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Abstract—In a conference paper titled “Geometric Properties
of Gradient Projection Anti-windup Compensated Systems,” two
main results were presented. The first is the controller state-
output consistency property of gradient projection anti-windup
(GPAW) compensated controllers. The second is a geometric
bounding condition relating the vector fields of the uncompen-
sated and GPAW compensated closed-loop systems with respect
to a star domain. While the controller state-output consistency
property stands without modifications, the proof of the geometric
bounding condition depends on two lemmas, the proofs of which
were found to be faulty. In this report, we present a new proof
of the geometric bounding condition using concepts from convex
analysis, together with minor miscellaneous corrections.

Index Terms—gradient projection anti-windup, geometric
properties, corrections, combinatorial optimization, quadratic
program, convex analysis, projection on polyhedral cone.

I. INTRODUCTION

IN the conference paper titled “Geometric Properties
of Gradient Projection Anti-windup Compensated Sys-

tems” [1], two main results were presented. The first is the
controller state-output consistency property of gradient projec-

tion anti-windup (GPAW) compensated controllers, presented
as Theorem 1 in [1]. The second is a geometric bounding
condition relating the vector fields of the uncompensated
and GPAW compensated closed-loop systems with respect
to a star domain [1, Definition 2], which is presented as
Theorem 2 in [1]. While the controller state-output consistency
property [1, Theorem 1] stands without modifications, the
proof of the geometric bounding condition [1, Theorem 2]
depends on two lemmas [1, Lemmas 1 and 2], the proofs of
which were found to be faulty. In this report, we present a
new proof of the geometric bounding condition [1, Theorem 2]
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using concepts from convex analysis. The new proof is based
on geometry and does not need [1, Lemmas 1 and 2], which
is algebraic in nature.

This report is meant to be read together with [1]. As such,
we will not repeat extraneous material, and refer the reader
to [1]. We highlight the faults in the existing proofs in the
following section. For consistency, we present some minor
corrections to [1] in Section III. This is followed by the new
proof of [1, Theorem 2] in Section IV. Equation, theorem,
lemma, and proposition numbers in the present report have
been prefixed by “C” for clarity.

II. FAULTS WITH EXISTING PROOFS

In [1], Theorem 2 depends on Lemma 2, which in turn
depends on Lemma 1. It was found that both the proofs of
Lemmas 1 and 2 in [1] are faulty, which invalidates Theorem 2.
Note that Lemma 1 being faulty alone is sufficient to invalidate
Theorem 2.

In the last part of the proof of Lemma 1 in [1], it was stated
that when the columns of NIsat are linearly independent, then
no columns of NIsat\I∗ (I∗ being an optimal solution to the
combinatorial optimization subproblem (7) in [1]) can be in
the span of the columns of NI∗ . It was then claimed that
this implies all columns of ΦNIsat\I∗ must lie entirely in the
span of the columns of M , where M is chosen such that its
columns, together with the columns of ΦNI∗ forms a basis,
and satisfy NT

I∗ΦTM = 0. The last assertion is wrong, as
seen by the following counterexample.

Example 1: Set ΦNIsat
= [ 1 1

0 1 ] and ΦNI∗ = [1, 0]T. Then
M = [0, α]T for some α 6= 0. Clearly, ΦNIsat\I∗ = [1, 1]T

must have a non-zero component lying in the span of the
columns of ΦNI∗ , ie. it is not contained entirely in the span
of M , which is the faulty claim. �
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The preceding counterexample is sufficient to invalidate
Lemma 2 in [1]. However, it was found that even if Lemma 1
holds, the proof of Lemma 2 is also faulty. In the latter part of
the proof of Lemma 2 in [1], it was claimed that the cardinality
of solutions φ(Î1) will be increased by the described construc-
tion. This is not true in general and invalidates Lemma 2, even
if Lemma 1 holds.

