## AN INTRODUCTION TO UNCERTAINTY IN MEASUREMENT USING THE GUM (GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT)

L. KIRKUP AND R. B. FRENKEL



## Contents

|   | Preface                                                 |                                                              |    |
|---|---------------------------------------------------------|--------------------------------------------------------------|----|
| 1 | The importance of uncertainty in science and technology |                                                              |    |
|   | 1.1                                                     | Measurement matters                                          | 3  |
|   | 1.2                                                     | Review                                                       | 13 |
| 2 | Measurement fundamentals                                |                                                              |    |
|   | 2.1                                                     | The system of units of measurement                           | 15 |
|   | 2.2                                                     | Scientific and engineering notations                         | 21 |
|   | 2.3                                                     | Rounding and significant figures                             | 22 |
|   | 2.4                                                     | Another way of expressing proportional uncertainty           | 26 |
|   | 2.5                                                     | Review                                                       | 26 |
| 3 | Terms used in measurement                               |                                                              |    |
|   | 3.1                                                     | Measurement and related terms                                | 27 |
|   | 3.2                                                     | Review                                                       | 34 |
| 4 | Introduction to uncertainty in measurement              |                                                              | 35 |
|   | 4.1                                                     | Measurement and error                                        | 35 |
|   | 4.2                                                     | Uncertainty is a parameter that characterises the dispersion |    |
|   |                                                         | of values                                                    | 43 |
|   | 4.3                                                     | Standard deviation as a basic measure of uncertainty         | 45 |
|   | 4.4                                                     | The uncertainty in the estimate of uncertainty               | 49 |
|   | 4.5                                                     | Combining standard uncertainties                             | 50 |
|   | 4.6                                                     | Review                                                       | 52 |
| 5 | Some statistical concepts                               |                                                              |    |
|   | 5.1                                                     | Sampling from a population                                   | 53 |
|   | 5.2                                                     | The least-squares model and least-squares fitting            | 59 |
|   | 5.3                                                     | Covariance and correlation                                   | 77 |
|   | 5.4                                                     | Review                                                       | 82 |

| 6  | Syster | matic errors                                                    | 83  |
|----|--------|-----------------------------------------------------------------|-----|
|    | 6.1    | Systematic error revealed by specific information               | 83  |
|    | 6.2    | Systematic error revealed by changed conditions                 | 92  |
|    | 6.3    | Review                                                          | 96  |
| 7  | Calcu  | lation of uncertainties                                         | 97  |
|    | 7.1    | The measurand model and propagation of uncertainties            |     |
|    |        | from inputs to measurand                                        | 97  |
|    | 7.2    | Correlated inputs                                               | 109 |
|    | 7.3    | Review                                                          | 125 |
| 8  | Proba  | bility density, the Gaussian distribution and central           |     |
|    | limit  | theorem                                                         | 126 |
|    | 8.1    | Distribution of scores when tossing coins or dice               | 126 |
|    | 8.2    | General properties of probability density                       | 128 |
|    | 8.3    | The uniform or rectangular distribution                         | 133 |
|    | 8.4    | The Gaussian distribution                                       | 135 |
|    | 8.5    | Experimentally observed non-Gaussian distributions              | 139 |
|    | 8.6    | The central limit theorem                                       | 143 |
|    | 8.7    | Review                                                          | 153 |
| 9  | Samp   | ling a Gaussian distribution                                    | 154 |
|    | 9.1    | Sampling the distribution of the mean of a sample of size $n$ . |     |
|    |        | from a Gaussian population                                      | 154 |
|    | 9.2    | Sampling the distribution of the variance of a sample of size   |     |
|    | •      | <i>n</i> , from a Gaussian population                           | 155 |
|    | 9.3    | Sampling the distribution of the standard deviation of a        |     |
|    |        | sample of size <i>n</i> , from a Gaussian population            | 159 |
|    | 9.4    | Review                                                          | 161 |
| 10 | The t  | -distribution and Welch–Satterthwaite formula                   | 162 |
|    | 10.1   | The coverage interval for a Gaussian distribution               | 163 |
|    | 10.2   | The coverage interval using a <i>t</i> -distribution            | 169 |
|    | 10.3   | The Welch–Satterthwaite formula                                 | 174 |
|    | 10.4   | Review                                                          | 185 |
| 11 | Case   | studies in measurement uncertainty                              | 191 |
|    | 11.1   | Reporting measurement results                                   | 191 |
|    | 11.2   | Determination of the coefficient of static friction             |     |
|    |        | for glass on glass                                              | 192 |
|    | 11.3   | A crater-formation experiment                                   | 197 |
|    | 11.4   | Determination of the density of steel                           | 203 |
|    | 11.5   | The rate of evaporation of water from an open container         | 210 |
|    | 11.6   | Review                                                          | 210 |
|    |        |                                                                 |     |

viii

| Appendix A | Solutions to exercises                               | 218 |
|------------|------------------------------------------------------|-----|
| Appendix B | 95% Coverage factors, k, as a function of the number |     |
|            | of degrees of freedom, v                             | 222 |
| Appendix C | Further discussion following from the Welch-         |     |
|            | Satterthwaite formula                                | 223 |
| References |                                                      | 226 |
| Index      |                                                      | 229 |