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We show that the difficulty of cloaking is fundamentally limited by delay–loss and delay–
bandwidth/size limitations that worsen as the size of the object to be cloaked increases relative
to the wavelength, using a simple model of ground-plane cloaking. These limitations must be con-
sidered when scaling experimental cloaking demonstrations up from wavelength-scale objects.
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We will argue that the problem of cloaking becomes
intrinsically more difficult as the size of the object to
be cloaked increases compared to the wavelength, and is
ultimately limited by fundamental considerations involv-
ing the delay–bandwidth and delay–loss products, even
for ground-plane cloaks [1–3] where bandwidth is not
limited by causality constraints. The difficulty is great-
est for cloaking objects many wavelengths in diameter
(unlike experiments cloaking wavelength-scale objects [3–
11]), but unfortunately this is the most useful regime for
resolving an object of interest. We illustrate these lim-
itations with an idealized one-dimensional (1d) system
in which cloaking is much simpler than in three dimen-
sions (3d)—only one incident wave need be considered—
but in which the same limitations appear. We argue that
the results and conclusions from this simplified model ap-
ply even more strongly to 2d and 3d, and are consistent
with recent numerical calculations for 3d cloaks [12]. We
conclude that cloaking of human-scale objects is chal-
lenging at radio frequencies (RF), while cloaking such
objects at much shorter (e.g. visible) wavelengths is ren-
dered impractical by the delay–loss product. Despite the
simplicity of this analysis, we arrive at fundamental cri-
teria that may help guide future research on the frontiers
of cloaking phenomena.

There has been intensive interest in cloaking, both the-
oretically and experimentally, since the inspiring orig-
inal papers describing how coordinate transformations,
mapped into inhomogeneous materials (“transformation
optics”) [13] could theoretically render an object invis-
ible [14, 15]. Since then, many authors have proposed
variations on the original cloaking designs [1, 2, 5, 16–
32], and there have also been attempts at experimental
realization [3–11, 33]. Most theoretical work, however,
has considered only lossless materials. In experiments,
significant reductions in the scattering cross-section (par-
tial cloaking) have been demonstrated mainly for objects
on the scale of the wavelength, with one recent excep-
tion [33] discussed below. Two practical concerns about
cloaking have been bandwidth limitations and the impact
of losses/imperfections, and we argue that these two dif-
ficulties become fundamentally more challenging as the
size of the object to be cloaked increases.

Pendry pointed out that perfect cloaking in
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FIG. 1: A 1d ground-plane cloak

air/vacuum is impossible over nonzero bandwidth,
because rays traveling around the object must have
velocity > c to mimic empty space [14]; this can be
interpreted as a causality constraint [34], and suggests a
causality limit on bandwidth even for imperfect cloak-
ing. However, it was subsequently proposed that such
bandwidth limitations are removed for a ground-plane
cloak, in which an object is hidden by a coordinate
transformation mapping it into a ground plane or
substrate [1–3]. Causality constraints do not seem to
apply to ground-plane cloaks, because the reflected wave
travels a shorter distance in the presence of the cloak and
hence does not need a speed > c to simulate absence of
the object. Although this design makes cloaking easier
in both theory and practice, we argue that even ground-
plane cloaking is subject to delay–bandwidth/size and
delay–loss limitations that become more stringent as the
size of the cloaked object increases. (To our knowledge,
experimental demonstrations of partial ground-plane
cloaking have thus far utilized only wavelength-scale
objects [3, 6, 8–10].)

A simple 1d model : In order to understand the lim-
itations of ground-plane cloaking, we consider the sim-
plest possible circumstance: a 1d cloak to hide an object
of thickness h on top of a substrate (e.g. a conducting
plane) in vacuum. This problem is conceptually much
easier than general cloaking, in that only a single in-
cident (and reflected) wave need be considered. In con-
trast, even two-dimensional cloaking is far more complex:
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not only would the object need to be cloaked from inci-
dent waves at all angles, but for incident waves parallel to
the ground the cloaking problem becomes more similar
to that of cloaking an isolated object—with the associ-
ated causality constraints—as the height of the object
increases. Since 1d cloaking appears to be so much eas-
ier, any fundamental limitations that arise in this case
should apply even more strongly in 2d and 3d.

