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1. INTERACTION OF A SPIRALING ELECTRON BEAM

WITH A PLASMA

This work has been completed by Bruce R. Kusse and a thesis, entitled "Interaction

of a Spiraling Electron Beam with a Plasma," has been submitted to the Department of

Electrical Engineering, M. I. T. , in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in June 1969.

A. Bers

2. STABILITY OF ELECTRON BEAMS WITH VELOCITY SHEAR

We have continued our investigation of the effects of velocity shear in unneutralized

electron beams focused by an infinite longitudinal magnetic field. After our initial report

was written, we discovered that the two necessary conditions for instability of electron
2.

beams which we had presented had been previously published by E. R. Harrison, in

1963. Unfortunately, the conclusions that Harrison drew concerning the stability of slab

electron beams with linear velocity shear were erroneous because of a mistake in his

treatment of Bessel functions.

Harrison's error was pointed out by Kostin and Timofeev 3 who also attacked the lin-

ear velocity shear problem. We have simplified the somewhat complex analysis used

by Kostin and Timofeev for the case in which the beam totally fills the space between

two zero-potential conducting walls, and we have also treated the case in which the walls

are separated from the beam edge. In all cases, we found that an electron beam with

linear velocity shear is stable.

The geometry of our problem is shown in Fig. VII-1. A slab beam, infinite

in the y and z directions, contains electrons that move in the z direction with vel-

ocity v z(x). We assume a dependence of exp[j(wt-kz)], where k is real, and for

This work was supported by the National Science Foundation (Grant GK-10472);
additional support was received from the Joint Services Electronics Programs
(U.S. Army, U.S. Navy, and U.S. Air Force)under Contract DA 28-043-AMC-02536(E).
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0=0

v(x)

V
0

Fig. VII-1. Problem geometry.

unstable modes = Wr + jwi with wi < 0. The differential equation for the linearized
small-signal potential, , s given by

small-signal potential, 4, is given by

2 r 2

k ]- ]= 0.
dxk [-ky (_x) f

We now consider a linear velocity profile of the form

v (x) = v + ax

and make the substitution = s1/2 , where

v --

s= x+

to obtain the equation
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d 1 d -2 v 0. (4)

2 s ds 2ds s

In deriving Eq. 4 we have assumed that the beam density is uniform, and have intro-

duced a quantity v defined by

2

V2 2 -- .(5)

Equation 4 is a form of Bessel's equation, which has the solution

= As / 2 [ BJ (jks)+J (jks)], (6)

where A and B are arbitrary constants, to be determined by the boundary conditions.

It is interesting to note that v will be real if 2wp < a, which was one of the necessary

conditions for instability. Conversely, v will be pure imaginary if 2W0 > a. This causes

a fundamental change in the nature of the solutions as the slope of the velocity profile is

varied about the value 2 .
p

CASE I: Walls at the Edge of the Beam (x= ±a)

In this case, c = 0 at x = ±a. If we are looking for unstable solutions, s must be

complex and hence s 1 /2 t 0. Therefore, application of the boundary conditions leads

to the determinantal equation

-J (z) -J (Z) (7)

J (z) J(z)
x=a x=-a

where

r

z jks = jk (x + vo k

To determine whether or not there are complex eigenvalues (w(k)) that satisfy Eq. 7, we

shall use a method similar to the one employed by Kostin and Timofeev. 3 If we introduce

a function C(z) = -J_ (z)/Jv(z), then the determinantal equation requires C(x=a) = C(x=-a).

Consider a mapping of the complex z-plane onto the complex C-plane. For a fixed wi < 0,

as we move from x = -a to x = +a, the complex variable z will trace the path shown in

Fig. VII-2. For instability, z(a) and z(-a) must lie on opposite sides of the zr axis,

because of the necessaryl condition that vz(x) = wr/k somewhere in the region -a<x<a.
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Z(o) -

Fig. VII-2. Path of complex variable z.

Since z i = constant for fixed w, the contour can only cross the zr axis once.
This path must, however, map onto a closed contour in the C-plane if w is to be an

eigenvalue. Thus the contour in the C-plane must be of the form shown in Fig. VII-3.
This is impossible, since (as is proved in the Appendix) C is real if and only if z is
real. Thus C(-a) and C(a) must be complex as shown in the figure. This forces the

C - PLANE

C(a)

o " Fig. VII-3. Contour in C-plane.

