II. ELECTRON MAGNETIC RESONANCE^{*}

Academic Research Staff

Prof. K. W. Bowers

Graduate Students

Nancy H. Kolodny	L. S. Pensak	N. S. Suchard
C. Mazza	R. S. Sheinson	YM. Wong
A. C. Nelson		B. S. Yamanashi

A. EXCITED STATES OF CARBONYL HYDROCARBONS

Electric dipole transitions in carbonyl hydrocarbons, in general, are more strongly polarized than in purely aromatic hydrocarbons.¹ The conventional empirical characterization of the orbital excitation identifies the phosphorescent state of benzophenone-like systems as ${}^{3}\Gamma$ *.

The EMR measurements of ${}^{3}\Gamma_{n\pi}^{*}$ of benzophenone have been considered to be extremely difficult, because of the short lifetime $\tau_{p} \sim 10^{-3}$ sec, and hence a low steady-state concentration results.² Recently, however, the optical study of Zeeman and Stark effects in crystalline benzophenone has been reported by Hochstrasser and Lin.³

The present report summarizes: general implications of the $n\pi^{*}$ triplet state in short-lived carbonyl hydrocarbons; an experimental technique that obviates the difficulty associated with the short lifetime of the ${}^{3}\Gamma_{\pi^{*}}$ phosphorescent state in EMR study to the $n\pi$ extent that the $\Delta M_{s} = \pm 2$ canonical field of benzophenone in ether glass at 77°K is observable; the extension of the application of the double-delta "1/2 electron" model previously reported ⁴⁻⁶ to the hypothetical pure $\pi\pi^{*}$ and $n\pi^{*}$ orbital excitation for benzophenone zero-field splitting (ZFS) as a function of the angular variation of the two-phenyl rings with respect to the plane containing the c = 0 groups; some inferences from experiments and computations and a discussion.

1. $n\pi^*$ Triplet in Carbonyl Hydrocarbons

The difficulty associated with the electron magnetic resonance (EMR) observation of the ${}^{3}\Gamma_{n\pi}$ state in some aromatic molecules containing a carbonyl group, >C = 0, is that the lifetime of the lowest triplet state is short (~10⁻³ sec), so that with the conventional method of irradiating the sample with a steady-state light source while sweeping the H field slowly (typically, 3 ~ 5 × 10³ Oe/10 min), the steady-state concentration of $|T_{1}\rangle$ that is sufficient for EMR detection (~10¹³ spins) cannot be attained. The

^{*}This work was supported by the Joint Services Electronics Programs (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E).

introduction of the carbonyl group(s) to the aromatic hydrocarbons causes a decrease in the phosphorescent lifetime, τ_p , the fluorescence quantum yield, Φ_F , and an increase in the phosphorescence quantum yield, Φ_p , the intersystem-crossing rate constant, k_{ISC} , and the oscillator strength, f, of the $|T_1\rangle + |S_0\rangle$ transition. The variation in the intrinsic lifetime, τ_p^0 , of the triplet state from molecule to molecule is determined by the variation of the spin-orbit matrix element according to the expression⁷

$$\left(\tau_{p}^{o}\right)^{-1} = \frac{64\pi^{4}\nu^{3}}{3hc^{3}} \sum_{\mathbf{r}} \left| \frac{\langle \mathbf{S}_{p} | \mathcal{H}' | \mathbf{T}_{1}^{\mathbf{r}} \rangle}{\mathbf{E}_{\mathbf{S}_{p}} - \mathbf{E}_{\mathbf{T}_{1}}} \right|^{2} |\langle \mathbf{S}_{p} | \mathbf{e}\overline{\mathbf{r}} | \mathbf{S}_{0} \rangle|^{2}, \qquad (1)$$

where v is the Frank-Condon maximum of the $|T_1\rangle \rightarrow |S_0\rangle$ emission, $|T_1^r\rangle$ is the rth magnetic component of the lowest triplet state $|T_1\rangle$, r indicates the values of $M_s = 0, \pm 1$, $|S_p\rangle$ is the so-called perturbing singlet state, and $|S_0\rangle$ is the lowest singlet or ground state.

