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A. ON STOCHASTIC NEURAL MODELS OF THE DIFFUSION TYPE

One common simple model for the stochastic behavior of neurons is shown in
Fig. XV-1. Excitatory and inhibitory synaptic inputs are represented by positive and
negative impulse trains, respectively. The effects of temporal and spatial integration
are modelled by the action of a linear time-invariant system with impulse response

h -at
h(t) =0,

t>0

t < 0.
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(XV. COMMUNICATIONS BIOPHYSICS)
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Fig. XV-1. Model for the stochastic behavior of neurons.

All postsynaptic potentials (PSP) are thus assumed to have the same exponential shape

(although perhaps different amplitudes) with the same time constant. The output y(t) of

the integrator is usually interpreted as the membrane potential of the postsynaptic neu-

ron at the point of spike initiation. Immediately following a spike [It is convenient to

take this moment as the time origin. Many authors include an absolutely refractory

period, but analytically this is a trivial modification that we shall ignore.] the membrane

potential is reset to some hyperpolarized value yo < 0 from which it would decay expo-

nentially to a resting value (taken as zero) in the absence of any synaptic input. Synaptic

inputs, however, cause the membrane potential to follow another course; if in its wan-

derings it intersects the threshold value, y l , then another spike is initiated.

Models more or less of this kind have been proposed and studied by many

workers.1 - 9  Interest has centered primarily on the statistics of the interspike inter-

vals when the inputs are random (Poisson) impulse trains. Most of these studies have

been concerned with simulations, since a complete analytical solution to the problem

appears to be possible 3 only if a = 0 (no decay of the PSP). Formulas for the moments
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(XV. COMMUNICATIONS BIOPHYSICS)

of the interspike interval distribution have been given8 for a # 0 if the amplitude of each

PSP is very small compared with threshold, but no closed-form representations for the

interval distribution have been published for even a special combination of parameters

if a # 0. The purpose of this report is to describe one such special case in which an

explicit formula for the interval distribution can in fact be derived.

We shall assume, in common with many of the studies referenced above, that each

PSP is sufficiently small and that the (constant) average rate at which they occur is suf-

ficiently high that the random component x n(t) of the input to the integrator for t > 0 is
2

effectively gated stationary white noise with autocorrelation function c U (7) (where u (T)

is a unit impulse). We shall also assume that the input contains a steady, constant, non-

random component of amplitude x s representing the average imbalance of excitatory and

inhibitory inputs (or, perhaps, some other effective input such as has been postulated

to explain pacemaker actionl0). Since the integrator is linear, its output can be

considered as the sum of two components; a noise term y (t), which is a Gaussian

random process with zero mean and autocorrelation function E[Yn(t)Yn(T)] = Rn(t, T) =

2
2a [e - a(t-) e (t+)]; 0 < t, T (yn(t) is nonstationary because the integrator is assumed

to be reset to yo at t = 0), and a nonrandom term

x
Ys (t) = + y -- e t > 0.s a (o a

The noise term, y (t), is a particular example of a Markov diffusion process, and has
11

been much studied under the name of the Ornstein-Uhlenbeck process.

Qualitative arguments suggest (and simulations have proved) that the character of

the interspike interval distribution depends markedly on the relationship between the

threshold, y l , and the final value, xs/a, of Yl(t). For xs/a substantially less than yl'

the interval distribution is highly asymmetric with an exponential "tail," whereas for

xs/a significantly larger than y l , the interval distribution is more nearly symmetric

and "Gaussian" in appearance. The intermediate case, xs/a = Y1 , is harder to visualize

and the resulting distribution, being intermediate, is harder to describe. But, remark-

ably, for Xs/a = y 1 an analytical solution for the interval distribution can be obtained in

terms of elementary functions, as we now show.

The key to the derivation is an extension of the reflection principle of Andr6 2 to the

Ornstein-Uhlenbeck process. Let M(t, k) be the event y (T) = k e - a T for some T in the

range 0 < T - t. Then it is more or less immediately obvious that for any number, d,

P[y (t) dI M(t,k)] = Py (t) 2k e-at -dl M(t, k) .

The argument depends upon the fact that if at any time, say t = t l , we know the value

of y (t), then Yn(t) for t > t 1 may be considered as the sum of two components: one is
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-a(t-t 1 )1
Yn(tl) e , and the other is a noise process whose distribution at any time t >, t I
is symmetric about zero.

-at
To apply this principle to the problem at hand, let d = k e and multiply both sides

by P[M(t, k)] to obtain

P n(t)> k e-at , M (t,k ) = P y(t) <k e-at M(t, k)

But of course, if y (t) > k e - a t

occurred so that

P[y(t) k e-

(we assume henceforth that k > 0), then M(t, k) must have

at, M(t, k) = Pyn(t) >k e-at

_ 1 1

kZ e-at R (tt)_T ken ,t
exp

2
y

- dy .
2R (t, t)

Now let M(t, k) be the complement of the event M(t, k). Then the union of the compound
-at

event y (t) c< k e and M(t, k) with the disjoint compound
-at

is just the event y (t) < k e . Hence

P yn(t) < k eat, M(t, k)] + Pyn (t)k e-atM(t k)

= P yn (t) <ke -at]

1
ke-at

-oo

2

exp
2R (t, t)

dy.1

SR n (t, t)n

-at
event y (t) k e and M(t, k)

Moreover, since M(t, k) includes the event y (t) < k e-at

P[yn(t) <k e-at, M(t, k) = P[M(t, k)].

