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A. EFFECT OF CROSS RELAXATION ON LAMB DIP

1
The Lamb dip provides a means for determining parameters of the lasing medium,

or can be used for frequency stabilization of a laser. Extensive studies have been done

on the Lamb dip in the He-Ne system, particularly at the 1. 15 transition.2 Some work

has been accomplished in the water-vapor laser3 and in the CO 2 laser. In CO 2 it was

found that the Lamb dip appeared only under surprisingly low pressures.

The differences between a CO 2 laser and an He-Ne laser can easily explain the dif-

ficulty in obtaining a Lamb dip in a CO 2 laser. The extremely long lifetime of the upper

level in CO 2 permits a diffusion of molecules from one velocity group to another within

the'Doppler line, thereby making it difficult to burn a hole in the Doppler line at any one

frequency. This mechanism, recognized as a possibility by Bennett,5 is called cross

relaxation and tends to make an inhomogeneously broadened system behave more like a

homogeneously broadened one. This effect becomes pronounced in CO 2 because the col-

lisions that tend to shift excited molecules between velocity classes, that is, small angle

grazing collisions or relaxation to and from different rotational levels, all take place in

times shorter than the relaxation rate of the upper level of the laser. This is not the

case in an He-Ne laser.

Comparing two physical situations, one with cross relaxation within the Doppler line,

the other without, while assuming that the homogeneous and inhomogeneous contribu-

tions to the line width are the same in both cases, we find that in the case with cross

relaxation the depth of the hole burned by the laser radiation is smaller and the whole

Doppler-broadened line is pulled down by it.

Figure V- , shows the effects of hole burning in a travelling-wave laser in various

limits of cross relaxation. In Fig. V- la there is no cross relaxation, and a hole is

burned only around the frequency of operation. In Fig. V- lb there is some finite cross

relaxation, and a hole is burned while the hole line is pulled down also. In Fig. V-ic

the cross relaxation is very strong, and the diffusion into the velocity group of the hole
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burning becomes large enough to prevent a hole from being burned. This case behaves

like.a homogeneously broadened line even though it is inhomogeneously broadened. Note

there would be no Lamb dip in this case.
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Fig. V-i.

Effect of hole burning in a traveling-wave
laser. (a) No cross relaxation. (b) Finite
cross relaxation. (c) Strong cross relaxa-
tion.

We now proceed to include cross relaxation in the Sz6ke-Javan theory of Lamb dip.

The intensity, I, of an optical electrical field, E, of propagation constant k is given

cE 2

I- 8v

which gives the spatial rate of growth of the intensity I. The gain constant can be

expressed in terms of the cross section cr(v, k, 0) of the velocity group v, v + dv to an

optical field of propagation constant k and frequency w. Denoting the inversion of a

particular velocity group v, v + dv by n(v) dv, we have for the gain constant2 of a wave

with propagation constant k

a = n(v) o-(v, k, w) dv. (2)

The population inversion n(v) is affected by the presence of the laser field. We describe
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the inversion by the rate equation.

= -y(v) n(v) - (v',v) n(v) dv' + F(v, v') n(v') dv'

+ R(v') - n(v) 0-(v, k, c) E2(k, w) . (3)
w8Tr

k, w

The first term represents the relaxation into levels other than the ones considered. The

second term is the loss of inverted particles through cross relaxation into the velocity

group v',v' + dv'. The third term is the reverse process when particles in the velocity

group v',v + dv' relax into the group v, v+ dv. The term R(v) represents the pump, and

the last term is the depletion of inversion caused by the presence of the laser field. The

summation over k and w is included (see SzBke and Javan 2 ) to account for the possi-

bility of several frequencies and forward and backward waves. It should be pointed out

that an equation of the form (3) is self-evident when one deals with a two-level system,

the lower level of which has a relaxation rate so fast that it is practically empty. When

this is not the case, then, in general, one would have to set up two coupled integro-

differential equations of the form (3).

