(t) dt + db(t).
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Here, b(t) is the Wiener, or Brownian motion, process. All stochastic differential equa-
A7

tions are to be interpreted in the sense given by Ito. A more recent discussion of his

formulation has been given by Wonham. 8

Furthermore, we assume that {zk(t), t E I} and {b(t), t E I} are statistically indepen-

dent.
5,6

The likelihood ratio for this detection problem when z (t) = 0 has been shown to be

A(r(T) = exp z I (u) dy(u) - 2 z5 1 (u) du , (3)

where

z l ( t ) = E[z l (t){r(T), T<t}, HI]

= the conditional mean of z(t), given observations up

the assumption that hypothesis H1 is true

= realizable least-squares estimate (not necessarily

is true.

to the instant t and under

linear) of zl(t) when H1

A
If H 1 is not the true hypothesis, then zl(t) is not the least-squares estimate of zl(t),

and might be called a "pseudo estimate" of zl(t). The bar in the first integral sign

emphasizes that the integral is to be interpreted as an Ito stochastic integral. Kailath6

gives an extensive discussion of (3), including a demonstration that (3) includes all

previously known explicit formulas for signals in white Gaussian noise, as well as some
A

discussion of the Ito definition of the stochastic integral.

Applying the "chain rule" for likelihood ratios to (3), we find that the likelihood ratio

for the detection problem when zo(t) # 0 is

A(T) = exp [(u)-o() ] dy(u) Z (u)- z o(u) du, (4)

A
where z (u) is the least-squares estimate of z (u) when H is true.

We shall give some new results on the time evolution of the semi-invariant moment

generating function:

po(s, T) = In E H [e s (T)] = In EH [A(T)S],

where f(T) = In A(T) is the log-likelihood ratio. The key ideas in our approach to the

problem are the following.

1. The system that generates z0 and z 1 is assumed to have a state-variable descrip-

tion of the type to be given in Eqs. 6 and 7.

2. That A(T), z (t) and z1 (t) form a joint Markov process when z (t) is the realizable

QPR No. 97 114



(XI. DETECTION AND ESTIMATION THEORY)

least-squares estimate is used to obtain a partial differential equation related to the time

evolution of [Lo(s, T).

3. Rather than work directly with the expectation of Eq. 5, we work with a certain

conditional expectation called a quasi-transition function that has many of the properties

of a transition density function. In particular, the time evolution of the quasi-transition

function is given by a Fokker-Planck type of equation whose solution is closely related

to L (s, T).

We shall derive the basic equation for the time evolution of the quasi-transition func-

tion, and discuss some methods of solving the basic equation to give the time evolution

of [o(s, T).

2. Derivation of the Basic Equation

We shall derive the basic equation for the time evolution of the quasi-transition func-

tion. The derivation proceeds as follows: First, we give the state-variable description

of the dynamic system that generates the estimates zk(t) from the received data. From

this state-variable representation, we can obtain the Fokker-Planck equation for the

time evolution of the transition density function of the joint Markov process {o(t), zl(t),

(t) = A(t) s } when Ho is true. From this Fokker-Planck equation we obtain the basic

equation for the time evolution of the quasi-transition function.

We assume that the system that generates the least-squares estimate, zk(t), is well

modeled by the vector stochastic differential equation

A A A

zk(t) = hk(k(t)' t) (6)

A ( A A A A
dXk(t) k[t:xk(t)] dt + gk[t: xk(t)] [dy(t)- zk(t) ] ,  (7)

where

xk(t) = estimator state vector with state xk(0) at t = 0

A A

-k' = memoryless functions of time that are possibly nonlinear functions of xk(t)

A A
hk = memoryless transformation of the xk(t).

8-11
Least-squares estimates have been discussed by several authors. In many cases,

an explicit formula for z(t) is not currently known, so we do not know how restrictive

(6) and (7) are. In the only known cases for which explicit results exist, 8 ' 9 the estimator

is of the form given above. Approximate least-squares estimates of this form have been

given by many people (see, for example, Snyder 1).
A A A

Furthermore, we assume that f gk and hk satisfy certain conditions, so that when

H is true, theX k and zk are continuous Markov processes whose transition density func-

tion exists and satisfies Kolmogorov' s forward equation. Sufficient conditions have been
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12 A A
given by Duncan. The principal requirement is that various components of f and g

A
and certain of their partial derivatives be globally Lipschitz continuous in xk.

