

Challenges in the detection of long lived particles: the Hidden Valley Scenario

SUSY08 The 16th International Conference on Supersymmetry and the Unification of Fundamental Interactions Seoul, Korea

> Antonio Sidoti INFN and University of Rome for the ATLAS Collaboration

Outline

The Hidden Valley Scenario
Trigger selection at ATLAS

Long-Lived Particles and SUSY

Many theories for Physics Beyond Standard Model (PBSM) at LHC energies predict long-lived neutral scalar particles:

•Gauge-mediated SUSY extensions of the MSSM

- MSSM with R-Parity violation
- •Split SUSY
- Inelastic dark matter
- •Hidden Valley scenarios

Long-Lived Particles and SUSY

Many theories for Physics Beyond Standard Model (PBSM) at LHC energies predict long-lived neutral scalar particles:

•Gauge-mediated SUSY extensions of the MSSM

- MSSM with R-Parity violation
- •Split SUSY
- Inelastic dark matter
- •Hidden Valley scenarios

ATLAS detector has been designed and optimized for:SM Physics (top, electroweak, beauty)

- Higgs boson searches (SM and MSSM)
- Heavy gauge bosons (Z')
- SUSY (inclusive and exclusive searches)

Long-Lived Particles and SUSY

Many theories for Physics Beyond Standard Model (PBSM) at LHC energies predict long-lived neutral scalar particles:

•Gauge-mediated SUSY extensions of the MSSM

- MSSM with R-Parity violation
- •Split SUSY
- Inelastic dark matter
- •Hidden Valley scenarios

ATLAS detector has been designed and optimized for:

•SM Physics (top, electroweak, beauty)

- Higgs boson searches (SM and MSSM)
- Heavy gauge bosons (Z')
- SUSY (inclusive and exclusive searches)

Is the ATLAS detector able to cope with "unexpected" longlived neutral particles?

Hidden Valley Phenomenology

"Hidden Valley" models predict a new dynamic accessible (may be) at LHC energies

Hidden Valley and SM communicate through a mediator communicator(Higgs, Z',LSP)

All v-particles are neutral under the SM The lightest v-particles (π_v) are stable in the vsector and decay (weakly) only in the SM

 π_v decay in heavy quarks (heavy leptons) pairs (bb, $\tau\overline{\tau}$)

Hidden Valley models are a general class of models that give neutral, long-lived particles

M. Strassler and K. Zureck, Phys.Lett.B **661**:263(2008) Phys.Lett.B **651**:374(2007)

Hidden Valley: Parameters of the model

Hidden Valley Monte Carlo simulation based on Pythia (Matt Strassler as theoretical consultant) Simulated processes:

Higgs $\rightarrow \pi_v \pi_v$

 $Z' \rightarrow \pi_v \pi_v \dots \pi_v$

Decay length choosen to provide $\pi_{\rm v}$ decays throughout the ATLAS detector

Model parameters: Z' production: $M_{Z'}=2 \text{ TeV}$ $g'=0.2 \rightarrow M_{Z'}/g' = 10 \text{ TeV}$ $M(\pi_v)=25 \text{ GeV}$ $c\tau=1500 \text{ mm}$ h_v production and decay: $M(h_v)=140 \text{ GeV}$ $M(\pi_v)=40 \text{ GeV}$ $c\tau=1500 \text{ mm}$

The Hidden Valley Scenario Trigger selection at ATLAS

Experimental Signatures

 $gg \rightarrow Higgs$ production

"Pythia" event display (no detector simulation)

Unique topological signatures
No SM process can mimick
those signatures
Hidden Valley processes
almost background free

NEED A SIGNATURE DRIVEN TRIGGER STRATEGY

Main experimental difficulty:

Displaced vertices

→Low efficiencies for "conventional" trigger selections (jet trigger, muon triggers, tracking algorithms in Inner detector) and reconstruction algorithms

NEED A SIGNATURE DRIVEN TRIGGER STRATEGY

Main experimental difficulty:

Displaced vertices

→Low efficiencies for "conventional" trigger selections (jet trigger, muon triggers, tracking algorithms in Inner detector) and reconstruction algorithms

NEED A SIGNATURE DRIVEN TRIGGER STRATEGY

Main experimental difficulty:

Displaced vertices

→Low efficiencies for "conventional" trigger selections (jet trigger, muon triggers, tracking algorithms in Inner detector) and reconstruction algorithms

Calorimetric Trigger Selection

"Conventional" ATLAS calorimetric trigger selection.

Normalized to all events

	Level-1 and Level-2 (Eff %)				
	E _T >160 GeV	2 Jet (E _T >120 GeV)	3 Jet (E _T >65 GeV)	Total (Overlap removed)	
Higgs: Gluon Fusion	3.3	1.7	1.7	4.4	
Z prime	46.5	24.5	22.8	53.6	

Preliminary not to be shown without approval from the ATLAS collaboration

Already at Level-2 output, too small efficiency for Higgs $\rightarrow \pi_v \pi_v$ decays

Efficiency on Z' decays still acceptable but will decrease for longer π_v decay lengths

Muon Trigger Selection

Number of Muon Level-1 candidates $(P_T > 6 \text{ GeV/c})$

ATLAS Muon and Jet "conventional" triggers cannot cope efficiently with these HV signatures

Conventional ATLAS Muon Trigger (Level-1 and Level-2)			
	P _⊤ >6 GeV	P _T >20 GeV	
Higgs: Gluon Fusion	2.2	0.3	
Ζ'	4.4	0.84	

	Conventional ATLAS Trigger		
	Jet Muon Total		
H _v : Gluon Fusion	4.4	2.2	4.7
Ζ'	53.6	4.4	53.9