Invoking the principle of detailed balance at equilibrium in the absence of a laser

field, n(v) = n o (v), we obtain a relationship for the cross-relaxation rates:

T(v', v) no(v) = r(v, v') n (v'). (4)

It is convenient to define a symmetric function y(v, v') in terms of which both cross-

relaxation rates can be expressed.

y(v, v') = y(v', v) F(v', v) no(v). (5)

From (3) we find that in the steady-state equilibrium in the absence of an electric field

the two integrals cancel and we find a relationship for the pump.

R(v) = y(v) n (v). (6)

This, in a sense, is the definition of the pump term in (3). Now consider the change

An(v) in the population inversion density An(v) = n(v) - n (v). Taking the difference of

(3) in the steady state -I = 0) in the presence of a laser field with its form in the

absence of a laser field we obtain an equation for An(v):

*- y(v',v) O(v,v') c \ 2 2
0 = -y(v) An(v) - V An(v) dv' + ( An(v') dv' 8- n(v) cr(v,k,w) E (k,).

no(v) n (v') k,w (7)
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Equation 7 can be reduced to an equation in the variable An(v) only if one makes an
approximation that can be called the van der Pol approximation; namely, the assumption

that the gain constant decreases linearly with optical intensity. In this assumption we

replace n(v) in (7) with the equilibrium inversion density no (v)

Y (v', v) y(v,v')
0 = -(v) An(v) (vv) An(v) dv + An(v') dv'

no(v) no(v')

- no(v) 0-(v, k, w) E2 (k, w). (8)

We can obtain a closed-form solution for (8) with one reasonable assumption for the rela-

tionship parameters. If we assume that y(v) is a constant, independent of v, and we set

1n (v) n (v')
lo o

y(v,v') = N Y (9)
o

where

N = no(v) dv (10)

and T is a constant with the dimensions of time, and thus is a measure of the cross-

relaxation time, we can show by direct substitution that

S1 n(v ' c 2An(v) no(v) (v, k, ) E 2(k, ) dv' --- (v',k,) E 2(k,)

k,w o k,

(11)

is a solution of (8), with

r = y + 1 (12)

The solution (11) implies the existence of a hole burned by the laser field, and also

a decrease in the population inversion density over the entire inhomogeneously broadened

line.

Note that assumption (9) for the cross relaxation is eminently reasonable. The cross

relaxation would be expected to be proportional to the two population densities partici-

pating in the cross relaxation, n(v) n(v'). If we assume that n(v) deviates only slightly

from the equilibrium density no (v), and we expand to first order in An(v), we obtain a

rate equation for An(v) with relaxation rates that obey (9).
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We shall now apply the solution (11) to the analysis of the Lamb dip in a standing-

wave cavity. Oscillation occurs when the loss L is equal to the gain within the medium.

The loss is assumed, for simplicity, to be uniformly distributed over the cavity.

L = no(v) [(v,k, w)+ -(v, -k, ) ] dv + A an(v)[o-(v,k,wo)+o-(v,-k,w)] dv. (13)

In the sequel, we shall consider the limit in

large compared with the homogeneous part.

has the dependence upon the velocity:

which the inhomogeneous broadening is very

We shall assume that the cross section ao

(14)

This is the cross section originating from a Lorentzian line shifted by the Doppler effect.

When this expression is introduced into (11) and the integrals are carried out under

the stated assumption, we obtain for E (+k, w)

2E T 2hw
E2 o

c-2N
r c N

0 0

G - Le
o 2

1+ 2
1+ 2 2 yTrwT 2

2N T Cr
Go = 0

u(2) /2 T
o2

Note that the output power P of the laser is related to E2 by

P = c E2A(1-R),
8Tr

where A is the beam cross section, and R is the reflectivity of the mirror. We have

assumed throughout that the field is uniform throughout the cavity, the usual assumption.

Inclusion of the nonuniformity of the field does not change the shape of the Lamb dip.