III. MINOR CORRECTIONS

For consistency, the following changes to [1] are needed.

(i) Following the proof of Proposition 1, the material stating
Lemmas 1 and 2 is to be removed. The paragraph
preceding equation (9) should be changed to read: “At
each fixed time (so that (xg, y, r̃(t)) is fixed), let I∗ be
a solution to subproblem (7). The GPAW compensated
controller derived from (2) is then given by (4) with . . . ”

(ii) The Appendix containing the (faulty) proofs of Lem-
mas 1 and 2 is to be removed.

IV. CORRECTION TO PROOF OF GEOMETRIC BOUNDING

CONDITION

Here, we present a new proof of Theorem 2 in [1]. The new
proof is based on the underlying geometry, in contrast with the
existing attempt in [1], which is algebraic in nature. We first
show that a vector defined by a solution to the combinatorial

optimization subproblem (7) in [1] must be the unique solution
to a convex optimization problem. Then geometric properties
of the solution to the convex optimization problem is used to
prove Theorem 2 in [1].

Observe that the GPAW parameter Γ ∈ Rq×q is symmetric
positive definite, so that it can always be decomposed as
Γ = ΦTΦ for some nonsingular matrix Φ ∈ Rq×q [2,
Theorem 7.2.7, pp. 406]. For any I such that |I| = 0, or such
that NI(xg) is full rank, the matrix RI(xg) is well-defined
and given by (see its definition following (6) in [1])

RI(xg) =

I − ΓNI(NT
I ΓNI)−1NT

I (xg), if |I| > 0,

I, otherwise.

For any well-defined RI(xg), let the principal projection

matrix R̃I(xg) and complementary projection matrix SI(xg)

induced by RI(xg) be

R̃I(xg) := Φ−TRI(xg)ΦT, SI(xg) := I − R̃I(xg), (C1)

so that

RI(xg) = ΦTR̃I(xg)Φ−T = I − ΦTSI(xg)Φ−T. (C2)

It can be verified that R̃I(xg) and SI(xg) take the explicit
forms

R̃I(xg) =

I − ÑI(ÑT
I ÑI)−1ÑT

I (xg), if |I| > 0,

I, otherwise,

SI(xg) =

ÑI(ÑT
I ÑI)−1ÑT

I (xg), if |I| > 0,

0, otherwise,
(C3)

where ÑI(xg) = ΦNI(xg). From [3, Lemma 1, Theorem 1],
it can be seen that both are projection matrices. Using (C2)
and (C3), the objective function of subproblem (7) in [1] can
be written as

J(I) = fT
c Γ−1RIfc = fT

c Φ−1Φ−T(I − ΦTSIΦ−T)fc,

= f̃T
c f̃c − f̃T

c SI f̃c = ‖f̃c‖2 − f̃T
c SISI f̃c,

= ‖f̃c‖2 − f̃T
c S

T
I SI f̃c = ‖f̃c‖2 − ‖SI f̃c‖2,

where f̃c := Φ−Tfc = Φ−Tfc(xg, y, r̃(t)). Observe that
for any I such that RI(xg) is well-defined, we have
NT
I (xg)fI(xg, y, r̃(t)) = 0 (≤ 0), so that the solutions to

subproblem (7) in [1] remains unchanged by addition of these
redundant constraints. Defining ÑI(xg) := ΦNI(xg), it can
be seen that subproblem (7) in [1] can be rewritten as a
minimization problem with |Isat| inequality constraints,

min
I∈J
‖(I − R̃I)f̃c‖2, subject to rank(ÑI) = |I|,

ÑT
Isat

R̃I f̃c ≤ 0,
(C4)

where all function arguments have been dropped, and J
remains unaltered as the set of all subsets of Isat with
cardinality less than or equal to q.