20th June 2008 SUSY08 Alternatives

Antonio Sidoti

Preliminary not to be shown without approval from the ATLAS collaboration

No tracks expected around jet from a π_v decay

The request on log (Had/Em) and "trackless" allows to decrease the trigger jet energy threshold

 \rightarrow Larger Trigger acceptance

 \rightarrow Smaller Trigger rates

20th June 2008 SUSY08 Alternatives

Track Multiplicity Selection:

Number of Tracks ($P_T > 1 \text{ GeV}$) in cone ($\Delta R(\Delta \eta x \Delta \phi) = 0.4$) around jet After log(Had/Em)>0.5

Preliminary not to be shown without approval from the ATLAS collaboration

Trigger Handles: Muons

Preliminary not to be shown without approval from the ATLAS collaboration Antonio Sidoti

20th June 2008 SUSY08 Alternatives

ATLAS : "Hidden Valleys" Triggers

Implemented Level-2 triggers efficient for Hidden Valley decays

HV Specific Jet Trigger Selection: •E _T >35 GeV • η <2.5 •Log(Had/Em)>1	Muon Cluster: •At least three Level-1 Muon Candidates •Contained in a cone of $\Delta R=0.4$ •Isolated ($\Delta R=0.7$) from jets	Trackless Jet with muon: •Jet: >E _T >35 GeV >No Tracks with P _T >1 GeV •Muon: >Isolated from jet (to reduce
 No Tracks with P_T>1 GeV/c 		SM background from jet punchtrough)

	Conventional Trigger		HV Specific Trigger Selection (Level-1 Level-2)					
	Jet	Muon	Total	Log (Had/Em)	Trackless jet with muon	Muon Rol Cluster	Total* HV Triggers	Total* all Triggers
H _v : Gluon Fusion	4.4	2.2	4.7	5.0	3.8	9.0	15.7	18.5
Ζ'	53.6	4.4	53.9	19.3	32.2	13.8	46.4	67.3

Main expected background from QCD di-jets Trigger Rate @ L= 10^{33} cm⁻²s⁻¹~3 Hz evaluated with minimum bias and dijet samples

20th June 2008 SUSY08 Alternatives

Antopio Sideliary not to be shown without approval from the ATLAS collaboration

Trigger Strategies

		Radius at η=0 (cm)	Trigger signature	
	Beam pipe and pixel detector	~13	Almost irreducible from beauty and charm decays	
	Strips and TRT (Outer part of ID)	~100	Modified tracking algorithms a Trigger level (Outside-In) Caveat: High-Luminosity	
N		405		
	Calorimeters	~425	Log(Had/Em), trackless jet	
	Muon Spectrometer	~1000	Multiplicity Level-1 Clusters isolated from jets, no ID tracks	
	"Never"	"infinity"	Missing ET (back to "standard" SUSY inclusive searches)	

Trigger Strategies vs decay radius of π_v

Conclusions

Hidden Valley decays are early discovery channels since small

background from SM processes expected

Trigger selection is a key issue at LHC

Trigger selections have been implemented to efficiently select Hidden Valley events

Lot of work still to do!

Hidden Valley Phenomenology: 101

Many v-hadrons production trough a QCD-like dynamics \overline{n} v-sector π_v decaying in multi bb, $\tau\tau$ etc pairs in SM final state

Hidden Valley Processes: Higgs production

Higgs production from SM (gluon fusion, Vector Boson Fusion and Higgs-*strahlung*) Decaying exactely in two v-particles in v-sector decaying in two heavy quarks or heavy letpons (bb or $\tau\tau$)

MET from gravitinos

Mixing "Standard" SUSY with Hidden Valleys

Performances: Efficiencies and Rates

- Large single muon samples are simulated with pT =2, 2.5, 3, ... 1000GeV in the CSC productions.
- Used to derive efficiency curves as a function of Pt.
- Used to calculate the expected rates using evaluated production cross sections.

The ATLAS Trigger

Level-1Trigger: Provided by Calorimeters (EM and HAD) and Muon Spectrometer (RPC and TGC). Coarse grained granularity. Selects Regions of Interests (RoI) and identifies Bunch Crossing (BC)

Level-2 Trigger: Access data in selected Rol. Fine grained granularity. Combination with other subdetectors, (e.g. ID Tracker)

Event Filter: Access full event with full granularity

Improving Calorimetric Triggers

Antonio Sidoti

Inner Detector Tracking Triggers

At $\eta=0$ $\beta=1$ particle takes:

3.5 ns to exit inner detector tracker

14 ns to exit the Calorimeter system

33ns to leave the outer stations of the Muon Spectrometer

1 LHC bunch crossing interval is 25 ns. Detectors are precisely synchronized using β =1 particles (usual ones!)

- "Slow" Hidden Valley particles could:
- •Go partially out of read-out time window:
 - -> Energy measured by calorimeters, systematically smaller
- Detector signal completely out of read-out time:
 - The Muon Spectrometer part of the event assigned to:
 - Future bunch crossing -> Muon spctrometer triggers event in ID in the previous bunch crossing
 - Empty bunch crossing-> Event identified as cosmic

Timing Issues: Calorimeter

More than 80% of π_v with $M\pi_v < MH_v/3$ reach the calorimeter within 3ns of β =1 particles For time shifts of $\Delta t < 3ns$ the effect on measured $E_T \sim 2\%$

Timing Issues: Muon System

For the Muon Trigger Δt =6ns gives 95% Bunch Crossing ID efficiency

~95% of π_v with v-pi<mh/3 reach the muon spectrometer within 6ns of β =1 particles

