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A. ULTRASONIC DISPERSION IN PIEZOELECTRIC

SEMICONDUCTORS

The interaction between an ultrasonic wave and the mobile charge carriers in a

piezoelectric semiconductor can result in dispersion, as well as amplification, of an

elastic wave. A linear, small-signal, macroscopic theory that is valid in the regime

in which the acoustic wavelength is much larger than the electron mean-free path has

been presented by Hutson and White.l' 2 White 2 has given an expression for the depen-

dence of the ultrasonic velocity on the electrical conductivity and the electron drift

velocity:
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where

v = (cE /p 2 = "unstiffened" phase velocity

K = electromechanical coupling constant

c = - /E = conductivity relaxation frequency

a- = electrical conductivity

WD = (e/kT)v 2 /fL = diffusion frequency

= electron drift mobility

f = trapping factor = fraction of space charge which is mobile

y = - Vd/o = 1 + fp Ed/Vo = drift parameter

This work was supported principally by the U. S. Navy (Office of Naval Research)
under Contract N00014-67-A-0204-0019, and in part by the Joint Services Elec-
tronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract
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Ed = applied electric drift field

w = elastic wave angular frequency.

1/2
The range of possible phase velocities lies between vD = v (1+K 2 ) = o(1+K /2)

and v . In the limit of small conductivities and large values of drift parameter, the
o

charge carriers cannot effectively "cancel out" the longitudinal electrostatic field of

piezoelectric origin that is produced by the ultrasonic wave, and therefore vs approaches

the fully stiffened velocity, vD. Conversely, in the limit of high conductivity and small

drift parameter, there does occur effective electron bunching which cancels out the

piezoelectric field; hence, vs approaches the unstiffened velocity v o. For any given

conductivity, v s has a minimum value when y = 0, that is, when the electron drift veloc-

ity equals the sonic velocity.

We are now investigating the dependence of the phase velocity in CdS on the electrical

conductivity and applied drift field. Our sample dimension is 1 cm along the direction

of propagation and approximately 0. 5 X 0. 5 cm in cross section. The transverse-wave

acoustic pulses, propagating in the basal plane with polarization along the c axis, are

generated and detected by two 32-MHz Y-cut quartz transducers bounded to the sample

ends. The complete delay line is mounted in a holder in thermal contact with a thermo-

electric module, and its temperature is maintained at 20 ± 0. 2 0 C.

The total insertion loss for the delay line (with the ultrasonic attenuation minimized

by keeping the CdS sample in the dark) varies from 20 dB at the fundamental frequency

(32 MHz) to 50 dB at the 13 t h harmonic (410 MHz). We shall therefore be able to obtain

data over a wide range of frequencies. The electrical conductivity is adjusted by varying

the light intensity from a tungsten-filament quartz-iodine lamp powered by a regulated

DC supply. A range of more than four orders of magnitude variation in the conductivity

is obtained. A pulsed, low duty-cycle drift field is used to minimize the errors caused

by heating. (For example, at 20 0 C, a temperature change of ±1°C results in an observed

apparent velocity change of ±0. 01%7). The variations in phase velocity are measured by

using a standard phase-interference technique. The input radiofrequency is adjusted so

that the delayed output signal interferes destructively with the input signal. The rela-

tive velocity changes are thus measured as relative changes in the null frequency.

Figure V-i shows the results of measurements carried out at 94 MHz. Data could

not be obtained for the medium conductivities at drift fields below 500 V/cm because the

ultrasonic attenuation in this region is too large: the signal is masked by the presence

of a piezoelectrically inactive acoustic wave (polarized in the basal plane), whose phase

velocity is very nearly equal to that of the active wave. The data for large conductivities

at the higher drift fields were limited by the build-up of ultrasonic flux. The total range

of velocity variation corresponds to a value of K 2 = 0.035, which compares very favorably

with the value of 0.036 reported by Hutson and White.1 Our results differ significantly
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Fig. V-1. Variation of phase velocity with electrical conductivity and
applied drift field for a 94-MHz piezoelectrically active

transverse wave in CdS (a= 10 - (Q -ra) ).

from the predictions of Hutson and White's theory in one respect: the drift field

corresponding to minimum velocity decreases monotonically with increasing con-

ductivity. We shall attempt to determine whether these results are consistent with

the assumption of a complex trapping factor which occurs when the equilibration

time of the trapped electrons is of the same order of magnitude as the elastic

wave period. (Ishiguro and co-workers 3 have shown that the observed asymmetry

in the ultrasonic gain-loss vs drift field curves results from a complex trapping

factor.)