Consider Eq. 15. The cross relaxation appears in this expression through addition

of the term Tr-/(TAwT 2 ) in the denominator. When this term is comparable to, or

greater than, one, the Lamb dip is decreased. The question arises whether it is
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consistent with the assumption that went into the derivation of (15) to allow this term to

become large; we have assumed that the inhomogeneous broadening is large compared

with the homogeneous one, that is, A T >> 1. Then, the factor can be made large only

by making yT << 1. Note that T must be larger than T 2 because it is the time within

which particles leave their velocity group, and T 2 contains the contributions to bandwidth

of cross relaxation. Thus the only way the term could be large is by making y suffi-

ciently small. Hence, these systems will show a strong effect of cross relaxation on

the Lamb dip for which the rate of decay y to other levels is slow compared with the

cross-relaxation rates, so slow that yTwT2 << 1, even though AoT 2 >> 1.

From a Lamb dip in which the power is measured as a function of cavity-frequency

tuning we are not able to distinguish the effect of cross relaxation from that of the "soft"

collisions as defined by Sz6ke and Javan.2 Both lead to the same shape of the Lamb dip.

It is possible to see such an effect from an observation of the small-signal gain profile

in a laser medium at one frequency, if the medium is saturated by a laser signal of a

different frequency, both frequencies having a common energy level in the medium. If

cross relaxation is effective, the small-signal gain at one frequency would be affected

by the saturating signal over the entire Doppler linewidth, whereas in the absence of

cross relaxation the gain would be changed only over the homogeneous linewidth. An

experiment by Hansch and Toschek 6 could be interpreted as exhibiting such an effect in

He-Ne. (It was not interpreted in this way by these authors.)

We are, at present, preparing experiments in He-Ne and in CO 2 to determine the

importance of the cross-relaxation effect.

The authors gratefully acknowledge numerous helpful discussions with Professor

Abraham Sz6ke.

H. A. Haus, P. W. Hoff
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B. SOLUTION OF WAVEGUIDE OBSTACLE PROBLEMS

BY A FINITE-DIFFERENCE METHOD

1. Introduction

This report describes a numerical method that has been used successfully for a dig-

ital computer calculation of the induced current distribution produced by a waveguide

mode at a given frequency, impinging on metallic obstacles located inside a hollow

metallic waveguide. The method was developed for the computer-aided determination

of equivalent circuits for one or more passive metallic obstacles of irregular shape

located inside a hollow metallic waveguide of arbitrary cross section.

The method is based on solving a set of finite difference equations which approxi-

mates Maxwell's equations, subject to field boundary conditions that approximate the

exact field boundary conditions, in order to determine current distributions that approxi-

mate the exact induced current distributions. The approximation of Maxwell's equations

by finite-difference equations was first achieved by Kron in order to simulate electro-

magnetic field problems on the General Electric Network Analyzer by means of electri-

cal circuits.1 In order to simulate electromagnetic field problems on a digital computer,

a new set of finite-difference equations that approximates Maxwell's equations in free

space was obtained; these equations were solved analytically for uniform and nonuniform

plane waves.2 This report extends the free-space difference equations to problems

involving perfectly conducting boundaries and electric current distributions.

This report gives a general description of the technique, a discussion of TEm 0 modes

in rectangular waveguide which satisfy the difference equations, and a detailed formu-

lation of TEm 0 mode scattering. Numerical results on the accuracy of the calculations

are given. Numerical results for the finite-length thin bifurcation and the computer

time required for each calculation are also included.

2. Description of Problem and Technique

The waveguide obstacle problem consists in determining equivalent circuits or scat-

tering matrices for highly conductive passive metallic obstacles located inside a hollow

metallic waveguide. Well-known analytic variational and quasi-static techniques have

been used successfully to solve special classes of obstacles exhibiting high degrees of

symmetry. 3 The digital computer makes the finite-difference technique feasible for

solving other classes of obstacles that may arise in microwave waveguide circuit design

and have not been solved previously. This report is concerned with finding the induced

This work was supported in part by the National Science Foundation (Grant GK-3370).
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current on the obstacle's surface because the scattering matrix can be determined from

the induced current.