C-contour to cut the C r axis an even number of times. This is impossible because one

and only one real point on the C-contour must correspond to the single real point on the

z -contour.
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Therefore it is impossible to satisfy the boundary conditions for complex c, and

hence the beam is stable.

The question now arises whether any solutions for real w exist. If v 2 > 0, a similar

argument shows that only two neutral modes exist, with phase velocities corresponding

to the beam velocity at the edges.

For the case v2 < 0, let v = jp. We now have

-Jj (z)

C(z) =
J. (z)
JP

where now z will have to be pure imaginary for a neutral eigenvalue.

the power series expansion of the Bessel functions, we get

C(jy) = -epT exp [2jp log y exp 2j Arg
m= 0

Let z = +jy. Using

2m

- )

m! £(-jp+m+1)

As y varies through positive values, C(Jy) is a circle, and hence assumes the same

value an infinite number of times and thus an infinite number of (space-charge wave)

modes is possible.

CASE II: Walls Separated from Beam Edge

If the zero-potential walls are separated from the beam edge,

solved in the region between the beam and the wall, since w - 0.

region yields a constraint on '/ at each edge of the beam. If the

Eq. 1 can easily be

The solution in this

walls are at infinity,

at x = ±a.

If the walls are +b and -c,

= -k coth k(b-a)

= +k coth k(c-a)

at x= +a

at x = -a.

In each case, '/ has the sign opposite to that of x at the beam edge.

Returning to Eq. 1, multiplying by * , and integrating by parts, we obtain the relation
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S* a 2 _a 2k
4 x=' = _' + I' 2 dx + Iak 12 - 2 dx. (10)

-a -a (w-kv Z)

In general, 4 *'x=a is complex, even for real w, because of the singular nature of the

last integral. This must be carefully evaluated by taking the limit w. - 0 (from below)1
for unstable modes.

If we know (wo, k, x) and use the known positive real value of j'/4 at x = -a, we could

integrate Eq. 10 numerically. If we had picked an w that is an eigenvalue, ~ 'I cal-
x=a

culated according to Eq. 10 would be a negative real number.

By our necessary condition for instability,l any unstable eigenmode must occur such
that

kv1 < wr < kv 2 , (11)

where v 1 and v 2 are the minimum and maximum electron velocities, respectively. We

now make the plausible assumption that as the velocity shear is reduced, an unstable

eigenmode must approach a neutral eigenmode in a continuous manner such that, for

the neutral modes, kv 1 < w z kv 2 . Thus, we adopt as our necessary and sufficient con-
dition for an unstable eigenmode that there must be a neutral eigenmode that occurs for
some value of the velocity shear >2w and for kv 1 < < kv 2  For a linear velocity pro-

p 1
file, we can show that P 'lx= a cannot be negative in this range, and hence the neutral

eigenmode cannot exist.

For a monotonic velocity profile, there can only be one singular point, that is, one

point where v(x) = wr/k. By changing the upper or lower integration limit in Eq. 10 to x,

and knowing that 4 *' is real at each beam edge, it is clear that for real W, *' must

be real from x = -a up to the singular point and from the singular point to x = +a. Thus,
for a monotonic profile, the imaginary part arising from the singular integral at the
critical point must be zero.

For w real, and a linear velocity profile, near the singular point, is approximately

given by

= Asl/2+v + Bsl/2-v (12)

To make c C' real for real w in the vicinity of the critical point, Arg (A) = Arg (B). To
the right of the singular point, c'/4 is given by

v 1 I  B 2 e2v In (s).

2 + •_ (13)
s B 2v In (s)

A
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On the left of the singular point, s becomes s e and '/4 becomes

S ]+ i 2 v [in(s)(-jr]

s e -j rr B 2zv[in(s)-j ]
+ e

The imaginary part of this is given by

- v+

LT s

(14)

(15)

2v e2v In (s) sin (2v)

+ (B 2 4 vln (s) B 2 I2vln(s) cos (2Tr
(A) A

B B
If v > 0, this equation is only zero if - 0 or -- oo. Thus either A = 0 or B = 0,

and only one of the two independent solutions to the differential equation (1) can be used.