The measured lifetime of phosphorescence, τ_p , cannot be totally determined by the matrix element (1), since it is a function of various quenching processes originating from the $|T_1\rangle$, as well as that of the rate of the emissive process (phosphorescence). τ_p can be written

$$\tau_{p} = \left[k_{p} + \sum_{i} k_{qi} \right]^{-1}, \qquad (2)$$

where k_p is the rate constant for the phosphorescence, and k_{qi} represents various radiationless downward processes $|T_1\rangle \longrightarrow |S_0\rangle$. This means that the measured phosphorescence lifetime is subject to change with the molecular environment⁸ and the impurities (for example, the bimolecular quenching of $|T_1\rangle$ of carbonyl hydrocarbons by the $X^3\Sigma_g^-$ state of oxygen).

The spin-orbit operator \mathfrak{K}' in (1) in the McClure central-field approach^{9, 10} assumes that the interaction is that for electrons in a spherically symmetric potential field, and if the "spin-other orbit coupling" term is assumed negligible it has the form

$$\mathcal{K}' = \sum_{i=1}^{n} A_{i} (\ell_{xi} s_{xi} + \ell_{yi} s_{yi} + \ell_{zi} s_{zi})$$

$$A_{i} = \sum_{K=1}^{N} (r_{iK})^{-1} (\partial V(r_{iK}) / \partial r_{iK}) (2m^{2}c^{2})^{-1},$$
(3)

where ℓ_{xi} and s_{xi} are the operators for the x-component of orbital and spin angular

QPR No. 93

momenta of the ith electron; i runs over electrons 1, 2, ..., n and the K for the nuclei 1, 2, ..., N; and r_{iK} is the separation between the ith electron and the Kth nucleus. The shortening of τ_p^0 upon the introduction of carbonyl oxygen(s) to the hydrocarbon may be rationalized by (3), an analog to the atomic heavy-atom effect. A more general form of \mathfrak{K}' in molecules has been proposed by Hameka.¹¹

The effect of spin-orbit interaction in the ZFS parameters is treated by second-order perturbation theory by various workers.¹²⁻¹⁴ No such calculation has been done, how-ever, for the $|T_1\rangle {3\Gamma_n}_{\pi} {(^3A_2)}$ of benzophenone.

The molecular Hamiltonian that takes spin-orbit interaction into consideration is

$$\mathcal{H} = \mathcal{H}_{O} + \mathcal{H}_{SS} + \mathcal{H}_{SO}$$

The matrix elements H_{ii} now include the second-order term

$$H_{ij} = \langle {}^{3}\Psi_{k}^{i} | \mathcal{K}_{ss} | {}^{3}\Psi_{k}^{j} \rangle - \sum \frac{\langle {}^{3}\Psi_{k}^{i} | \mathcal{K}_{so} | {}^{1}\Psi_{n} \rangle \langle {}^{1}\Psi_{n} | \mathcal{K}_{so} | {}^{3}\Psi_{k}^{j} \rangle}{E_{1}\Psi_{n} - E_{3}\Psi_{k}},$$
(5)

where ${}^{3}\Psi_{k}^{i}$ are the zero-order triplet wave functions with antisymmetric spatial part and three symmetric spin functions differing in i = $M_{s} = 0, \pm 1$. \mathcal{H}_{so} in (5) may be taken as identical in form to \mathcal{K}' in (1). The consequence of this treatment yields \mathcal{H}_{so} .

$$\mathfrak{K}_{so} = \left[Z - 2^{-1} (X + Y) \right] S_{z}^{2} + 2^{-1} (X - Y) \left(S_{x}^{2} - S_{y}^{2} \right) - 2^{-1} Z \overline{S}^{2}, \tag{6}$$

where X, Y, and Z are principal values of $\mathfrak{K}_{_{\mathrm{SS}}}$. Since

$$\bar{S}^{2} = S_{x}^{2} + S_{y}^{2} + S_{z}^{2},$$
(7)

we may combine (6) and (7) to yield the same form as (7):

$$\mathfrak{K}_{spin} = \mathfrak{K}_{ss} + \mathfrak{K}_{so} = -\left(X'S_x^2 - Y'S_y^2 + Z'S_z^2\right).$$
(8)

This is equivalent to saying that the effect of the spin-orbit coupling on ZFS parameters can be computed from the theory, but is difficult to distinguish in an EMR experiment. The contribution of spin-orbit coupling to the ZFS parameter D (=3/2(X+Y)) of NH and CH₂ has been calculated by Fogel and Hameka,¹² and by McIver and Hameka,¹⁰ and the values are $D_{so}(NH) = 0.268 \text{ cm}^{-1}$ and $D_{so}(CH_2) = 0.1128 \text{ cm}^{-1}$.