Now, consider the quadratic programming problem

min
x∈Rq
‖f̃c − x‖2, subject to ÑT

Isat
x ≤ 0, (C5)

which is a convex optimization problem with a unique solu-
tion [4, pp. 214]. It can be seen that problem (C5) seeks the
unique projection of f̃c onto the (polyhedral) polar cone K◦ [4,
pp. 513] induced by the (finitely generated) cone K generated
by the columns of ÑIsat

[4, pp. 143]. Together with the dual
cone K∗ [4, pp. 149] (dual to K), these cones are defined by

K =
{
x ∈ Rq | x = ÑIsat

z,∀z ≥ 0 ∈ R|Isat|
}
,

K◦ =
{
x ∈ Rq | ÑT

Isat
x ≤ 0 ∈ R|Isat|

}
,

K∗ =
{
x ∈ Rq | ÑT

Isat
x ≥ 0 ∈ R|Isat|

}
.

(C6)

The projection of f̃c onto K◦, together with the cone K and
its dual K∗, are illustrated in Fig. 1. Observe that the polar
of K◦, ie. K◦◦, satisfy K◦◦ = K for every finitely generated
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Fig. 1. The projection x∗ of f̃c onto the polyhedral cone K◦, together with
K (= K◦◦) and its dual K∗ (= −K◦).

cone K [5, Lemma 2.7.9, pp. 54]. Moreover, a theorem due to
Minkowski states that every polyhedral cone (eg. K◦ in (C6))
is finitely generated [5, Theorem 2.8.6, pp. 55], and a theorem
due to Weyl states that every finitely generated cone (eg. K
in (C6)) is a polyhedral cone [5, Theorem 2.8.8, pp. 56].
These allow results applicable to finitely generated cones to
be applied to polyhedral cones, and vice versa.

We will need the following result from [6].
Proposition C1 ( [6, Proposition 2]): Let x∗ be the pro-

jection of a vector y of Rn into a convex polyhedral cone
K = K(S) that is generated by a set S = {s1, . . . , sk}. Let
R be the set of vectors si of S orthogonal to y − x. Then
the vector x∗ is equal to the projection of y into the subspace
L(R) generated by the vectors of R.

Proposition C1 applied to the convex polyhedral cone K◦

shows that the unique solution x∗ to problem (C5) is equal
to the projection of f̃c onto a subspace containing a face of
K◦ that x∗ resides in (including possibly the face K◦). This
leads to the next result, which is crucial to the new proof of
Theorem 2 in [1].

Lemma C1: The unique solution x∗ to the convex optimiza-
tion problem (C5) satisfies x∗ = R̃I∗ f̃c for any solution I∗

to the combinatorial optimization problem (C4).
Proof: When f̃c ∈ K◦, the unique optimal solution x∗

of problem (C5) must be x∗ = f̃c. In this case, ∅ is a
feasible solution to problem (C4), so that the objective function
satisfies ‖f̃c − R̃I∗ f̃c‖2 = J̃(I∗) ≤ J̃(∅) = 0 for any optimal
solution I∗. This implies R̃I∗ f̃c = f̃c, and x∗ = R̃I∗ f̃c.

When f̃c 6∈ K◦, Proposition C1 shows that x∗ is equal to
the projection of f̃c onto some (possibly non-unique) subspace
L containing a face of K◦ that x∗ resides in. This subspace
L must be orthogonal to the span of some collection of
column vectors of ÑIsat

. The unique projection of f̃c onto the
subspace orthogonal to the subspace spanned by the columns
of ÑI for some I ⊂ Isat (such that the columns of ÑI
are linearly independent) is given by R̃I f̃c [3, Theorem 1].
Since the definition of the set of candidate solutions J is
exhaustive, it must include a set of indices IL such that
the columns of ÑIL are linearly independent, and L is
orthogonal to the subspace spanned by the columns of ÑIL .