C. Krischer
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B. NONLINEAR INTERACTION BETWEEN A SOUND FIELD

AND A LIQUID SURFACE

1. Static Pressure Distribution in Sound Field

It follows from the Navier-Stokes equation that the time average of the pressure in

a one-dimensional sound field is given by (p) = -(pu ) + const, where p is the density,

and u is the velocity. Thus, if ul represents the first-order velocity field obtained from

the linearized equations of motion, the time average of the pressure, correct to second

order, is (pZ = -Po(u ) + const, where po is the unperturbed density.

Applying this result to a standing wave in a closed 
tube, we find that the spatial dis-

tribution of the time average or static pressure in the sound field is of the form (pZ) =

p 0 /4Poc 2 ) cos (Zkx)= p2 0 cos Zkx, where (2wr/k) is the wavelength, pl0 the maximum

first-order sound pressure amplitude in the standing wave, and c the speed of sound.

This pressure distribution can be demonstrated in a simple manner by letting this

sound-pressure field act on a horizontal liquid surface parallel with the x direction.

This interaction results in a vertical displacement of the surface which varies with x as

cos (Zkx), as shown in Fig. V-2. At sufficiently high levels of the sound pressure the

Fig. V-2. Demonstration of the time average (static) pressure distribution in a

standing sound wave and the acoustic fountain effect.
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surface is ruptured and "fountains" occur at the pressure nodes. This also can be seen

in Fig. V-2.

This phenomenon has been known for a long time, but no satisfactory explanation of

the fountain effect has been given. Questions that relate to the conditions for the onset

of the fountain such as threshold sound pressure have not been answered.

In order to try to better understand this phenomenon, we have studied sound-liquid

surface interaction, using cavities of different shapes and with, liquids of several dif-

ferent viscosities and surface tensions.

The most extensive measurements were made in cylindrical cavities 38 in. and 15 in.

long with inner diameters of 1 3/4 in. and 1 3/8 in. , respectively. The cavities were

driven at one end by a loudspeaker, and at the other end a microphone was mounted

flush with the rigid end wall. The driving frequency was kept below the cutoff frequen-

cies of higher duct modes so that only the plane-wave component was generated. The

static pressure distribution in the sound field was measured by means of a sloping tube

manometer, and the surface deformation was determined by a cathetometer. A sound-

pressure level of 164 dB could be produced at various tube resonance frequencies

3.0 -
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Fig. V-3. Pressure difference between antinode and node as measured with
the manometer at a sound level of 164 dB. Results for three dif-
ferent probe orifice diameters are shown.
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between 200 Hz and 1200 Hz.

Measurements of the static pressure distribution by means of the manometer turned

out not to be particularly accurate. It was found that the results were influenced by the

size of the probe orifice of the manometer and also by the frequency. This is probably

due to local distortion or diffraction of the sound field about the orifice. Accordingly,

the time average pressure at the probe can be considerably different from the pressure

in the plane-wave field. The frequency dependence of the manometer output for three

different probe orifice diameters is shown in Fig. V-3. This second-order time average

in the diffracted sound field will be explored in more detail in a separate report.

With the static second-order pressure distribution given by p 2 0 cos (2kx), the height

of the liquid surface should vary as

y Yo - {P2 0 /Pg( l1+)} cos (2kx),

where

(2k) 2  pZP1 0= - and p
PLg and P20 4pc 2 '

with pL = density of liquid; g = acceleration of gravity; a- = surface tension; and p 1 0
sound pressure amplitude. The difference in height of the liquid surface at the antinode

and at the node is then 2p 2 0 /PLg(1+ ). Measurement of this difference was made in the

38-in. cavity (water depth -1. 5 cm) at a maximum sound-pressure level of 163. 3 dB and

at frequencies between 200 Hz and 1200 Hz. For water at 20 0 C the measured height dif-

ference was found to be independent of frequency and equal to 0. 55 cm, with a standard

deviation of 0. 03 cm. This is in excellent agreement with the calculated value 0. 54 cm.

2. Fountain Effect

If the sound level exceeds a certain threshold value, the liquid erupts suddenly at the

antinodes, and this eruption, or fountain effect, is maintained by the sound field. Below

the threshold the liquid surface is deformed as described above. There is no other dis-

tortion of the surface, however, which would indicate that the surface might erupt. The

threshold sound level does not depend on the cross-sectional tube area of the region

above the liquid surface, nor upon the frequency in the region considered, between

200 Hz and 2000 Hz. The threshold level depends, however, on the surface tension and

the density of the liquid.

When the fountains are formed, the liquid surface is distorted by the static pressure

distribution before the eruption. The question arises about the role of this initial dis-

tortion in the formation of the fountain. To check this, the liquid surface was replaced
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with a flat solid block with the exception of a small region, a groove, near a pressure

antinode. The liquid in the groove would suddenly begin to spray out of the groove when

the threshold sound level was reached. This continued until the groove was very nearly

empty. Thus we conclude that the over-all shape of the liquid surface as affected by the

static pressure distribution is not an important factor in the formation of fountains.