Finally, combining yields

-at

P[M(t, k)]=
0

1 exp -

/Rn (t, t)

To apply this formula to our problem, observe that the probability that y (T) does

not cross through (yl-yo) e in 0 < T < t is identical with the probability that
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yn() + .+ Yo --- eT does not cross through yl in 0 < - < t, if yl = xs/a. If p(t)

is the density distribution for the first passage time (i. e., the interspike interval dis-

tribution), then

t p(T) d = P[M(t,yl-yo)]

or

() (P[M(t, y1-Yo)p(t) at

S2(y1-yo) a3/2 e 2at ex (y -yo)2 aexp - t ; t>O
\1 r a 2at 3/2 2 (e2at - 0)(e - 1)3/2

which is our final result.

In the limit a - 0, we readily obtain

lim p (t) = exp - ; t > 0
a--0 2T at3/2 2a2t

which is the well-known 3' 13 result for the distribution of the first passage times of a

zero-drift Wiener process through a threshold (or absorbing barrier) at (yl-Y ). For
a = 0, the moments of the interspike interval distribution are all oo, because the "tail"
vanishes only as t3/2. For a f 0, however, the "tail" of the interval distribution van-

ishes exponentially and all of the moments are finite. In fact, it is elementary, if alge-

braically tedious, to show that

E(t) = tp (t) dt = P [M(t, y 1 -o)] dt0 0
(y -yo) 2 2 21 e u /2 e-v /2 dv du

which is a formula that has been previously given 8' 14 for the mean of the interval dis-

tribution in this case.

The shape of p(t) is shown in Figs. XV-2 and XV-3 for various values of y =
on both linear and semi-logarithmic scales. Some of the more obvious features follow.

1. For any value of y, p(t) is unimodal with an exponential "tail"; indeed it is easy

to show analytically that
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Fig. XV-2. Interval histograms.

QPR No. 94

2 4 6 8 10

2at

Fig. XV-3. Interval histograms.

286



(XV. COMMUNICATIONS BIOPHYSICS)

2ay -at
p(t) - - e

as t - oo

2. For small values of y << 1 (i. e., noise large), p(t) is highly skewed and has a

concave-upward "tail" on a semi-logarithmic plot that has been often described as

"slower than exponential" or "nonexponential" behavior. For large values of y >> 1, p(t)

is more nearly symmetric.

Physiological histograms with similar shapes have often been observed. 3

W. M. Siebert
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B. CONTROL OF A SENSORY-MOTOR REFLEX IN CRAYFISH

A preliminary report I described a situation in crayfish abdomen in which what

appears to be a monosynaptic sensory-motor reflex arc is regulated by sensory input of

different modality. The basic reflex arc comprises the negative feedback system dia-

grammed in Fig. XV-4 for the nth abdominal segment. Passive flex of segment n+ 1

relative to segment n causes an elongation of the tonic receptor muscle and an increase

in spike frequency on the stretch receptor (SR) neuron. The sensory input causes spikes

on a motor neuron, and the resulting tension in superficial extensor muscle fibers tends

to oppose the original flexion.

The branch of the second root which includes the SR neuron runs between the super-

ficial extensor muscles and the dorsal exoskeleton, and a pin or wire electrode inserted

through the shell can pick up SR spikes and summed junction potentials from many fibers

ANTERIOR EDGES OF DORSAL EXOSKELETON:

ANTERIOR OF SEGMENT n, OF SEGMENT n + 1

SDORSAL 'TONIC RECEPTOR
MUSCLE

STRETCHADMNAL RECEPTOR

SUPER ICIAL
EXTENSOR
MUSCLES

EXTENSOR
MOTOR NEURON

_ / 3rd ROOT
GANGLION
SERVING SEGMENT n (ACTUALLY LOCATED IN SEGMENT n-1)

Fig. XV-4. Diagram of the relations between nerves and muscles
involved in the basic sensory-motor reflex.

of these muscles. The reflex is seen as a muscle junction potential beginning -20 msec

after an SR spike. We call such a muscle junction potential a time-locked muscle (TLM)

wave. The synapse (or synapses) involved in this reflex must lie in the ganglion serving

that segment because the TLM waves persist when the central nerve cord is cut anterior

and/or posterior to that ganglion.

The fraction of SR spikes that are followed by TLM waves varies from 0 to nearly 1.

Presumably, this variation is caused by inputs to the motor neuron either from other

sensory neurons or from the CNS. In particular, we found 2 that sensory input produced
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by the disturbance of hairs on the exoskeleton can increase the fraction of SR spikes fol-

lowed by TLM waves from a typical spontaneous value of 0. 1 or less to as high as 0. 9.

We thought originally that the hairs responsible for the enhancing effect on the reflex

were quite widespread, but later experiments with small electrically driven probes have

shown that most, if not all, of the hairs involved lie on the posterior edge of a segment

where they are moved by relative movement between that segment and the next posterior

one. Though input from hairs on several segments can increase the TLM/SR fraction

in a given segment, we still cannot put numbers on the relative enhancement from dif-

ferent segments because of our present inability to monitor the stimulus strength. (We

can find afferent "touch" neurons - also in the second root - which fire in response to

movement of the hairs, but we have not yet been able to tell whether only one or more

than one afferent fiber produces the regulatory effect.)