-k
When hypothesis Ho is true, from Eq. 1 we have

dy(t) = z (t) + db(t). (8)

Using the results of Frost 1 3 (see also Kailath ), we can reformulate (8) as

A
dy(t) = z (t) + dv(t), (9)

where the "innovation process" {v(t)} is a Wiener process with the same intensity as b(t).

Next, for ease of motion, we define a new state vector x to be the vector obtained
A A

by adjoining the vectors x and x . More precisely, let

---

x = • (10)
x

Then, from (6), (7) and (9), we can reformulate our state equations as

A A A A A
zk(t) = zk(x(t)) = hk(xk) (11)

dx(t) = f[t: x(t)] dt + g[t: x(t)] dv, (12)

where

F Af (x )
A

f - (13)
f (xl) -I gl(x ) h (x 0 )

g 1(x

g ] (14)

The forward Kolmogorov equation for the transition density function, p(xt, t x (0)),
14

of x(t) (Dynkin 4 ) is

8 A ^ + A Aa p(xt t x(0)) = L p(x, t x(0)), (15)
x

where

x 1 1

x. = ( t) (17)
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AtA (18)
c = g g. (18)

We shall now proceed to derive a partial differential equation satisfied by the quasi-

transition function

r[ t x(, )] E[ t x(0)] p E[ xt, t x(0)), (19)

where

= exp s [[1-Zo] dv - [zl-zo2 du (20)

and E[. .] is the conditional expectation of the multiplicative functional t for all sample
A A A A

paths, with x(t=0) = x(0) and x(t) = xt. The form given for t can be obtained by substi-

tuting (9) in (4). Note that r[. .] is related to L o(s, t) by

[ (s, t) = In r[x , t x(0)] dxtdx(0). (21)

Some of the properties of such a function where

t exp V(Zu) du ,

with V(*) continuous and nonpositive, were first discussed by Kac15 following their
13

introduction by Feynman3 in the form of the "Feynman integral." The use of such func-
16 17

tions in quantum mechanics has been discussed by Gelfand and Yaglom, Kac, and

Feynman and Hibbs.18 Dynkinl9 discusses the properties of such functionals from the

viewpoint of Markov process theory. In work more closely aligned to that at hand, Ray 2 0

has used the probabilistic properties of certain quasi-transition functions to obtain

results regarding second-order linear differential operators, while Siegert,21, 22 in

conjunction with Darling and Kac, has demonstrated the utility of such functions in com-

puting the probability distribution of Gaussian processes after they have passed through

certain nonlinear devices.

The partial differential equation for r(. . ) will be obtained by making use of the fact
t A A6

that o and x are jointly Markovian. Applying Ito's differential rule to (20), we

have

2

Ad4 2 [zI [x)-( )2 dt + s[zI( )-_(X)0] dv. (22)

Equations 11, 12, and 22 define the vector Markov process (c, xt). We assume that the
AA AA A

form of z (x) and z (x) is such that the transition density of (, x) exists and satisfies

the forward Kolmogorov equation
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ap( , t x(0)) + [2
L ( x , t x(0)) - (z -z p(, x t, t x(O))at Lt 1 -

x

[S(L AA A A A

S z-Zo )gi(x t't) oP(' x t' x(

a 1

+ 2 2 [s2(zl ) 2 2p(4 , xt, t xA(O))]. (23)
2 aI 0

This can be obtained by noting that the forward operator for p[4,x, t x(0)] differs from
+

the operator L by the fact that there are additional additive terms involving partial
x

derivatives with respect to 4. The particular form of these additional terms is specified

by Eqs. 11, 12, and 22.

Equation 23 allows us to determine a partial differential equation satisfied by r[. . ].

First, we put Eq. 19 into a more convenient form:

Ap ( , xt, t 1x(0)) P( t
r[, t x(O)] = 4 d p(x tlx(O))

p(x tI x(0))

A A
= 4p(4, x t , t x(o)) do. (24)

From (19), we see that

ar[. .] p(, xt' tl x(o))a t . = at do. 
(25)

Substituting (23) in (25) and integrating by parts with appropriate boundary conditions
o ap co A o A oo