An exact Green's function formulation of this boundary-value problem involves two

integral equations. The first expresses the scattered fields in terms of the unknown dis-

tribution of induced current on the surface of the obstacles. The second expresses the

fact that the electric field tangent to the surface of the obstacle exactly cancels the inci-

dent mode electric field distribution tangent to the obstacle. The finite-difference method

proposed here is also a Green's function method and is best described in outline form.

1. Determine a finite set of waveguide modes.

a. approximate Maxwell's equations by a set of difference equations for the field

components evaluated at points of a cubic lattice.

b. approximate the waveguide boundary by a series of points.

c. solve the difference equations analytically or numerically to obtain a finite

set of modes.

2. Determine the current-element field response of the waveguide.

a. obtain fields produced at any point of the lattice by a discrete current element

located at any point of the lattice as a superposition of modes.

3. Determine and solve algebraic equations for induced surface currents on the

obstacle.

a. approximate unknown induced surface current distribution by a set of discrete

current elements located at lattice points.

b. approximate the boundary condition that the total electric field (incident plus

scattered) tangent to the obstacle vanish by the condition that the total field

parallel to each discrete current element vanish.

c. obtain scattered fields as a superposition of contributions from unknown cur-

rent elements.

d. from steps 3b and 3c obtain a set of simultaneous linear equation for the dis-

crete current elements in terms of the incident mode electric field parallel

to each current element.

e. solve a set of equations by relaxation or Gauss-Jordan reduction to obtain

discrete current-element values.

4. Determine the scattering matrix.

a. obtain equations for forward- and backward-scattered mode amplitudes in

terms of discrete current-element values from 3c.

b. substitute discrete current-element values in Eq. 4c.
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Each step in this procedure has been verified for related problems. The numerical

calculation of modes for waveguides having irregular boundaries has been demon-

strated. 4 The approximation of a continuous current distribution by discrete elements

and the point-matching technique for boundary conditions have been used for free-space

scattering problems. 5

Practical limitations to the accuracy of the method are available computation time

and storage capacity, since the accuracy will increase as more points per unit volume

are taken. For a given waveguide and number of points per unit volume, the modes need

only be computed once and stored on magnetic tape. The accuracy can be tested by

increasing the number of points per unit volume and observing subsequent changes in

the results.

3. TEm0 Modes in Rectangular Waveguide for Discrete Space

The TEm0 modes in perfectly conducting rectangular waveguide for discrete space

will now be presented. The waveguide is shown in Fig. V-2. It consists of M unit cells

in the x direction and N unit cells in the y direction. The unit cell size is indicated

by a. The circles are E grid points previously defined.2 The H grid points are not

shown. The E grid points are as follows.

x, pa

Fig. V-2. E grid filling rectangular waveguide.
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Electric Field

Ex(p, q, r)

E (p, q,r)

E (p, q, r)

Lattice Point

(P+ , q, r

(pq+ i, r)

(P q, r+ 

Limits

0 < p < M-1

0 <p< M

0O q < N

0 < q < N-1

S<q < N

where p, q, r are integers denoting the point (x, y, z) given by (pa, qa, ra), as shown in

Fig. V-2. The H grid points are given by

Magnetic Field

Hx( p , q, r)

H (p, q, r)
Y

H (p, q, r)z

Lattice Point

p,q+ , r+1\

(p , q,r+ 

(P+ q+ 2

Limits

0 < p < M

0o p ( N-1

0 < p < M-1,r)

0 < q < N-1

0 < q - N

0 <q <N-1

The electric current distribution will be given by discrete current densities located at

the E grid points, J , J , and J .
xy z

Current
Distribution

Jx(p, q, r)

J (p, q, r)

Jz(p, q, r)

Lattice Point

(p+, q, r)

(p, q+ , r)

p, q, r +

Limits

0 < p < M-1

1 <p s<M-1I

1 < p < M-1

1 < q < N-1

0 < q < N-1

1 <q ~<N-1

Maxwell's equations including the current distribution can be approximated by the fol-

lowing difference equations.