It is difficult to determine the threshold of the sound pressure above which fountains

occur. One reason is that often no fountains are formed immediately, even if the level

exceeds the threshold determined from a previous experiment. A short time later

(~1-10 sec), however, a fountain will erupt. Furthermore, the phenomenon exhibits

"hysteresis"; the fountains, once started, can be maintained at a level below the thresh-

old.
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Fig. V-4. Threshold sound level for fountain formation is shown as a
function of surface tension.

Actually, if an initial distortion of the liquid is produced by touching it with a thin

rod and then pulling the surface up to form a ridge, a fountain can be produced and main-

tained after removal of the rod, at a level approximately 20% below the actual threshold.

The threshold determined in this manner was quite reproducible and could be accurately

determined. In Fig. V-4 this threshold is shown as a function of the surface tension of

two-component systems of propanol-water and methanol-water. The surface tension

was varied by varying the concentration of these liquids. This clearly shows that the

threshold increases with surface tension.
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a. Mechanism of the Fountain Effect

As has already been demonstrated, the explanation of the fountain effect does not

appear to lie in the static deformation of the liquid surface and the corresponding axial

pressure gradient of the plane-wave sound field. A possible cause of the fountain effect,

suggested by Sanders,2 is the coupling between the acoustically produced vortex flow

(acoustic streaming) and the liquid through the viscous stress at the surface. But

restricting the liquid only to a very small region, as we did in our experiments with the

liquid in a small groove, would no doubt reduce this coupling; yet the threshold for the

fountain effect was found to be unchanged as we have mentioned. Therefore, this "viscous

drag" mechanism is not consistent with the experimental results.

Another possible explanation is related to the periodic change in the tube cross sec-

tion caused by the periodic deformation of the liquid surface. Such a change in cross

section would increase the velocity in the constricted regions, decrease the static pres-

sure, and thus raise the liquid surface further in these regions. This mechanism is not

consistent with the observation that the fountain occurs at the same threshold level prac-

tically independent of the water level, and also that a fountain occurs too when the liquid

is placed in a small groove in an otherwise flat surface. An extension of this idea, having

to do with the acoustic scattering from a small irregularity in the liquid surface, appears

to be the most likely mechanism. A scattered wave at a small ridge in the liquid surface

will increase the acoustic particle velocity at the top of the ridge, and hence decrease

the static pressure there. This will amplify the ridge and, in turn, this will increase

the scattered field. This process would continue until the decrease in pressure is suffi-

cient to overcome the restoring force of surface tension and gravity to rupture the liquid.

To explore the feasibility of this mechanism, we consider the scattered field about

a rigid cylinder in an incident plane wave. From this well-known result 3 we readily

obtain the scattered field and the total velocity distribution about a semicylindrical ridge

in a plane boundary. If the cylinder radius ro is small compared with the wavelength,

kr << 1, the result is particularly simple, and the corresponding static pressure decrease

at the top of the cylindrical ridge is found to be four times as large as in the absence of

the ridge. As a result of this static pressure distribution, the cylindrical ridge will be

sharpened at the top so that its radius of curvature will decrease and the cylindrical boss

will be deformed into a shape approaching a thin vertical wall. This will lead to a further

increase in the particle velocity at the ridge until the liquid erupts. In order to demon-

strate the enchancement of the static pressure change in the sound field as a result of the

diffracted field, rigid objects simulating ridges were inserted in the tube and exposed

to sound. The static pressure distribution about these objects was measured by means

of the manometers, (Since we were interested here only in relative values of the pres-

sure, the problem regarding the absolute calibration was not important.) The results
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Fig. V-5. Pressure above scattering objects at an antinode shown as a
function of sound level.

are shown in Fig. V-5, where the static pressure drop above the scattering objects is
shown as a function of the sound pressure. The successive stages in the development

of a fountain are shown in Fig. V-6. We used a very viscous fluid (glucose in the form
of "Karo" syrup) so that the fountains would develop slowly. In fact, it was possible to
maintain at equilibrium the intermediate stages of the ridges shown in Fig. V-6.

Our experiments indicate that the dimension of a liquid ridge which is supported by
the sound field has typically a height of h = 0. 5 cm and radius of curvature r = 0.1 cm.
The force per unit area required to maintain this ridge is (o-/ro) + L gh z 730 + 490 -
1200 dynes/cm 2 . To get an idea of the sound pressure required to maintain this ridge,
we use the result for the static pressure at the top of a cylindrical ridge. Since this
pressure is four times the unperturbed value, we get for the determination of the
(threshold) sound pressure p 1 0 the relation (4-1)(p2) = 3p 0 /4poc = 1200. This gives

P 1 0  4 104 dynes/cm , which corresponds to a sound-pressure level of approximately

163 dB. This is within a decibel of the observed threshold, and the scattering mech-

anism at least on this point is consistent with observations.