(for example, (suppressing arguments): p I = A = fkkp I = 0), we
-oo ax. -c -oo -co

obtain

8r[t, t x(0)] + A A S 2  
A A A A 2

at = LA r(xt , tx(0)) + [l(Xt)-Zo(xt)] r(x , t x())
x

-s t)- o t (xt, t) r (xt, t x(0))}. (26)
ax.i 1

Equation 26 is the basic equation for the time evolution of the quasi-transition function

r[. I. ]. We shall discuss various methods of solving (26) to obtain po(s, t).
A

First, we shall discuss some issues related to the least-squares estimates zk(t). As

indicated earlier, explicit formulas for the zk(t) are, at present, unknown for most cases

when zk(t) is non-Gaussian. There is great interest in determining the performance of
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detection systems when approximate least-squares estimates are used in the likelihood-

ratio formula (4). Our development leading to (26) did not make use of the fact that zl(t)

was the exact least-squares estimate. Thus (26) can be used to bound the error perfor-

mance of the (suboptimal) receiver if zl(t) is an approximate least-squares estimate, with

z (t) the exact least-squares estimate.
oA

When z (t) is an approximate least-squares estimate, we cannot use the "innovation

process" representation of dy(t) to eliminate z (t) from Eq. 9 and to obtain Eq. 10. Thus
A A

we must assume that z (t) has an explicit representation such that zo , z0 , z , and A(t)

form a joint Markov process for which we can determine the Fokker-Planck equation

of the joint density. In particular, if we assume that zo(t) is the dynamic response of a

system that can be well modeled by

z (t) = h [t: x (t)] (27)

dx (t) = f [t: x (t)] dt + g [t:x (t)] dw(t), (28)

where {w(t)} is a Wiener process independent of {b(t)}, then, by the same arguments used

above, we can obtain a partial differential equation for the time evolution of r[. . ] quite

similar to (26), the only difference being that we must consider expectations conditional
A

on x (t), as well as x(t).
-o

3. Methods of Solving the Basic Equation

We shall now present some methods of solving Eq. 26 so as to obtain o (s, t). Two22
approaches will be discussed: (i) a Fourier transform technique used by Siegert, and

(ii) asymptotic solutions based on the spectrum of the "forward operator" of Eq. 26.

Both approaches can be utilized when the zk(t) are approximate estimates, as well as
A

when z (t) is an exact least-squares estimate.

The Fourier transform approach is motivated by the observation that if we were able

to solve (26) explicitly for r[. I. ], we would still have to evaluate the integral on the

right-hand side of (22). Siegert 2 2 has demonstrated that in problems of this kind, it may
A

be better to consider the Fourier transform of r[. . ] with respect to x(t). That is,

TA
q ( t, A A A

q(I, t) = e r[xttl x( )] dxt. (29)

Note that if we can obtain q(71, t), then (s,t) can be easily obtained from

o (s, t) = In q(0, t). (30)

In some cases, including that of Gauss-Markov signals, it appears that the basic

equation
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a r L r[. .
at r (31)

after multiplying both sides of (26) by exp (jtA and integrating by parts, yields an equa-

tion of the form

8 +
- q(, t) = L q(n, t),
at - q -

where the operator L + involves various partial derivatives with respect to the compo-q
nents of 1r.

To illustrate this technique, we now consider the case for which zo(t) = 0 and z 1 (t)
is the solution of the stochastic differential equation

d [zl(t)] = F(t) zl(t) dt + u(t), (33)

where F(t) is a known function of time, and u(t) is white Gaussian noise of unit spectral

density. For this case, the (Kalman-Bucy) "estimator equation" is

St) d k(t) dy(t)
dz l(t) = dx 1(t) = kl(t) x1(t) dt + k2(t ) dy(t)

= kl(t) x 1 (t) dt + k 2 (t) db(t),

where

k l (t) = F(t) - p (t)

k 2(t) = p(t),

(34)

(35)

(36)

and p (t) is the estimation mean-square error; that is, E{[z l (t)- z l (t)]} is the solution

to the "variance equation"

d~ (t)
t 2dt 2F(t) pp(t)- (p(t) + 1. (37)

Substituting in (26), we obtain

ar(x1 , T)

aT = -kl A A8x1

2
s - s ^2 A

2 x 1 r(x' T)

1 2 a 2

a8x

A
r(x 1 , T) -

8
sk 2 (T) A

a8x
[x A1r(x 1, T)]. (38)

It can be established that q(n, T) satisfies the partial differential equation

aq(n, T) 8q(r , T)

8T = kl (T)+skZ(T)] a

QPR No. 97
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We now "guess" that q(Tr, T) is of the form

q(1, T) = f(T) exp - -2 G1I(T)n . (40)

Substituting (40) in (39), we obtain

1 * 2
2 i- 1 l = (kl+Sk2 )(-1~

2
1 2 2 s s
22 2

where dots indicate differentiation with respect to T.