Since one of the reasons for our work is to look for plastic properties of synapses,

1.0 -

0.5 - V

0 O 0 1st TLM

0.4 50 A A A 2nd TLM
0.4 - 50

o 80 0

0.3 - 0 045

20 29
280 o

025
51

z 15
< 0.2 60 o0 o 15

23O 074 V V \ 1
3 1  

117
0 65 21

_ 515 V\ 95

1714 3 3 105 125 o 0

t 10 200 300 400 500 600 700

TIME AFTER INITIATION OF TACTILE STIMULUS (msec)

Fig. XV-5. Probability that an SR spike is followed by a TLM wave vs time of
TLM wave measured from initiation of tactile stimulus. A burst
of tactile nerve spikes begins at time tA. Solid curve (circles):

only SR spikes preceding the first TLM wave after the stimulus
are counted. Dashed curve (inverted triangles): only SR spikes
occurring between first and second TLM waves after the stimulus
are counted. Numbers next to data points represent the number
of SR spikes used in the calculation of that probability. Time win-
dow: 10 msec for 0 < t < 300 msec, and 50 msec for t > 300 msec.
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we have attempted to quantify the regulatory effect of the "touch" input on the SR-muscle

reflex. In a typical experiment we recorded SR spikes and TLM waves while several

hundred mechanical stimuli, in the form of short puffs of air, were directed at an area

of exoskeleton on segment 3 at intervals of approximately 1 sec, while the SR neu-

ron in segment 3 was firing at approximately 10 spikes/sec. We plotted two PST

(post-stimulus-time) histograms: (a) of the first TLM wave following the stimulus,

and (b) of all stretch receptor spikes (delayed by 20 msec) occurring between the

stimulus and the first TLM wave. The ratio of histogram (a) to histogram (b) is

a PST histogram of the probability that an SR spike at time t-20 msec is followed

by a TLM wave at time t. This probability (shown by the circles and the solid curve

in Fig. XV-5) rises to a maximum in ~100 msec and decays in another 300 msec.

The burst of afferent spikes on "touch" neurons in response to the air puff can be

recorded. It begins at time tA (shown on the graph in Fig. XV-5) and seems to

last no more than ~30 msec. The data also show that the occurrence of a TLM

seems to "reset" the synapse to some degree. That is, the probability that an SR

spike that occurs after the first TLM wave elicits a second TLM wave at time t

is always lower than the corresponding probability for the first TLM wave at time t.

The PST probability for the second TLM wave is shown by the inverted triangles

and dashed curve in Fig. XV-5.

These results suggest a model in which a short burst of spikes on a "touch"

neuron momentarily increases the sensitivity of the synapse(s) between the SR neu-

ron and the extensor motor neuron. Many facets of this regulatory effect remain

to be studied: for example, its dependence on number of spikes in a "touch" burst,

on SR firing rate, and on segment of origin of the "touch" input, the additivity of

inputs from different segments, whether the effect habituates, and the isolation of

other sources of control of the basic reflex.

R. W. Henry, Z. Hasan
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C. AUDITORY MASKING

The masked threshold (the level of masker just needed to reduce detection of the sig-

nal in a two-interval, two-alternative forced-choice experiment to 75% correct) was

measured when the masker was rectangular narrow-band (10 Hz wide) Gaussian noise

and the signal was a pure tone of fixed frequency. The variable parameters were the

signal intensity and the center frequency of the noise. The masker was generated in

accordance with the following representation: n(t) = xc (t) cos 2 Trf mt - x (t) sin 2Tfm t,

where xc(t) and xs(t) are independent, lowpass Gaussian processes with identical spectra.

The spectrum of n(t) was "clean" 55 dB below the level of the narrow band of noise

centered at fm' and its edges cut off at the rate of 5 dB/Hz.

The incremental masking function (the

change in the masked threshold for a given
2.5

change in the signal intensity) was found to

be adequately described by a power law over

the 20-dB range of signal intensities used

in our experiment. That is,

Imtl /1  s P (fs ' fm)
Imt21 s1= 2

mt 2 s2/

where I mt is the masked threshold cor-

responding to Is1, and so forth. Fig-

ure XV-6 gives the exponent, P(f , fm ) , for

2T a signal frequency of 2000 Hz for one sub-

ject. The exponent was found to be almost

always greater than or equal to one; it was

1.0 found to be greater than one for masker cen-

ter frequencies just below and above the

0.8 signal frequency, while it was precisely one

when the masker was at the signal frequency.

0.6 I The exponents for maskers tested below and
1400 1800 2000 2200 2400

fm(Hz) above the signal frequency increase mono-

tonically with increasing masker frequency.

Fig. XV-6. Figure XV-7 shows psychophysical tuning

Slope of the incremental masking curves constructed from the same data.
function vs fm fors = 2000 Hz. Earlier experimenters did not characterize
Vertical bars indicate estimated their masking functions by a power law, nor
standard deviation for 200 trials.
Subject: P.G. did they find a decreased effectiveness of the
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masker at higher intensities for fm < fs. It is suggested that distortion in their equip-

ment was responsible for these differences.

A physiological explanation of these results was sought in terms of the excitatory and

-56 - Is = 30 dB(SL)

-48 -

Is = 20 dB(SL)

-40

-32 - Fig. XV-7.
I =I 10 dB(SL)

T - Psychophysical tuning curves.0
-24 - f = 2000 Hz. Subject: P.G.

-16 -- - W=180+40 Hz

Q fs/W = 11 3

-8

1400 2000 2400

fm(Hz)

inhibitory responses that are known to occur in the auditory nerve.l' 2 By using the
description of two-tone inhibition formulated by M. B. Sachs, 2 an approximation to the
neural discharge function, and by assuming a constant rate-ratio threshold, a power law
was predicted. The exponent of this power law bears a similar relation to stimulus
parameters as the exponent found in the psychophysical masking experiment. 3

D. O. Stahl II
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D. MICROELECTRODE RECORDINGS OF INTRACOCHLEAR

POTENTIALS

[These results were presented at the 77th Meeting of the Acoustical Society of
America, April 10, 1969. Abstract published in the Program of the 77th Meeting,
p. 36.]