E (q+1) - E (q) - E y(r+l) + E (r) = -jw4o aH x(p, q, r)
0 x

E (r+1) - E (r) - E(p+ 1) + E (p) = -jw 0 aH y(p, q, r)x x zz o y

E (p+1) - E y(p) - E x(q+1) + E (q) = -jwF oaH (p, q, r)x xoz

H (q) - H (q-1) - H y(r) + H y(r-1) = a(jw E x(p, q, r) + J x(p, q, r))

Hx(r) - H (r-1) - H (p) + H (p-1) = a(jwe E (p, q, r) + J y(p, q, r))x xz zo y y
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H (p) -H y(p-1) - H x(q) + H x(q-l) = a(jwE E (p, q, r) + J (p, q , r))

The modes are obtained by looking for current-free solutions of the previous equations
-rW

which vary with r as e- rw, where w is a complex number, and satisfy the boundary

conditions at the perfectly conducting walls.

E = 0 for q = O and q = N
x

E = 0 for p = 0 and p = M
Y

E = 0 for p = 0, q = 0, q = N, and p = M.
z

It can be shown that there are (M-1)(N-1) TM modes and (MN-1) TE modes whose field
-rw

components vary as e , where w is given by

w = ±j2 sin - 1 (/ (ka/2)2 - sin 2 (sTr/2M) - sin 2 (tTr/2N)). (7)

Here, k is the propagation constant of free space, and s and t are integers. For

TE modes that do not vary along y simple expressions for the field components can be

obtained.

TEs0 Modes

0 < p -< ME = B sin (psir/M) e-rw(s)
Y

Hx = -(B/jw.4 a)(1-e-w) sin (psir/M) e-rw(s)

Hz = -(B/jwcoa) 2 sin (sTr/ZM) cos ((p +2)sr/M) e-rw(s)

The subscript "s" is used instead of "m" to distinguish these

TEm0 modes in rectangular waveguide; s is an integer and w(s)
mO

0 < p M-l (9)

0 < p < M-1. (10)

modes from the exact

is given by

w(s) = j2 sin- 1 ( (ka/2)2 - sin 2 (sTr/?M) 1 < s _< M-1.

Figure V-3 shows the E field for the TE10 and TE20 modes for different numbers of

cells. The cutoff frequencies for the modes are given by setting w = 0

(12)f = (c/ira) sin (srr/2M) Hz,

where c is the speed of light in vacuum. In Fig. V-4 the normalized cutoff frequencies
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Fig. V-3. E field for TE10 and TE20 modes; M = 2, 3, 4, 5, 6, 7.y 10 2
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Fig. V-4. Cutoff frequencies of TErn0 modes

waveguide vs number of cells.

of rectangular

for several modes have been plotted against the number of cells taken. The limiting

values are the normalized cutoff frequencies for an infinite number of cells.

The TEs0 modes also obey a completeness condition that can be written

s=M-l

6pp° = (Z/M)

s=l

sin (psr/M) sin (p o sTr/M),

where 6 denotes a Kronecker delta function. This condition will be used to determine

the Green's function for the discrete waveguide, excited by y-directed currents that do

not vary with y.

4. Green's Function for TEs0 Modes

The Green's function for the TE modes will now be obtained. The Green's func-

tion is defined as the solution of Eqs. 1-6, subject to the boundary conditions at the
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t
p,x

0 0 0 0 0 0 0 0 0 0 0 0 0

LOCALIZED CURRENT ELEMENT J
Po OO O O O O O O O O O O

U 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 z

r r
o

Fig. V-5. Two-dimensional view of E grid with current element.

waveguide walls, for a current distribution that is zero except at one point; in general

there will be a Green's function for each current component. For the case of y-directed

currents that do not vary with y, a simple Green's function in two dimensions, x and

z, can be found as a superposition of TEs0 modes. This result will be used to determine

the fields produced when a TEs0 mode impinges on a perfectly conducting two-

dimensional obstacle extending across the rectangular waveguide. Numerical results

on the self-impedance of the current element will be given.