In this idealized 1d case, the cloak consists of some ar-
bitrary materials in a region of thickness d on top of the
object, as depicted in Fig. 1. We assume that the ground
plane reflects light with negligible loss in the bandwidth
of interest (in the trivial case of a black ground plane, one
would merely need a black cloak). The function of the
cloak is now simple: the cloak must reflect incident waves
with a delay equal to the time (and phase) delay τ0 ≥
2(h+ d)/c that the reflected wave would incur in the ab-
sence of the cloaked object. A similar delay must also be
achieved in 2d/3d cloaking for beams at any angle—the
cloak must simulate the delay from bouncing “through”
the object off the ground plane, and in fact the required
delay increases for more oblique incidence (longer paths
through the object). To be more precise, suppose that
the reflected wave from the bare ground plane, at a height
h + d, has a phase φ(ω) ≈ φ(ω0) + φ′(ω0)(ω − ω0) near
some frequency ω0, where the derivative φ′(ω0) = τ0 is
the time delay [35]. There are two cases. First, the
phase-delay case: if the bandwidth is narrow, so that
φ′(ω0)(ω − ω0) can be neglected, then the cloak merely
need achieve the correct phase φ(ω0), but this imposes
a bandwidth constraint: the delay–bandwidth product
τ0∆ω must be small. (This corresponds to incident pulses
of duration ∼ 1/∆ω � τ0.) Second, the time-delay
case: if the delay–bandwidth product is not small, then
φ′(ω0)(ω − ω0) cannot be neglected and the cloak must
achieve a true time delay τ0 (an ω-dependent phase).
This raises two additional difficulties. First, it is well
known that the achievable delay–bandwidth product in
finite-size passive linear systems is limited [35–37]. Sec-
ond, a long dwell time in the cloak means that loss in
the cloak must be small. We deal with each of these
requirements below.

Delay–bandwidth limitation: The achievable time delay
τ0 in a passive linear system (unlike time-varying active
devices [38]) is limited: for a given bandwidth ∆ω and
diameter d of the delay region, the maximum delay is
proportional to d/∆ω. The scaling of delay with band-
width is known as the delay–bandwidth product limita-
tion [35], and in the case of a single resonant filter the
upper bound on τ0∆ω is of order unity as a consequence
of the Fourier uncertainty relation [35, 39]. To obtain a
bandwidth much larger than 1/τ0, one can chain multiple
filters into a slow-light delay line, or even forgo slow light
and use propagation through a long region—in any case,
the maximum delay is proportional to the diameter of the
region. A more careful analysis for slow-light delay lines
yields a delay–bandwidth limit of τ0∆ω/ω . (n−1)2d/c,
where n is the effective index in the delay region [36], and

a more optimistic bound of n(n−1)2d/c was derived un-
der more general assumptions [37]. As a consequence
of this and τ0 > 2h/c, the cloak thickness d must grow
proportional to h:

d &
h

n(n− 1)
∆ω
ω
. (1)

[This is probably optimistic in the wide-bandwidth
regime where slow light is difficult to utilize; for a non-
slow cloak of thickness d, where the time delay is simply
2dn/c and must be > 2(h+d)/c, one obtains a minimum
thickness d > h/(n − 1).] One can relax this tradeoff
if a larger n can be obtained, but large indices of refrac-
tion (arising from resonances) are associated with narrow
bandwidths and/or large losses [40].