(41)
[- 1 1+(-a-I)1,

Equating powers of 1r, we obtain

* 2
f s -s
f 2 1

= k k 2 2
1 = 2[kl(t)+sk2 (t 1 + k 2 (t) + (s -s) G 1 .

(42)

(43)

Setting V(t) = -l (t) and noting from Eq. 30 that we are interested in the case r = 0, we

obtain

7 aLo(s, T)
f aT

2
s - S

V(T)2 (44)

(45)V(t) = 2[F(t)+(s-1) (t)] V(t) + 2 (t) + (s2-s) V2(t).p p

We note that the differential equation for V(t) can be interpreted as the variance equa-

tion for the estimation of the Gauss-Markov process generated by

z(t) = [F(t)+(s-1)p (t)] z(t) + p (t) u(t) (46)

in white Gaussian noise of spectral density (s-s2 - 1
From this, it can be shown that

V(t) converges asymptotically to a strictly positive value, but we shall not go into the

details here.

This particular case falls into a class of problems studied by Collins.1 His result

for this particular case is

J.(s, T)T 2 (t 1) -p(t i ,-s (47)

where

[p(t No ) = mean-square estimation error for the process zl(t) of Eq. 34 in white

Gaussian noise of spectral density N, .

Using the fact that p(t I No) is the solution of the "variance equation"

(t No) = 2F(t) p(tI No) -
dt p o

zp(tj No) + 1, (48)
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it can be shown by substitution that (45) and (47) are equivalent.

Collin's approach to this problem involved the following steps.

1. Obtaining an expression for (s, T) in terms of a Fredholm determinant by making

a Karhunen-Loive series expansion of the signal process and using the fact that for a

Gaussian process, the coefficients in the expansion are statistically independent Gaussian

random variables to obtain an explicit answer in terms of the eigenvalues and s.

2. Using some resolvent identities, which apparently first appeared in Siegert, 2 2

to relate the Fredholm determinant to some expressions for the realizable mean-square

estimation error.

The principal advantage of the approach presented here over that used by Collins

and Kurth is that their approach can only be used when the received process is Gaussian,

whereas our approach would appear to be applicable to a larger class of signal pro-

cesses, since it exploits the properties of Markov rather than of Gaussian processes.

Finally, we discuss an asymptotic method based on the spectrum of the operator Lr
r

of Eq. 31. A standard way of solving equations such as (26) is to assume that r[. .] is

of the form

r[t, tl x(O)] = d[xt, t x(0)] e(t). (49)

A
Substituting (49) in (31), we find that (31) can be solved for all t and xt only if

I de 1 L d[ ]. (50)
e dt d[] r

From (50), we see that if

L- ) d[*= 0, (51)

then

e(t) = k e k t  (52)

and (49) is indeed a solution to (31).

When the set of eigenvalues {i} forms a discrete set (that is, L r

spectrum), then as t - c0 the general solution for r[. .] is dominated by the lowest

order eigenvalue

00 ^ X.t Xt
r[ ] (0)] e c1 dl x(0)] e , (53)

i= 1

where di .] is the eigenfunction associated with the ith eigenvalue and k I > X2 > X3 > X4
...... Thus for large t, we see that

0 (s, t) .N 1t . (54)
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Computing the lowest order eigenvalue of a differential operator has been the subject

of much study in mathematics, physics, and chemistry (for example, in physics the

lowest order eigenvalue often corresponds to the lowest energy level of the system). In

particular, approximate solutions that can be obtained by variational methods (see

Gould 2 3 ) would appear to be quite useful in practice.

We shall mention one such method, the Rayleigh-Ritz method. Suppose any solution
A A

to (31) can be represented by a series of the form given in (53), and that u[xt , x(O)] is the

class of functions satisfying the boundary conditions for r[. .]. Then

U/ A( A A

k = max (55)
4 L (0)J dxtdx (0)

Typically, we would use a finite sum of orthogonal functions for u[. ] and keep on

increasing the number of terms until the value of XI stabilizes (see Slater4).

4. Concluding Comments

We have presented a new method of computing t(s, t) for binary detection problems

when the signal process is a non-Gaussian Markov process. We have shown that the

time evolution of i(s, t) is closely related to the solution of a certain nonlinear differen-

tial equation and discussed some methods of solving such an equation.

J. E. Evans
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