Therefore, for the case at hand,

= As1/2J (jks), (16)

where either the plus sign or the minus sign must be used, but not a linear combination

of the two. Using the series expansions for the Bessel functions,

00 1 ks

v2

2s s

ss12p )

m! TF(v+m+l)

I v + 2n
00oo 2n -1 ks

2

+ n n!' r(±v+n+1)

+1 n±v+2m

S(2 ks)

=- m! F(±v+m+1)m=O

(17)

Iv+2n
oo 2n( 1 ks)

(2

n! (±v+n+1)n=0 (18)

The term in braces is >,0 for k > 0. Since 0 < v < 1/2, the right-hand side of Eq. 18
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has the same sign as s and the sign of s is the same as that of x. Thus '/ is always

positive at x = +a, and so is *'. This is a contradiction to the boundary conditions,

and thus there can be no unstable solutions.

In conclusion, we have shown that no matter where the zero-potential walls are

located, slab electron beams with linear velocities shear are stable.

Appendix

-J (z)
We shall prove that C(z) = is real if and only if z is real. From the power-

J (z)

series expansion for J v(z), it is obvious that if z is real, both J (z) and J_ (z) are real

if we are careful to use the same sheet for each Bessel function. Hence C(z) will be real.

It is harder to show that if z is complex, then C(z) is also complex. It is well known

that the zeros of J (z) and J_ (z) only occur for z real. Thus the zeros of C(z) coincide

with the zeros of J_ (z) and are real. Suppose there exists a complex z, zo, which cor-

responds to a real C(z),C(zo). Since C(z) is analytic for complex z, a neighborhood of

z must map onto a neighborhood of C(z ) which is real. Thus other points that neighbor

zo must map onto the real C axis. Thus there exists a contour in the complex z-plane

which will map onto the real C axis. In particular, some point on this contour must

map onto the point C = 0, and hence this contour must pass through one of the real zeros

of J_ (z), z . Since at least two contours that pass through C map onto the real C axis,

z 1 must be a branch point which implies

dz - v(z 0
=0.

dC sin Tr v

Zeros of dz/dC only occur, however, at the zeros of J (z) that do not correspond to the

zeros of J_ (z), hence z 1 cannot be a branch point and, therefore, zo cannot be complex.

J. A. Rome, R. J. Briggs
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1. ACOUSTIC-WAVE PROPAGATION AND AMPLIFICATION IN InSb

In a previous report I we described the acoustic-wave propagation characteristics

in InSb and the relevant elastic and piezoelectric parameters that enter into the gain

formulation given in other reports. 2 ' 3 In this report, we describe the acoustic-wave

propagation characteristics in an arbitrary crystallographic direction. By using crystal

symmetry properties and extrapolating our computed results, we can approximately

describe the acoustic-wave propagation characteristics for an arbitrary direction of

propagation in InSb. A detailed development of the equations that were used may be

found in our previous report I and in a recently completed Master's thesis. 4 For the

sake of brevity, these equations are omitted here.

Because of the symmetry of InSb, 5 we need consider only 1/48 of all possible direc-

tions of wave propagation. Figure VII-4a shows one octant of space divided into 6 equiv-

alent regions. In this figure spatial directions are indicated by points on the surface of

a sphere. The direction is given by the radius vector to that point. The xl, x 2 , and

x 3 axes are the principal axes of the cubic crystal InSb. The three arcs (AB, BG, and

DG) shown in Fig. VII-4b indicate the directions for which the equations were solved.

By using crystal-symmetry arguments, one can draw these same axes through equiv-

alent points in one of these regions, as shown in Fig. VII-4c. Note that this choice

of directions gives the solutions for the entire boundary of each symmetrical region,

and for a whole series of directions inside each region. The graphs that follow will

be labeled in terms of the angles 0 and p, which are defined in Fig. VII-5. In this

figure, q is the acoustic propagation vector.

Figure VII-6 shows the propagation velocities for all three modes for the paths

AB and BCG shown in Fig. VII-4b. Note that the segment CG is equivalent to CA

in Fig. VII-4c. Figure VII-7 shows the velocities for the path DG of Fig. VII-4b.

This is equivalent to the path DFEA in Fig. VII-4c.