A variety of electric potentials have been recorded from the cochlea during the last

40 years, but relatively little is known about how these potentials are generated, and

their role in the signal transmission processes of the ear is a subject of much specula-

tion. In our experiments we recorded electric potentials from micropipettes as they

were advanced through the cochlear partition of cats' ears that were stimulated by tones.

Following the electrophysiological experiments the cochleae were examined histologically

to determine how closely the recording of electrical events might be associated with spe-

cific cochlear structures.

1. Methods

Our experimental apparatus is illustrated in Fig. XV-8. Micropipettes (with tip

diameters probably in the range of a few micrometers to a few tenths of a micrometer,

filled with 2MKC1) were advanced with a hydraulic system through the round-window

membrane into the cochlear partition in the extreme basal end of the cochlea. On an

inkwriter oscillograph we recorded as follows.

1. The position of the electrode drive as obtained from a potentiometer on the

micrometer movement.

2. The DC potential recorded by the moving electrode referred to an electrode on

the chin of the cat.

3. The amplitude of the response recorded by stationary electrodes: either a gross

electrode near the round window, and/or a micropipette in a cochlear scala.

4. The magnitude of the impedance of the moving electrode at 25 Hz. This measure-

ment was made by injecting a 25-Hz current through the electrode and measuring the

amplitude of the 25-Hz voltage as detected through a bandpass filter. Usually this

impedance is purely resistive at 25 Hz, although the reactive component can be signifi-

cant at higher frequencies in the audio range.

5. and 6. The amplitude and phase of the fundamental component of the response to

the tone recorded by the moving electrode as detected through a narrow-band (2 Hz) elec-

trically tuned filter.

In addition to the oscillograph record of the variables as functions of time, an

x-y plotter displayed DC potential vs electrode position. Other combinations of vari-

ables could be plotted, since the data were recorded on magnetic tape.

The electrode holder (Fig. XV-9) was attached to a hydraulic system. At the
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Fig. XV-8. Schematic of the experimental apparatus.
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Fig. XV-9. Sketch of the electrode holder.

cessful in locating electrode passes when the

histological procedures.
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completion of a traverse of the cochlea,

cement was poured into the bulla cavity

so as to cover the round window and

surround the micropipette. The hydraulic

system was used to withdraw the elec-

trode holder, while the micropipette was

held in the cochlea by the cement and

separated from the rest of the assembly

at the vaseline seal. The electrode

remained in place in the temporal bone

throughout fixation, decalcification, de-

hydration, and embedding in celloidin.

For sectioning, the bone was oriented

so that sections were taken in an approx-

imately transverse plane that was almost

parallel to the electrode. A deviation of

the plane of section from the axis of the

pipette was chosen so that the tip of the

electrode was cut before the thicker stub.

In some cases the electrode tip remained

in the tissue. In other cases we could

find other indications of the position of

the electrode pass. We have been unsuc-

electrode was not left in the tissue during

2. Results

a. Correlation of Electrophysiology and Anatomy

Figure XV-10 shows an example of an oscillographic record obtained as the micro-
pipette advanced through the organ of Corti. Many of our principal observations can be
described by dividing the electrode pass into 5 regions (1 through 5 in Fig. XV-10).

In three regions (1, 3, and 5) the electrode resistance, DC and AC potentials are

relatively constant for large displacements of the electrode. In agreement with the con-
clusions of many others (starting with von B&kCsy, in 1952, and Tasaki, Davis, and
Eldredge, in 19541, 2) we feel that these three regions are probably (i) scala tympani,

(ii) scala media, and (iii) scala vestibuli. In the other two regions the electrode resis-

tance and DC potential change rapidly, presumably as the electrode penetrates Reissner's
membrane (4) and the basilar membrane and organ of Corti (2).
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An example of oscillographic records obtained when a micropipette
is advanced through the organ of Corti. Regions 1 through 5 are
thought to correspond to the intervals when the electrode is passing
through (1) scala tympani, (2) organ of Corti, (3) scala media,
(4) Reissner's membrane, (5) scala vestibuli.
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(XV. COMMUNICATIONS BIOPHYSICS)

Figure XV-11 shows some of these same variables plotted against electrode position.
In agreement with von Bdk6sy, I and Tasaki, Davis and Eldredge, 2 we find that the

J
0-

-oo- UJ PWS 73L-12

FREQUENCY= 500Hz INTENSITY= 70dB SPL

: 180* leadu

0 200 400 600 800
MICROMETER POSITION (micrometers)

Fig. XV-11.

D-C potential and the amplitude and phase
of the fundamental components of the coch-
lear potential vs electrode position. These
plots were made from a magnetic tape. The
break and overlap of the lines at the 4 00-.
position results from a period (1 1/2 hours)
of recording responses to tones in this loca-
tion. The vertical separations at this point
represent changes in the recorded variables
over this time. The horizontal overlap re-
sults from drift in the recording electronics.
The dashed portion of the top record was
recorded from an earlier penetration of the
round window in the same location.

amplitude and phase of the cochlear potential change abruptly when the large positive
DC potential is contacted. The characteristics of these changes will be discussed sep-
arately in the report following this one.