Delay–loss limitation: In the time-delay regime, a
larger object for a given bandwidth means that the in-
cident wave needs to spend more time in the cloak,
which will tend to increase losses due to absorption and
imperfections. The loss per time γ is proportional to
γ ∼ ω Imn/Ren for light confined mostly in a given in-
dex n [41]. To maintain effective invisibility, the loss in-
curred in the cloak must be small: one must have τ0γ � 1
for negligible absorption. But, since τ0 > 2(h+d)/c, this
implies the following limitation on the loss tangent:

Imn

Ren
� 1

4π
λ

h+ d
. (2)

That is, less and less loss can be tolerated for larger ob-
jects relative to the vacuum wavelength λ.

In the phase-delay regime, the dwell time inside the
cloak can be independent of h, in which case the loss tol-
erance does not decrease as h/λ increases, at the expense
of greatly reduced bandwidth.

Interface reflections: A low-loss cloak achieving the
requisite time delay is useless if there is substan-
tial reflection off the surface of the cloak itself. In
1d, eliminating reflections reduces to the problem of
impedance-matching the cloak with vacuum [42]. In the
transformation-optics approach, impedance-matching is
attained automatically: the 1d transformation results in
a cloak material that has a both a permittivity ε and a
permeability µ (for polarizations transverse to the surface
normal), such that the impedance

√
µ/ε exactly equals

that of vacuum [13]. Alternatively, if the material is
varying slowly enough, this µ can be approximately com-
muted with the curls in Maxwell’s equations to combine
it with ε into an index n =

√
εµ/ε0µ0. This is equiva-

lent to an anti-reflective (AR) coating formed by a slowly
varying n (in the “adiabatic” limit of slow variation the
reflection vanishes [43]).

This means that a homogeneous medium cannot be
used for the cloak. To obtain a µ, metamaterials em-
ploying subwavelength metallic resonances are typically
used [4, 44], whereas a continuously varying n is typically
achieved with a microporous structure whose porosity is
gradually varied [8–10, 45]. In either case, the loss limit
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in the previous section must then include fabrication dis-
order and surface roughness in addition to absorption.

Examples and results: Let us take some real-world ex-
amples of cloaking applications and study what practi-
cal limitations one would face even for an idealized 1d
ground-plane cloak. For microwave frequencies, consider
cloaking a vehicle of height ≈ 2 m from a radar of wave-
length ≈ 1.25 cm (24 GHz). Using a time-delay cloak of
thickness 10 cm over a 10% bandwidth, Eqs. (1) and (2)
imply an effective index of & 1.4 and a loss tangent of
� 4.7 × 10−4. (Operating in the phase-delay regime
would imply a fractional bandwidth of < 10−4.) [Al-
though one might expect a cloak of thickness h/20 to
need n = 20 for the requisite delay, Eq. (1) assumes that
slow-light/resonances are used to exploit the narrow ∆ω.]
To time-delay cloak the same object at visible frequencies
with a 10 cm cloak, aiming for 10% bandwidth around
575 nm, we would again need n & 1.4, but with a loss
tangent � 2 × 10−8. (In the phase-delay regime, the
bandwidth would be only 0.013 pm.) Although such low
losses may seem attainable, e.g. with oxides, even in
1d a microstructured medium is required for impedance-
matching as described above, and in 2d and 3d even
more complicated metamaterials seem necessary [2, 3, 8–
10, 45] (anisotropy requirements can be minimized via
quasiconformal transformations [2], although discarding
anisotropy incurs a lateral shift in reflected beams [46]).
For a cloak at ≈ 10 GHz, an experimental absorption
loss tangent ≈ 10−3 was obtained [4] for a wavelength-
scale object; this is already too lossy for 1d cloaking a
meter-scale object, from above. A ground-plane cloak
can use non-resonant micro-structures that may be lower-
loss [2, 3], but for an object that stands many wave-
lengths above the ground, the problem of cloaking against
oblique waves seems to approach isolated-object cloak-
ing. Nevertheless, we cannot say that the loss bounds
from the 1d cloaking problem are definitely unattainable
for cloaking meter-scale objects at microwave frequencies,
although it appears challenging. On the other hand, loss
tangents � 10−8 seem impossibly small for any meta-
material with metallic constituents at infrared or visible
frequencies. Even if ground-plane cloaking permits the
use of purely dielectric constituents, such a loss tangent
appears almost unattainable when scattering from fabri-
cation disorder and nonzero gradients (non-adiabaticity)
is included, since the requisite gradients (especially for
cloaks not too much bigger than the cloaked object) seem
to imply constituent materials with large index contrasts
(oxide/air or larger) [8–10]. For comparison, a waveguide
with a loss tangent of 10−9 at 1µm wavelength would
correspond to decay lengths of ∼ 1 km—orders of mag-
nitude better than the cm-scale decay lengths typically
achieved at infrared frequencies in geometries (such as
strip waveguides) with wavelength-scale geometric com-
ponents, and a metamaterial requires components much
smaller than the wavelength (thus many more surfaces).
Visible-wavelength cloaking, therefore, seems restricted
to cloaking objects that are many orders of magnitude
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FIG. 2: Maximum cloak loss tangent versus diameter h for
cloaking a perfectly conducting sphere, for cloak of thickness
d = h/12. Shaded area is the regime of high absorption pre-
dicted by the simple 1d model of Eq. (2). The red curve, data
from Ref. 12, shows the maximum loss tangent to obtain 99%
reduction in the scattering cross section using a Pendry-type
cloak.