The acoustic-wave velocity is only one of the parameters that we need to know

This work was supported by the National Science Foundation (Grant GK-10472).
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to calculate the acoustic gain. The other parameter is the longitudinal effective

piezoelectric coefficient e p, which is defined by Eq. 8 in the previous report.1 This
constant gives the magnitude of the coupling between an acoustic wave and an elec-
tric field that is parallel to the direction of wave propagation. Figure VII-8 shows
e for the paths AB and BCG of Fig. VII-4b. The same crystal symmetry argu-

ments apply, and thus the path CG is equivalent to CA in Fig. VII-4c. Figure VII-9
shows e for the path DG of Fig. VII-4b. This is equivalent to the path DFEA in
Fig. VII-4c. The ordinates of Figs. VII-8 and VII-9 are given in terms of ep/el4
(el 4 is the single nonvanishing piezoelectric constant in the piezoelectric tensor for
a cubic material such as InSb). Nill has measured this constant for InSb and found
it to be 0.06 C/m 2

As discussed in the previous report, 1 the elastic properties enter differently into
the maximum gain expression for different frequency regimes. In this report, we
shall give the calculations for the growth constant at the frequency of maximum gain.
Figures VII-10, VII-11, and VII-12 show contours of constant e 2 /e2 V2 for the lon-

p 14 s
gitudinal, fast transverse, and slow transverse modes, respectively. These figures
are drawn on a stereographic projection of a sphere. We note that each mode has
a peak with respect to the direction of propagation. In a previous report, 3 the max-
imum gain is calculated under the assumptions that e = e 1 4 and V = 4 X 103 m/sec.
If we use our values for e and V in the maximum gain equation, we obtain

p s
the following values at the peak for each mode. Note that the peak for the

Angle Coordinates Crystallo- e
Mode of Peak graphic P V Max Gain

Direction el4 (km/sec) (dB/cm)

Longitudinal 450 54. 80 111 1. 15 3. 87 27

Fast transverse 450 900 110 1.0 2.33 56

Slow transverse ~22. 50 690 - .53 1.95 23

slow shear mode does not occur along one of the high-symmetry axes of the
crystal.

Several points should be emphasized. (i) These figures show the maximum pos-
sible gain for any given direction of propagation. This maximum gain will only
occur if the DC electric and magnetic fields have the proper magnitude and direc-
tion. (ii) We cannot maximize the gain for all directions of propagation simulta-
neously. For example, suppose we have applied the proper fields to maximize the
gain in the [110] direction. With these fields applied to the sample, the gain in the
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Fig. VII-10. Contours of equal maximum gain for the longitudinal
mode. Each step corresponds to 3. 1 dB.
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Fig. VII-11.

Contours of equal maximum gain for the
fast transverse mode. Each step corre-
sponds to 6. 2 dB.
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Fig. VII-12.
Contours of equal maximum gain for the
slow transverse mode. Each step corre-
sponds to 3. 1 dB.
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[111] direction will not in general be maximized. (iii) These contours are proportional
qix

to qi which enters the wave solution as on e growth factor. This means that these

curves are directly proportional to the maximum gain in dB/cm. For example, if we

investigate the maximum gain at a contour corresponding to 1/2 the peak value for that

mode, this maximum gain is not 3 dB down from the peak value. The gain is the peak

value gain in dB/cm divided by 2.

Similar contour plots can be made for other frequency regimes (W ~ax ) by using

the information given in Figs. VII-6 through VII-9. In all cases, however, the maxi-

mum possible gain occurs for the fast shear wave propagation in the [110] direction.

C. S. Hartmann, A. Bers
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1. ELECTRON-CYCLOTRON RESONANCE-HEATED PLASMA

IN A LEVITRON

We are reporting on the preliminary results of an investigation of the diffusion of an

electron-cyclotron resonance-heated plasma ina levitron. Heating is achieved by using

1-MW, 10-[isec pulses of microwaves of -2. 8 GHz (S-band) from a Bendix klystron

radar transmitter LL-KRX-3 with a Raytheon QK327 magnetron. The magnetic field

is produced by discharging capacitor banks into the poloidal magnet, a circular coil,

and the toroidal magnet, a longitudinal bar, as in Fig. VII-13. The magnetic field

MICROWAVE
HORN

19.7 cm
DIAMETER 1 cm

-d--- 24.2 cm I.

Fig. VII-13. Magnet coil arrangement in plasma chamber.
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decays less than 3% during the lifetime of the plasma. Resonance heating occurs on the

1-kG surface, forming a torus around the poloidal magnet. The toroidal magnet pro-

vides shear. This magnetic configuration was predicted by LehnertI to be exceptionally

stable. Kuckes and Turner 2 at Culham Laboratory have found that the loss rate from

their levitron was an order of magnitude slower than that predicted by Bohm diffusion.