Hence x∗ = R̃IL f̃c by Proposition C1 and J̃(IL) = ‖f̃c −
R̃IL f̃c‖2 = ‖f̃c − x∗‖2. The minimization in problem (C4)
yields ‖f̃c − R̃I∗ f̃c‖2 = J̃(I∗) ≤ J̃(IL) = ‖f̃c − x∗‖2.
Uniqueness of the solution x∗ of problem (C5) [4, pp. 214]
ensures that ‖f̃c − x∗‖2 < ‖f̃c − y‖2 for all y 6= x∗. This,
together with ‖f̃c − R̃I∗ f̃c‖2 ≤ ‖f̃c − x∗‖2, shows that
x∗ = R̃I∗ f̃c, as desired.

Remark 1: Observe that ∅ ∈ J by the definition of J , and
that the constraint rank(ÑI) = |I| in (C4) is to ensure linear
independence of the columns of ÑI , or that I = ∅. Note also
that the second part of the proof of Lemma C1 includes the
case f̃c ∈ K◦, but is presented as such for clarity. �

Remark 2: Lemma C1 shows that even if problem (C4)
has no unique solutions, the projection of f̃c defined by any
solution I∗, namely R̃I∗ f̃c, is unique. Since Φ is nonsingular,
it implies uniqueness of RI∗fc = ΦTR̃I∗ f̃c as well. �

Remark 3: An implication of Lemma C1 is that the GPAW
compensated controller can be defined by (compare with (4)
and (6) in [1])

ẋg = ΦTx∗, xg(0) = xc0, u = gc(xg),

where x∗ is obtained as a solution to the quadratic pro-
gram (C5) at each fixed time. This realization will be useful
if the quadratic program proves to be more computationally
attractive than the posed combinatorial optimization problems.
However, observe that most of the inherent structure of the
GPAW compensated controller is then concealed by this rep-
resentation, which renders it ill suited for further analysis. �

Remark 4: Much work has been devoted to developing
algorithms for projection onto polyhedral cones (see [6], [7]
and the references therein). This suggests that the quadratic
program formulation may be computationally inefficient. �

For the next result, observe that any solution I∗ of sub-
problem (7) in [1] satisfies rank(NI∗(xg)) = |I∗|, so that
either I∗ = ∅ or NI∗(xg) is full rank. This ensures that
RI∗(xg, y, r̃(t)), R̃I∗(xg, y, r̃(t)), and SI∗(xg, y, r̃(t)) are
well-defined. Recall the definition of the unsaturated region
in [1] (preceding [1, Remark 9])

K = {x ∈ Rq | hi(x) ≤ 0,∀i ∈ I2m} ⊂ Rq,

where hi are the saturation constraint functions in (5) of [1].

Lemma C2: Let I∗ be a solution to subproblem (7) in [1].
If the unsaturated region K ⊂ Rq is a star domain, then

(x− xker)TΦ−1SI∗(x, y, r̃(t))Φ−Tfc(x, y, r̃(t)) ≥ 0

holds for any boundary point x ∈ ∂K and any xker ∈ ker(K).
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Proof: For notational convenience, define

ÑI := ΦNI(x), ÑI∗ := ΦNI∗(x, y, r̃(t)),

RI∗ := RI∗(x, y, r̃(t)), R̃I∗ := R̃I∗(x, y, r̃(t)),

SI∗ := SI∗(x, y, r̃(t)), f̃c := Φ−Tfc(x, y, r̃(t)),

bearing in mind that x ∈ ∂K and Γ = ΦTΦ [2, Theorem 7.2.7,
pp. 406]. With x̃ := Φ−T(x− xker), we need to show that

x̃TSI∗ f̃c ≥ 0. (C7)