Figure XV-12 (left) shows a histological section containing an electrode tip. A close
inspection of the section shows that the electrode passes through the tunnel of Corti.
DC potential vs position is plotted on the right on the same scale. We can see that there
is at least a rough correspondence (in this case) between the anatomical and physiological
distances. We can make comparisons more easily in Fig. XV-13 where the same DC
profile is superimposed on an outline tracing of the histological section. The distance
traveled by the electrode from touching the round window to the region in which negative
potentials are found is approximately equal to the distance across the scala tympani along
the electrode track in the section. Also the region just before the positive potential is
encountered is approximately the width of the organ of Corti; the distance over which
the positive potential is nearly constant is approximately the same as the width of scala
media. In this case an intermediate positive potential level was recorded which
continues for some distance. Perhaps this can be associated with the distortion
of Reissner's membrane that appears in the section.

Even this rough correspondence of anatomical and physiological distances does not
always obtain. In Fig. XV-14 for instance, the distance over which the positive poten-
tial was held is approximately twice the width of scala media. The picture suggests that
the electrode tip was in the bone before the positive potential disappeared! It is not pos-
sible in this case, and in many others, to arrange the DC profile and the anatomical sec-
tion to give a reasonable correspondence of distances.
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Overlay of the DC profile from the
right of Fig. XV-12 on an outline
drawing from the photomicrograph
on the left.
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Fig. XV-14.
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A DC profile (dotted) superimposed on an outline
of a photomicrograph containing a clear indication
of the electrode track through the tunnel. No matter
how the DC profile is moved up and down with respect
to the histological section, it is difficult to associate
the changes in potential with the structures.
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(XV. COMMUNICATIONS BIOPHYSICS)

In Fig. XV-15 histological distance measurements are plotted against electrophysi-

ological distances for a number of cochleae. Although the histological and electrophys-

iological distances are not uncorrelated, the large spread of the data suggests that it

would not be possible to define the position of the electrode at any one time with enough

precision to say whether it was in a particular cell.

Some indications of the variability in the physiological distance measurements are

seen in Fig. XV-16, in which superimposed records of the DC potential were taken as

the electrode was moved in and out, along the same path. We see that the physiological

measurements of distance can vary considerably. For instance, the width of scala

media as measured from the positive potential region in these records ranges from

350 L to 700 L. It is easy to think of other possible sources of discrepancies between

the two distance measures - factors such as electrode bending and distortion of the his-

tological material. We have not attempted to assess the relative importance of these fac-

tors. It seems clear that electric events that extended in space for distances of 10's of

microns or less certainly cannot be associated with specific small anatomical structures

by this technique.

3. D-C Potentials

Figure XV-17 is a histogram of the amplitude of the positive DC potential referred

to scala tympani (endolymphatic potential). For the 51 cochleae included here, 88%

have an endolymphatic potential between 90 mV and 115 mV. The average is ~100 mV.

Figure XV-18 is a histogram of the potential difference between scala tympani and

scala vestibuli. Of the 38 values plotted here, 90% are within the range ±10 mV. The

average is approximately 0 mV.

Measurements with intracochlear electrodes in guinea pigs (most recently and

extensively by Lawrence 3 and Butler 4 ) have indicated a large negative potential in the

organ of Corti which can be recorded with electrodes having large (30- L) tips3 and over

rather large distances. 4 This potential has been called the "Corti potential," and is pre-

sumed to exist in the large extracellular spaces of the organ of Corti. Our records do

not show any potential with these characteristics. Figure XV-19 shows the general

instability of DC potential, cochlear response amplitude, and electrode resistance that

is encountered just before the advancing electrode contacts the large positive potential.

(Incidentally, we see on the lower trace that the amplitude of the cochlear response from

a stationary electrode in scala media does not change appreciably as the moving elec-

trode passes through the organ of Corti.) In most penetrations we encounter a few nega-

tive potentials in this region - often as large as 100 mV. Usually the negative potential

decreases rapidly and is gone within a few seconds, even if the electrode advance is

stopped when the negative potential is encountered.
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Fig. XV-17.

Histogram of endolymphatic poten-
tial determined from measurements
of the first penetration of micropi-
pettes into 51 cochleae.
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Fig. XV-18. Histogram of DC potential between scala tympani
and scala vestibuli (38 cochleae).
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from a micropipette that had been advanced into scala media
before these records were taken.
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(XV. COMMUNICATIONS BIOPHYSICS)

DC potential vs position is shown in Fig. XV-20 for another penetration. The nega-

tive deflections just to the right of the positive potential region are typical of our results,

in that negative potentials greater than 10 mV or 20 mV are not maintained for more than

a few micrometers of electrode movement. Hence we do not record a potential having

properties that one might expect for an extracellular "Corti potential." We feel quite

sure from our histological results that some of our penetrations have passed through the

hair-cell region. Some must have gone through the spaces of Nuel and the tunnel - large

extracellular spaces. In none of these passes have we encountered a negative DC poten-

tial of the size obtained by Butler and Lawrence in the guinea pig (that is, from -40 mV

to -100 mV) which were maintained over distances of tens of microns. Figure XV-20

PWS 59L
It hours

0
< C3 Yhours

200 400 600 800 0 1200 1 400 1600
MICROMETER POSITION (micrometers)

Fig. XV-20. D-C profile for a penetration in which the left-hand negative

deflections probably occurred as the electrode went through

the round-window membrane.

shows at the left a fairly unusual record of a large negative potential that was held over

approximately 100 .i. Probably the electrode tip was in the round-window membrane here.

Since we have not been able to obtain large negative potentials in the organ of Corti

that are maintained for large electrode displacements, we have not determined the con-

ditions necessary for recording this result, and we cannot really settle this issue. We

should point out that although Lawrence 3 displays DC potential vs position in plots sim-

ilar to some of ours, there are important differences in our techniques. When we

encountered a large change in potential, we stopped moving the electrode. In most of

Lawrence' s records the electrode is advanced at a constant speed of 5 i/sec. This dif-

ference in procedure can clearly make a large difference in the appearance of the curves.