Preliminary measurements have been made with hydrogen at pressures of the order

of 10 - 4 Torr, using a phototube and a spherical Langmuir probe. Our findings indicate

an electron temperature of ~5 eV, with a density of ~1011/cm3 in a plasma lasting

approximately 50 isec. Oscillations were observed in both phototube and probe ion sat-

uration measurements with a well-defined frequency varying between 120 kHz and

140 kHz. Kuckes and Turner have noted potential fluctuations at a well-defined fre-

quency that varied between 5.0 kHz and 200 kHz. Crude calculations indicate diffusion

several times slower than Bohm diffusion.

We are continuing to study the diffusion and low -frequency oscillation of the plasma.

A. S. Ratner, R. A. Blanken
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2. GAIN OF A CO 2 LASER AMPLIFIER IN THE AFTERGLOW

Physical reasons that are best described by Fig. VII-22 led us to expect that a pulsed

CO2-He-N2 laser might be more efficient in the afterglow. In order to verify this

expectation, we measured experimentally the gain of a CO2-He-N Z amplifier under

various conditions - changing gas pressures and current - in the glow and in the after-

glow. A Q-switched CO 2 laser supplied the probe pulses (~300 nsec).

Indeed, we found a gain increment in the afterglow. The best measured gain was

2. 4/m.

Experimental Arrangement and Procedure

Figure VII-14 shows the experimental arrangement. The 35-cm amplifier is excited

by a pulse generated by a timing device driving a high-voltage power supply (5000 V).

The purpose of this timing device is to pulse the DC power supply of the amplifier so

that the test pulse from the laser can be sent through the amplifier at will, at any time

during the excitation or in the afterglow (see Figs. VII-15 and VII-16). Two oscilloscopes

QPR No. 93 147



3 FT

ROTATING MIRROR CO2 LASER

F

POWER PA D -------

STUDIED AMPLIFIER

A r5 kV - 5000 V POWER SUPPLY

TIMING D - INFRARED DETECTOR
DEVICE PA - PULSE AMPLIFIER
E C 2

Fig. VII-14. Experimental arrangement.
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Fig. VII-15. Diagram of the timing device.

Fig. VII-16. S 1 and S z oscilloscope displays showing

evidence of the amplifier gain.
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permit watching the variation of the test pulse magnitude as a function of the time or of

the gas mixture. The laser is Q-switched at a rate of 60 Hz. Its very short pulse is

used to probe the amplifier and to drive the timing device so that the amplifier excitation

is synchronized with the rotating mirror. A delay included in the timing device allows

us to vary T3 (Fig. VII-15) whenever we wish, and observation of both oscilloscopes S l
(Fig. VII-16b) and S2 (Fig. VII-16a) yields the amplitude variation of the test pulse and

T
3 •

Experimental Results

Figure VII-16b illustrates the observation of the gain, since it is, in fact, a super-

position of two pictures. One picture was taken when the amplifier was not turned on

(yielding the small pulse), the other one in the afterglow of the excitation of the ampli-

fier. A gain of 2 was observed in this particular case. Let us call G = (E-Eo)/E o , where

E is the amplitude of the pulse when the amplifier is turned off, and E is the amplitude
o

as the amplifier is excited. We have plotted the variations of G as a function of T3 for

the following mixtures.

He = 4 Torr He = 4. 5 Torr

N 2 = 1 Torr Fig. VII-17 and N 2 = 1.5 Torr Fig. VII-18

CO 2 = variable CO = variable

When G goes to zero, it means that the gain was too small to be observed, but, of

course, G has a small positive value because a steady-state CO 2 laser is a reality.

Following these measurements, we wished to see the influence of the different gases

on the gain, and we plotted in Fig. VII-19 the variation of the largest G as one of each

of the gas pressures was varied. In each of these experiments the excitation time T1
was kept constant (equal to 3 msec). Moreover, since helium may be important in the

de-excitation of the lower CO 2 laser level, we also plotted the variation of the time of

occurrence of the largest G with the partial pressure (Fig. VII-20).

Since we expected to get a larger gain in the afterglow, the previous experimental

results led us to observe the variation of the gain under the following conditions.

He 2. 5 Torr current 160 mA

CO 2 2 Torr excitation time 0. 5 msec

N 2  1 Torr

When the current of the amplifier was changed from 40 mA to 200 mA no significant
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Variation of gain with time as CO 2 pressure is varied.