Lemma C1 shows that x∗ = R̃I∗ f̃c where x∗ is the unique
optimal solution to problem (C5). Since x∗ is the projection of
f̃c onto K◦, it satisfies x∗ − f̃c ∈ K◦∗ [4, Theorem E.9.2.0.1,
pp. 726] where K◦∗ is the dual [4, pp. 149] to K◦. Moreover,
because the dual cone is the negative polar cone [4, foot-
note 2.53, pp. 149], and K◦◦ = K [5, Lemma 2.7.9, pp. 54],
we have K◦∗ = −K. Hence the relation x∗ − f̃c ∈ K◦∗ is
equivalent to f̃c − x∗ ∈ K. Using (C1) and x∗ = R̃I∗ f̃c (by
Lemma C1), we have

f̃c − x∗ = f̃c − R̃I∗ f̃c = SI∗ f̃c ∈ K. (C8)

From [1, Lemma 3], we have 〈x−xker,∇hi(x)〉 ≥ 0 for all
i ∈ Isat, where Isat is the set of indices of active saturation
constraints (see its definition preceding (7) in [1]). This means

NT
Isat

(x− xker) = NT
Isat

ΦTΦ−T(x− xker) = ÑT
Isat

x̃ ≥ 0,

which implies that x̃ is in the dual of K, ie. x̃ ∈ K∗ [4,
pp. 149]. This, together with the definition of the dual cone [4,
pp. 149] and (C8) shows that (C7) holds.

The corrected proof of the geometric bounding condition,
with a minor generalization, is presented next.

Theorem C1 ( [1, Theorem 2]): If K ⊂ Rq is a star do-
main, then for any z ∈ (Rn × K) and any zker ∈ (Rn ×
ker(K)),

〈z − zker, Γ̃−1fp(t, z)〉 ≤ 〈z − zker, Γ̃−1fn(t, z)〉,

holds for all t ∈ R, where Γ̃ = [ Θ 0
0 Γ ] ∈ R(n+q)×(n+q) and

Θ ∈ Rn×n is any nonsingular square n× n matrix.

Proof: Let z = (e, x) ∈ (Rn ×K), zker = (e∞, x∞) ∈
(Rn × ker(K)), ē = e − e∞ ∈ Rn, and x̄ = x − x∞ ∈ Rq .
With reference to (3) and (11) in [1], we need to show that

ēTΘ−1(f−ṙ(t))+x̄TΓ−1fI∗ ≤ ēTΘ−1(f−ṙ(t))+x̄TΓ−1fc,

or equivalently, x̄TΓ−1fI∗ ≤ x̄TΓ−1fc, where the function
arguments have been dropped. Using the definition of fI∗

(see (6) in [1]), Γ = ΦTΦ [2, Theorem 7.2.7, pp. 406],

and (C2), the preceding can be reduced to

x̄TΓ−1fc(x)− x̄TΓ−1RI∗(x)fc(x) ≥ 0,

x̄TΓ−1fc(x)− x̄TΓ−1(I − ΦTSI∗(x)Φ−T)fc(x) ≥ 0,

x̄TΦ−1SI∗(x, y, r̃(t))Φ−Tfc(x, y, r̃(t)) ≥ 0, (C9)

where by an abuse of notation, we mean RI∗(x) :=

RI∗(x, y, r̃(t)), SI∗(x) := SI∗(x, y, r̃(t)), and fc(x) :=

fc(x, y, r̃(t)).
If x is in the interior of K, then hi(x) < 0 for all i ∈ I2m

and Isat = ∅. Since I∗ ⊂ Isat, we have I∗ = ∅. From the
definition of SI∗ (C3) with I∗ = ∅, we see that (C9) holds
with equality. If x is on the boundary of K, ie. x ∈ ∂K,
Lemma C2 yields (C9), and hence the conclusion.

V. CONCLUSIONS

Faults in the existing proof of the geometric bounding
condition in [1] were revealed. Necessary changes and a new
proof of a marginally generalized result was presented, using
concepts from convex analysis. An intermediate result is that
the GPAW compensated controller can be defined by the
solution to a quadratic program with a unique optimal solution.
The geometric bounding condition as originally stated stands
with this new proof.
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