A two-dimensional view of the lattice is given in Fig. V-5. The current is located
at point po, ro and is given by

J (p, q, r) = (I/a 2 ) 6 6 A/m 2 ,  (14)
Y rro PP

where 6 is the Kronecker delta function, and I is a constant. The Green's function is

obtained by solving Eqs. 1-6 for the fields generated by J . The completeness condi-

tion (Eq. 13) shows that the current distribution given by Eq. 14 is a superposition of

orthogonal transverse current distributions, each varying with p as the E field of a

TEs0 mode.

The result is that only TE modes are generated for r > r0 and for r < r , and the

total electric field is given by the following series.

E( ( ,)I sin (psTr/M) sin (p s/M) - r-r w

E (p, q, r) = - -I o e (15)
y s= lsinh (w)
s= 1
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It is convenient to define the normalized Green's function Z'(p, r, po, ro), where

Z'(p, r, p , ro) = (E y/I) 2/m. (16)

Z' is the electric field produced at point (p, r) by a unit current element located

at point (p , ro).

h CURRENT
ELEMENT

L

Fig. V-6. Perspective view of current element in rectangular
waveguide.

The self-impedance of a unit current element located in a rectangular waveguide

as shown in Fig. V-6 has been computed for several different numbers of cells as a func-

tion of position across the waveguide. The self-impedance is defined as Z s , where

(17)Z= Z'( ro Po, r0 ) h5s 0o o o

and h is the height of the waveguide. The real and imaginary parts of Z s normalized

to Z , the characteristic impedance of free space, are shown in Figs. V-7 and V-8.
o

The parameters have been chosen so that one mode is above cutoff: L = 2. 54 cm,

h = 1. 00 cm, f = 9. 0 GHz. The real part of Z s , which is proportional to the radiated

power, is well approximated for small M. The imaginary part, which is approximately

proportional to the magnetic energy storage, diverges with M logarithmically as the

current element more and more closely approximates a line source; the shape converges

rapidly to a smooth function. Z s has been computed for the same waveguide for a fre-

quency of 72 GHz and M = 100; the real and imaginary parts appear in Figs. V-9 and

V-10; at 72 GHz 12 modes are above cutoff.
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M = 4, 8, 128, f = 9 GHz. s

Fig. V-8.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x
L

POSITION ACROSS WAVEGUIDE

Normalized imaginary part of Z vs position

for M = 4, 8, 16, 32, 64, 128, f = 9 GHz.

1.70

1.60

1.50

1.40

1.30

1.20

1.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

128 CELLS



2.00 h = 1.00 cm

f = 72 GHz

M= 100

1.00

0 0.2 0.4 0.6 0.8 1.0

POSITION ACROSS WAVEGUIDE

Fig. V-9. Normalized real part of Z vs position for
M = 100, f = 72 Ghz.
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Fig. V- 10. Normalized imaginary part of Z vs position for
M = 100, f = 72 Ghz.
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5. Scattering of TEs0 Waves by Two-Dimensional Obstacles

The Green's function that has been obtained will be used to formulate and solve the

problem of TEs0 modes impinging on two-dimensional metallic obstacles of arbitrary

shape. The results will be used to obtain the induced current distribution on the sur-

face of the obstacle. Numerical results for the thin finite-length bifurcation will be pre-

sented eventually.

The incident field in the TE wave is given by

(18)E = i e(x, z).

The problem is formulated in two steps. In the first step, the actual current distribution

is approximated by a discrete current distribution, which consists in y-directed cur-

rent elements lying at Ey points near the contour of the body. For the case shown in

Fig. V- 11 the induced current distribution is approximated by 20 currents. In the second

'/ / /Q/ / z//z / /o//4//4//4///

Fig. V-ll. Two-dimensional view of obstacle approximated
by current elements.

step, the boundary condition that the tangential electric field vanish will be applied to

each current element in order to relate the E field at a point to each induced current.
Y
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The boundary points will be labeled by the index n so that

Pn = p(n) n = 1, 2, 3...