W. T. Peake, H. S. Sohmer, T. F. Weiss

(Harvey S. Sohmer is now associated with the Department of Physiology, Hadassah

Medical School, Hebrew University, Jerusalem.)

QPR No. 94

1. - -~ --

~ --- I I II

304



(XV. COMMUNICATIONS BIOPHYSICS)

References

1i. G. von B6kesy, "D-C Resting Potentials inside the Cochlear Partition," J. Acoust.
Soc. Am. 24, 72-76 (1952).

2. I. Tasaki, H. Davis, and D. H. Eldredge, "Exploration of Cochlear Potentials in
Guinea Pig with a Microelectrode," J. Acoust. Soc. Am. 26, 765-773 (1954).

3. M. Lawrence, "Electrical Polarization of the Tectorial Membrane," Ann. Otol.
Rhinol. Laryngol. 76, 287-313 (1967).

4. R. A. Butler, "Some Experimental Observations on the dc Resting Potentials in the
Guinea Pig Cochlea," J. Acoust. Soc. Am. 37, 429-433 (1965).

E. INTRACOCHLEAR RESPONSES TO TONES

[These results were presented at the 77th Meeting of the Acoustical Society of
America, April 10, 1969. Abstract published in the Program of the 77th Meeting,
p. 36.]

During penetrations of the cochlea with microelectrodes (described in Sec. XV-D)

we obtained data on cochlear potentials in response to tones in the scalae of the basal

turn of the cat's cochlea.

Our principle results are summarized as follows.

1. Relatively large changes in cochlear potentials are found across the organ of

Corti; that is, between scala tympani and scala media. The changes in both the mag-

nitude and phase of cochlear potentials are dependent on stimulus level and frequency.

Relatively small changes in cochlear potentials are found across Reissner's membrane

and during the traverse of a scala.

2. To a first-order approximation the magnitude of the cochlear potentials recorded

from the basal turn appears to be proportional to the magnitude of the stapes velocity.

Data of von B6k6sy appear to be consistent with this result.

1. Methods

Our conclusions are based on data obtained from 31 cat cochleae. In two of these

cochleae the auditory nerve had been cut two weeks before the experiment.

In the last 18 cochleae in the series a swept-tone technique (illustrated in Fig. XV-21)

was used. An oscillator mechanically locked to a level recorder was swept in frequency.

The oscillator drove a condenser earphone housed in a probe tube assembly that was

inserted into the external auditory meatus. A calibrated probe tube was used to mea-

sure the pressure near the eardrum. The output of the probe tube was amplified and

fed to a tracking filter. The tracking filter had a 2-Hz bandwidth centered on the fre-

quency of the oscillator. The magnitude of the ouput of the tracking filter could be

plotted directly on the level recorder as a continuous function of frequency. The output
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Magnitude of the fundamental component of the cochlear potential
in response to tones as a function of frequency. These data were
obtained from a gross electrode on the surface of the cochlea. In
this particular case the bony septum between the middle-ear cav-
ity and the bulla cavity was intact, which accounts for the level-

independent dip around 3. 5 kHz. 1 0
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(XV. COMMUNICATIONS BIOPHYSICS)

of the tracking filter also went to a phase meter whose output could also be plotted as

a continuous function of frequency. Potentials recorded with intracochlear microelec-

trodes could be analyzed in the same way as indicated in Fig. XV-21. Thus the results

to be presented are based upon the magnitude and phase of the fundamental of the

response to a tone.

The magnitude of the cochlear potential obtained from an electrode located on the

surface of the cochlea is shown in Fig. XV-22. Data with a similar format were

obtained with intracochlear microelectrodes.

The same swept-tone techniques were used in all calibration procedures, as well

as in measuring the impedances of microelectrodes in situ. The latter measurements

were used to indicate in an approximate manner the maximum frequency below which

the measurements were probably not significantly affected by the frequency characteris-

tics of the microelectrode and headstage system.

2. Results

a. Changes in Intracochlear Potential as a Function of

Electrode Position

The ratio of the magnitudes of cochlear potentials in scala media to scala vestibuli,

that is, across Reissner's membrane, are shown in Fig. XV-23. Data from 4 animals

at one stimulus level are shown as a function of frequency. Except for the data obtained

from PWS84L at frequencies above 1 kHz the curves deviate from 0 dB by no more than

+8 dB over more than 2 decades of frequency. This ratio does not depend strongly on

stimulus level.

In Fig. XV-24 it is shown that the phase shift of cochlear potentials between scala

media and scala vestibuli is relatively small and not strongly dependent on stimulus fre-

quency. Other data indicate that this phase shift is not strongly dependent on stimulus

level. We conclude, therefore, that cochlear potentials are larger in scala media than

in scala vestibuli by perhaps as much as a factor of two, and the potentials are approx-

imately in phase in these two scalae.