The question of how the ridges or surface perturbations are initiated still remains.

QPR No. 95



(a) (b)

-i1Hcm

(c) (d)

Ii r

(f)

Fig. V-6. Successive stages of fountain formation are shown in (a), (b),

(c), (d), and (e). The formation of droplets on top of the foun-

tain ridge is shown in (f). These droplets will break loose and

travel upward, thereby forming the actual fountain.
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The scattering mechanism can only amplify an existing perturbation but cannot initiate

it. Is a finite initial perturbation required for the instability to occur? One can get a

rough idea about this problem by considering an initial semicylindrical perturbation of
radius ro. The pressure differential required to maintain such a perturbation must bal-

ance the restoring forces caused by surface tension and gravity. The first, -/ro, is

inversely proportional, and the second is proportional to r . Thus, for sufficiently small

perturbations the effect of surface tension dominates. Then, unless the perturbation is

so large that the pressure differential 3p20/4Lc 2 exceeds the equivalent pressure of

surface tension, -/r , an initial perturbation cannot grow. In other words, the required

initial perturbation depends on the sound pressure in the tube. For a sound-pressure

level of 163 dB the required perturbation is approximately 0. 05 cm. Thermal fluctua-

tions cannot and room vibrations are not likely to produce fluctuations of this magnitude.
A probable source of the fluctuations is turbulence in the acoustically generated

streaming (vortex flow) in the tube.

U. Ingard, J. A. Ross, Jr.
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C. NONLINEAR WAVE DISTORTION OF ACOUSTIC-

NOISE SPECTRUM

As one part of our program in nonlinear acoustics we are considering the problem

of the propagation of high-intensity acoustic noise, with particular emphasis on the non-

linear distortion of the power spectrum in a one-dimensional wave. The analysis is
based on the hydrodynamic equations with the effects of viscosity and heat conduction

omitted. An excellent survey of the application of these equations to sound propagation

has been made by Blackstock, 1 who also gives an extensive list of references to previ-

ous work.

The particular problem with which we are concerned can be stated as follows:

Assume that at a given position x = 0 the time dependence of the sound pressure can be

expressed as a Fourier integral with the Fourier amplitude P(w, 0) and a similar expres-

sion V(w,0)for the Fourier amplitude of the particle velocity. Assume that these quantities
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are known, and determine P(w, x) and V(w, x) at some other position x. In a linear anal-

ysis, with viscosity and heat conduction omitted, these quantities are independent of x.

Nonlinearity, however, introduces interaction between the various frequency components

in the wave which leads to the generation of combination tones.

We shall not go through the details of the analysis here, but merely give the result

obtained. We find that V(w, x) can be expressed in terms of the integral

2 ,00
V(o,x) = 2

Tr
0 at

dT 0 dw' V(w',O) sin wo'T sin (T+F(x, T)) a,Yo0a
where

x
F(x, T) = cO(I + aVo(7))

0 O0
(x >> X )o

t = T + F(x, ).

Here, vo(t)= particle velocity at x= 0; X = transducer displacement; a
-y+

2c

unperturbed speed of sound; and y = --.
v

The corresponding expression for P(w, x) is obtained by replacing V with P in Eq. 1.

In many cases the integration over 0' can be carried out analytically, but the T inte-

gration must be done numerically. It should be pointed out that the solution given

here refers to the case in which the velocity at x = 0 starts from zero at t = 0.

In describing the behavior of a random field, we must consider an ensemble aver-

age over randomly chosen initial conditions. This question will not be considered

in this report.

Example. We apply the result obtained to a special case in which V(w', 0) is

30 -

20 -

- - - -

II -1 I I I

40 60 80 100 120 140 160 180

QPR No. 95

-1
a sec

Fig. V-7. Fourier spectrum at x = 0. Arbitrary scale for V(w).
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Fig. V-8. Fourier spectrum at x = 1. Arbitrary scale for V(w).
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Fig. V-9. Fourier spectrum at x = 2. Arbitrary scale for V(w).
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constant and real over a certain region of w' except for a gap in the center of this region,

where V = 0, as shown in Fig. V-7. We have chosen V(w', 0) Aw = 0. 01 c o , with Aw =

1 sec-1, but this value has been normalized to unity in Figs. V-7, V-8, and V-9. These

figures show the spectrum shape obtained from Eq. 1 at x = 0, x = 1. 0, and x = 5. O0 m.

G. F. Mazenko
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