smaller than meter scales.
These calculations demonstrate the difficulty of cloak-

ing objects much larger than the wavelength when the
ambient medium is air/vacuum. The problem may be-
come easier if the ambient medium itself is lossy, such as
for an object immersed in water or inside a lossy waveg-
uide. In that case, the loss of the cloak need only be
comparable to that of the surrounding medium. The
delay–bandwidth constraint remains, however: the cloak
thickness must grow proportional to that of the object
being cloaked, for a fixed bandwidth. However, if the ve-
locity of light in the ambient medium is < c, the causal-
ity constraint on wide-bandwidth cloaking of isolated ob-
jects [14, 34] is lifted. A possible example can be found
in Ref. 33, which cloaked an “object” (a place where two
surfaces touched) roughly 100 wavelengths in diameter
(this “diameter” was indirectly measured and may not
be comparable to the diameters of objects used in other
cloaking problems), but did so in a waveguide between
two metallic surfaces. Such a waveguide has a group ve-
locity < c, eliminating the causality constraint, and may
also have non-negligible absorption loss. In addition, the
cloaking region in Ref. 33 was achieved by curving the
surfaces smoothly, which allows a smooth variation of the
effective index without microstructured media—it seems
plausible that such a cloak has at least 100 times lower
absorption/scattering loss than was present in metama-
terial cloaks.

Although we presented the basic delay–loss and delay–
bandwidth/size tradeoffs in the context of an idealized 1d
cloaking problem, we believe that similar tradeoffs must
apply even more strongly to the more difficult problem
of cloaking objects in 2d and 3d, especially without a



4

ground plane. In fact, recent numerical experiments have
shown that similar tradeoffs (loss tolerance scaling in-
versely with diameter) arise for three-dimensional cloak-
ing of a perfectly conducting sphere of diameter h [12]. In
Fig. 2, we show the loss threshold vs. h for this 3d cloak
when the (single-ω) reduction in scattering cross section
is fixed to 1/100, for cloak thickness d = h/12. The scat-
tering is calculated with a transfer-matrix method in a
spherical-wave basis [12, 30]. Not only does the maxi-
mum loss scale exactly inversely with the diameter, but

the constant factor in this relationship is consistent with
the requirement Eq. (2) that the loss be much smaller
than λ/2π(h+d) (shaded region) derived from the much
simpler 1d model (using a path length h instead of 2h
since there is no ground plane to double the optical path).
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