(19)
r = r(n) n = 1,2,3...

nn
and the discrete currents will be denoted I . The incident field evaluated at the boundary

points will be taken as

E (n) = e(pn, r n ) = e(n). (20)

The total E field produced by the currents I I 2 . .. at point (p, r) is given by a sum of

terms similar to Eq. 15.

E (p,r) = Z'(p,r, pn, r n (21)

n

The boundary condition that the total electric field vanish at each current element is then

given by

e(n) + Ey (pn, r n ) 
= 0 for all n. (22)

Equation 22 gives rise to a set of simultaneous linear equations for the In

e(n) +I Z'(pn, r n pn, rn) In = 0. (23)

n'

Equation 23 can be written as a matrix equation

e + Z'I = 0, (24)

where I is a column vector containing the I , e is a column vector containing the e(n),
n

and Z' is a square matrix whose order equals the number of current elements. The ele-

ments of Z' are given by Z'(n, n'), where

M- sin (p swr/M) sin (p' s</M) - r -r' w

Z'(n, n') = 2 s)M) n n e n n (25)
sinh (w(s))s=1

Z' is the mutual coupling matrix between all of the current elements. The diagonal terms

are the self-impedances previously computed, and the matrix is symmetrical. Inversion

of Eq. 24 constitutes the solution to the problem. The scattering into the various modes

QPR No. 93



(V. ELECTRODYNAMICS OF MEDIA)

can be determined from the following definition of the scattering coefficient into the s

mode, S.
s

M-l

E (p, r) = Ss(r) sin (psT/M).

s=l

Ss is given by

(26)

sin (pnsT/M)
I

sinh (w(s)) n

Sr-rn w(s(27)
(27)

6. Numerical Results for Thin Finite-Length Bifurcation

Equation 24 was solved numerically for the TE10 mode impinging upon a thin finite-

length bifurcation located in the center of the rectangular waveguide as shown in

Fig. V- 12. The waveguide parameters were L = 2. 54 cm, h = 1. 00 cm, f = 9. 00 GHz,

h

L/ 2
L

Fig. V- 12. Perspective view of thin finite-length bifurcation.

M = 100. Each element of the Z' matrix above and on the main diagonal was computed,

although the symmetry of the obstacle could have been used to reduce the number of dif-

ferent terms drastically. The elements below the main diagonal were not computed,

since Z' is symmetrical. Gauss-Jordan reduction was used to solve the resulting equa-

tions. As a check on the roundoff error, the resulting current elements were used in

Eq. 24 to recompute the scattered field.

The current distribution was obtained for bifurcations of lengths A = 0. 254, 0. 508,

0. 762, and 1. 016 cm, consisting of 10, 20, 30, and 40 current elements, respectively;
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the 10 and 40 element cases are shown in Figs. V-13 and V-14. The incident electric

field was 377 V/m at the center of the waveguide, and the normalized electric field is

plotted above the current distribution curve. The computation time and roundoff error

in parts per million are plotted in Fig. V-15 as a function of the number of current ele-

ments. The IBM 360/65 computer was used.

14

12

Z
10

8 Uj
u_

6 -
z

4

2

10 20 30

NUMBER OF ELEMENTS

Fig. V- 15. Computation time and roundoff
of current elements.

error vs number

7. Conclusion

In principle, the method can be extended to the case of a three-dimensional obstacle.

This involves computation of a Green's dyadic function consisting of a sum of TE

and TM modes. In practice, the time for computing the Greents function will not be

prohibitive; however, the time for inverting the mutual coupling matrix for even simple

obstacles may exceed 10 minutes. The roundoff error may become prohibitive unless

double-precision arithmetic is used; for example, an error of 4 parts in 105 was found

for 99 current elements.

J. I. Glaser
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