He pressure, 4. 5 Torr; N 2 pressure, 1. 5 Torr.
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Fig. VII-19. (a) Influence of N 2 on the gain.

(b) Variation of maximum gain with CO 2 pressure.

He pressure, 4 Torr; N2 pressure, 1 Torr.

(c) Variation of maximum gain with CO 2 pressure.

He pressure, 4.5 Torr; N 2 pressure, 1.5 Torr.

(d) Influence of He on the gain.
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Fig. VII-20. Influence of He on the time of occurrence
of maximum gain.
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Fig. VII-21.

Variation of the gain in the afterglow with
CO 2 pressure 2 Torr, He pressure 2. 5 Torr,
and N 2 pressure 1 Torr.

Fig. VII-22.

(a) Variation of upper and lower
laser levels with short exci-
tation time.

(b) Variation of the populations
of lower and upper laser
levels with time.
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change was observed, and its importance was therefore neglected.

Figure VII-21 shows the variation of G, and the influence of the afterglow is pointed

out as we also plotted in the same figure the variation of G when the excitation pulse is

3 msec. The improvement attributable to the nonexcitation of the lower level in the

afterglow is a factor between 2 and 3.

Discussion of the Results

Experimental observations show that the steady-state population inversion is reached

after 3 msec excitation of the amplifier, that is, when G is too small to be observed

(G z 0).

Since our probe pulses are very short compared with the time constants involved in

the CO 2 laser, and particularly with the relaxation time of the reaction

CO 2 (00°v) + CO 2 - C0 2 (00°v-1) + C0 2 (00°1),

the gain measured is a picture of the population inversion under unsaturated conditions 2

of the transition 001l-100.. The upper levels (CO2(00°v) with v > 1) have insufficient

time to relax and populate the 00l level. Consequently, Figs. VII-17 and VII-18 are

pictures of the evolution of population inversion with time.

During the excitation, two processes compete (Fig. VII-22): the buildup of the upper

level through direct excitation by electron impact and resonant energy transfer with

nitrogen, and the buildup of the lower level through direct excitation by electrons. At

any time the population inversion is the difference between these two processes. The

upper level populates faster than the lower because the gain starts increasing with time.

The gain then decreases because of the buildup of the lower level. This suggests that

the time constant of the decay of the gain in Figs. VII-17 and VII-18 is identical to the

buildup time constant of the lower level.

Consequently, we have plotted with semi-logarithmic coordinates the decay of the

gain with respect to time of Figs. VII-17 and VII-18 in Figs. VII-23 and VII-24. Fig-

ure VII-25 shows that T X p is roughly constant in both cases, around 9.0 X 10-4 sec-Torr.

The effect of helium in depleting the lower level would therefore only be to lower the sat-

uration value.

When we use short excitation time the population inversion evolves, as shown in

Fig. VII-22a, and therefore we see that we can expect a larger population inversion than

in the previous case with long excitation times. Neglecting the population of the lower

level in the afterglow, we can consider that the decay of the gain in the afterglow evolves

as the decay of the upper laser level. Figure VII-26 shows clearly that, since the decay

is a straight line in semi-logarithmic coordinates, a time constant of 6. 18 X 10 - 4 sec

is indicated. This time constant is very dependent on the partial He and N 2 pressures,
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Fig. VII-23. Semi-log graph of gain decay.
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Fig. VII-24. Semi-log graph of gain decay.
He pressure, 2.5 Torr; N 2 pres-
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but our data are insufficient to draw a quantitative conclusion.

We could estimate 3 the population inversion4 to be obtained at the maximum gain as
13 -3 -5

approximately 4 x 10 cm , and the excitation time to be approximately 18 X 10r sec,

under the assumption that the upper level degenerates into 22 vibrational levels. 1

Conclusion

The gain in the glow first increases rapidly with time to achieve its maximum around

0. 5-1 msec, depending on the gas mixture, and then decays to its steady-state value

after 2-3 msec.

The.gain in the afterglow appears to be larger than it is in the glow, and we obtain

a gain up to 2. 4 m -1 . It seems, therefore, that the most efficient way to use a Q-switched

CO 2 laser is to excite it by square pulses approximately 0. 5 msec long.

M. A. Lecomte, L. M. Lidsky
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