In contrast to these results, large changes in cochlear potential occur when an elec-

trode is advanced from scala tympani to scala media. As indicated in Fig. XV-25, the

magnitude of the ratio of cochlear potentials in scala media to scala tympani can be

larger than 20 dB. Although the data vary considerably from cat to cat, the tendency

appears to be for this ratio to be large at low frequencies and to decrease toward 0 dB

at 2-3 kHz. Above 2-3 kHz a trend is less clearly discernible. The spread in the data

at high frequencies may be due partly to differences in frequency responses of micro-

electrodes in the different experiments. The data shown were obtained with the same

voltage level into the earphone, but not necessarily for the same drum pressure for each
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Fig. XV-23. Ratio of magnitudes of cochlear potentials across Reissner's membrane
(CPSM/CPSV) vs frequency for 4 cochleae. Solid lines correspond to data

obtained from normal cochleae. Dashed lines correspond to data obtained
from cochleae whose auditory nerve had been severed.
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Fig. XV-24. Phase shift of cochlear potentials across Reissner's membrane (scala
media minus scala vestibuli) vs frequency for 3 cochleae. Solid lines
correspond to data obtained from a normal cochlea. Dashed lines cor-
respond to data obtained from cochleae whose auditory nerve had been
severed.
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Fig. XV-27. Phase difference of cochlear potentials (scala media minus scala
tympani) vs frequency. Solid lines correspond to data obtained
from normal cochleae. Dashed lines correspond to data obtained
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(XV. COMMUNICATIONS BIOPHYSICS)

animal. These differences may account in part for the variations in the results from

animal to animal. Between 1 kHz and 2 kHz there appears to be a peak in the data for

the normal animals. The two cut-nerve animals do not show this peak. Other observa-

tions lead us to conclude that this effect is due primarily to the neural component of the

response.

In Fig. XV-26 it is shown that the ratio of cochlear potentials in scala media to scala

tympani depends on stimulus level, as well as on stimulus frequency. Even though the

data across animals show considerable variation, the level dependence of this function

shows consistent trends for any one animal, as is illustrated in Fig. XV-26. The ratio

of cochlear potential in scala media to scala tympani is larger at high levels for almost

all frequencies.

The difference in phase between cochlear potentials in scala media and scala tym-

pani for 5 different cochleae at the same stimulus voltage level is shown in Fig. XV-27.

These curves seem to approach zero at low frequencies and head toward values ranging

from 90 to 180 at high frequencies. This phase shift is also level-dependent.

From such data we conclude that during a traverse of the cochlea, the largest

changes in cochlear potentials are seen across the organ of Corti. Relatively small

changes are seen across Reissner's membrane and during the traverse of a single scala.

Between scala tympani and scala media, the phase difference of cochlear potentials

is usually less than 1800. Since a phase difference of 1800 has been both widely

reported 1 -8 and assumed to be consistent with the hypothesis that the sources of coch-

lear potential in response to sound are contained within the organ of Corti, it might be

useful to try to interpret this result by examining a relatively simple network model of

the distribution of AC potentials in the cochlea.

Two adjacent incremental portions of a one-dimensional distributed-network model

of the cochlea are shown in Fig. XV-28. Each scala is assumed to be an equipotential

at a longitudinal position x cm from the stapes, with the potentials of scalae vestibuli,

media, and tympani shown as the top three nodes in the circuit. The reference node at

the bottom represents the body of the animal. The voltage-current characteristic of all

cross-sectional boundaries of the scalae are represented by admittances per unit length

(the Y' s), except for the boundary between scala tympani and scala media. No assump-

tion is made about this boundary, except that it can be represented as a two-terminal

device. This assumption implies, however, that no current is assumed to flow in the

longitudinal direction within the organ of Corti. Adjoining incremental portions of the

cochlea are assumed to be coupled resistively through the lymphs. This coupling is rep-

resented by the small r' s, which are resistances per unit length of the scalae.

The following conclusions can be derived from this network, 9 subject to the restric-

tion that the spatial distribution of cochlear potentials in response to tones is broad

compared with the spread of potential attributable to a point source in the cochlea.
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Y = admittance/length of cochlea

K= current/length

V= potential in scalae
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Fig. XV-28. A one-dimensional, distributed, electric network model of the cochlea.
VV(X), VM(X) and VT(X) are the cochlea potentials in scalae vestibuli,

media, and tympani x cm from the stapes. YVP YM and YT are the

admittances per unit length of scala vestibuli, media, and tympani rela-
tive to ground. YR is the admittance per unit length across Reissner's

membrane. KB(X) represents the current per unit length flowing across

the organ of Corti. rV, rM, and rT are the longitudinal resistances per

unit length in scala vestibuli, scala media, and scala tympani.
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1. If all of the admittances in the network are purely real, the ratios of potentials

in any pair of scalae is independent of frequency, the phase shift of cochlear potentials

across the organ of Corti is 180 independent of frequency, and the phase shift of coch-

lear potentials across Reissner' s membrane is 0 0.

2. To obtain results from such a network which are even qualitatively consistent

with our data at least one of three conditions must obtain:

(a) The admittances in the network are complex; that is, the various boundaries of

the cochlea scalae have admittance with significant reactive components at frequencies

as low as 100 Hz.

(b) The voltage-current characteristic of the organ of Corti cannot be modelled as

a two-terminal device, and presumably some current flows in the longitudinal direction

in the organ of Corti.

(c) There is significant electrical coupling of cochlear potentials between different

turns of the cochlea through the bony wall.

At present, data are not available to allow us to decide among these alternatives.

b. Relation of Cochlear Potentials to Stapes Velocity

The magnitude of the ratio of cochlear potential to stapes velocity is shown as a func-

tion of frequency for 7 cochleae, in Fig. XV-29. The gross electrodes were located on

the surface of the cochleae. These transfer functions have been calculated from data

like those in Fig. XV-22 plus corresponding curves for the sound pressure outside the

tympanic membrane and an average transfer function for the middle ear of the cat. 1 0

The curves are all reasonably flat (±5 dB) from 100 Hz to 10 kHz. For frequencies below

100 Hz the transfer function seems to roll off somewhat. Thus the data indicate that

over a wide frequency range the cochlear potential recorded on the surface of the cochlea

is of the order of 1 LV for 1 u/sec of stapes velocity.

Transfer functions for different stimulus levels obtained from one cochlea are shown

in Fig. XV-30. The sequence of transfer functions for decreasing stimulus level appear

to converge upward to a single curve. The upper three curves obtained at the three low-

est stimulus levels show very little deviation from each other. In this respect, at least,

the system generating cochlear potentials can be represented as a linear system. At the

lower stimulus levels the transfer function becomes flatter and relatively independent of

stimulus frequency. At the higher stimulus levels the transfer function deviates signif-

icantly from a constant and the cochlear potential is no longer proportional to the stapes

velocity.

Similar data obtained from microelectrodes inserted into the cochlear scalae lead

to somewhat similar conclusions although the results depend somewhat upon which

scala the electrode is in. The electrical characteristics of microelectrodes limit their
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frequency response to a few kilohertz and thus, in addition, we cannot be certain of the

relation between the magnitude of the intracochlear potential and stapes velocity at

higher frequencies.

The result that the magnitude of the cochlear potential is proportional to the stapes

velocity over a broad frequency range is consistent with the hypothesis that cochlear

potential is proportional to basilar membrane displacement. The mechanical data

of von Bekesy l l - 1 3 are shown plotted in normalized, logarithmic coordinates in

Fig. XV-31. The displacement of the cochlear partition for a constant stapes displace-

ment is shown as a function of frequency for 4 species. The frequency scale is normal-

ized to the frequency at which the maximum response was obtained for each position

along the cochlea. The heavy line is a function that rises at 20 dB/decade below the

corner frequency, and falls at -60 dB/decade above the corner frequency.

Since the 20 dB/decade line fits the data for frequencies below the corner frequency,

the magnitude of the displacement of the cochlear partition is proportional to the mag-

nitude of the stapes velocity. Von B~kesy 14 has reported that cochlear microphonic

potentials are proportional to the displacement of the cochlear partition. If we accept

these two results, then it can be concluded that the magnitude of the cochlear potential

is proportional to stapes velocity below the corner frequency. From Schuknecht' s

datal 5 one can conclude that the corner frequencies are above approximately 15 kHz for

points along the cochlear partition located in the most basal region of the cat' s cochlea.

Thus our finding that the magnitude of cochlear potential is proportional to the magnitude

of the stapes velocity is consistent with the mechanical measurements (Fig. XV-31) and

the mechano-electrical measurementl4 of von Bkesy.

T. F. Weiss, W. T. Peake, H. S. Sohmer
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F. EFFECT OF CUTTING THE MIDDLE-EAR MUSCLES ON

TRANSMISSION IN ANESTHETIZED CATS

Although it has been demonstrated many times that middle-ear muscles do not con-

tract in barbiturate anesthetized cats, l in certain experiments it is desirable to section

the middle-ear muscles to be absolutely sure that they are not acting on the ossicular

chain. For instance, in experiments in which electrical or high-intensity acoustic stim-

ulation is used, the precaution has become standard in our laboratory.2' 3 The question

then arises whether or not middle-ear transmission is affected by the passive loading

of the middle-ear muscles on the ossicular chain. The experiments reported here were

designed to answer this question.

1. Methods

From a ventral approach the auditory bulla was exposed, and the bulla and bony sep-

tum opened. Cochlear potentials were recorded from gross electrodes placed on or near

the round window in nine cats. A sinusoidal acoustic stimulus was swept from 20 Hz to

40, 000 Hz, and the fundamental component of the cochlear potential was recorded by the

method described in Fig. XV-21 (Sec. XV-E). Differences in these records were mea-

sured which resulted from the following procedures: (a) measured volumes of physiolog-

ical saline (0. 9% NaCl) were introduced into the middle-ear cavity, (b) the corda tympani

nerve was cut, (c) the process of the malleus to which the tensor-tympani tendon attaches

was cut, and (d) the stapedius tendon was sectioned.

On two cats a somewhat different method was tried in which a feedback system kept

the cochlear potential amplitude constant during the sweep, and the stimulus attenuation

was recorded. This method yielded approximately the same curves as the constant

stimulus-voltage sweeps, thereby showing that the system was approximately linear for

the levels used.

2. Results

The addition of 0. 9% NaCl into the middle ear caused changes ranging from a 15-dB

reduction to a 6-dB increase for fluid levels below (i. e. , dorsal to) the round window.

The dependence of these changes on the frequency varied considerably from one ear to

another. In two cases the changes were between 0 and -2 dB throughout the frequency

range. We may conclude that relatively large quantities of fluid (up to ~0. 2 cm 3 ) in the

dorsal part of the middle-ear cavity (even covering the stapes) can have relatively small

effects on middle-ear transmission.

Results from cutting the middle-ear muscles can be seen in Fig. XV-32. The
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12, 12, and 13 ears, respectively.
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variability of these measurements was due, in part, to the effect of moisture in the wick

electrode, which was used in most cases. With too much moisture the round window was

flooded, and with too little the electrode would dry out. Both occurrences resulted in

attenuated cochlear potentials, and hence the records often showed considerable vari-

ability. In order to observe the stapedius tendon before it was sectioned, the styloid

projection had to be pushed out of the way or removed. This procedure required more

time than the others, and probably contributes to the larger variability among ears in

the third graph.

We may conclude from the results shown in Fig. XV-32 that detaching the middle-

ear muscles from the ossicles can have a relatively small effect on the transmission

of the middle ear. Hence the average transfer function for the middle ear of anesthe-

tized cats, which was obtained with the muscles intact,l is applicable to data obtained

with the muscles cut.

A. D. Drake, W. T. Peake
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