- 2. Experiment: Fast-Scan Flash-Synchronized EMR (F-F-EMR)
- a. Instrument

The apparatus designed by K. W. Bowers¹⁵ is the first of the modifications of X-band spectrometers to overcome the difficulties described by McGlynn and co-workers.¹ The

(II. ELECTRON MAGNETIC RESONANCE)

principal features that resulted in the successful observation of the $\Delta M_s = \pm 2$ transition of benzophenone and some of its derivatives are the following.

1. Capability of scanning approximately 250 Oe/25 msec.

2. Intense xenon flash $(2^{-1}CV^2 \sim 4500 \text{ j})$ lifetime is stretched to 25 msec, and the triggering of the flash is synchronized to the scan of the magnetic field of the X-band spectrometer.

3. The spectrum for each scan is stored in a time-averaging computer, CAT, to allow the growth of the signal and the cancellation of the noise as the scan is repeated.

The extensive applicability and versatility of this apparatus in the study of excited state systems are illustrated as follows.

- 1. Study of polarized emission from the Zeeman-split multiplet levels.
- 2. Magnetophotoselection in short-lived triplet molecules.
- 3. Triplet \rightarrow triplet or singlet \rightarrow triplet energy transfer in glass.
- 4. Multiplet exciton migration in polymers and liquid crystals.
- 5. Study of short-lived intermediates in photospecific isomerization.

A block diagram of the fast-scanning flash-synchronized EMR spectrometer is shown in Fig. II-1. The capacitor bank (18,000 μ F) is charged with a DC power supply to a maximum of 700 V, and discharged through the high-energy low-pressure xenon flash tube. The lifetime of the flash, that is, the 1/2 height of the flash contour (cf. Fig. II-2a) is adjusted to approximately 25 msec. The triggering of the flash is done by discharging the $1-\mu F$ (600 V) capacitor through the primary of the trigger transformer. The synchronization of the flash and the field scan (Fig. II-2b) is accomplished by a series of pulse and waveform generators, A, B, C, and F, the function generator, D, and the high-fidelity audio amplifier, E. A pulse of a few millivolts induced by the initial triggering is transformed by the waveform generator A into a sawtooth of ~40-msec duration; 20% of which triggers the pulse generator B in which the pulse height is amplified to ~15 V, and the pulsewidth ~1 msec. This amplified pulse fed into another waveform generator C gives a sawtooth of \sim 25-msec duration. The deviation of the slope from linearity is corrected by the function generator, D, and amplified by the 200-W audiofrequency amplifier to give a sawtooth of the amplitude necessary for the H field sweep. The monitoring of the shape and reproducibility of the flash, the input and the output of the audio amplifier is conveniently done by a multichannel vertical amplifier (Tektronix 3A74) and a 3B4 time base with a Type 576 storage oscilloscope.

For the accumulation of the signal from the excited paramagnetic sample (benzophenone, etc.), the conventional repeated-scan method is used. The synchronization of the time-averaging computer, CAT, which stores the spectrum is done similarly by having the pulse generator F give an $\sim 3 \text{ V}$, 10^{-3} sec pulse to the CAT.

Since the H field scan is \sim 25 msec, the time constant of the factory-made 100-kHz modulation unit inside the Varian E-3 spectrometer is too large. A modification to the

Fig. II-1. Fast-scan flash-synchronized X-band EMR spectrometer for short-lived excited states of molecules and atoms.

Fig. II-2. (a) Flash contour at C = 18,000 μF, E = 400 V, and L = 8 mH.
(b) Nearly linear relation of H field scan and the horizontal division of CAT.

Fig. II-3. Heavy lines showing SPDT toggle switch added to 100-kHz unit of the E-3 spectrometer to be used for both normal scans and for F-F-EMR.

100-kHz unit is shown in Fig. II-3.

The $\Delta M_s = \pm 2$ fields of benzophenone, p-OH benzophenone, p-CH₃ benzophenone, p-NH₂ benzophenone, fluorene-9-one, benzyl, xanthane-9-one, and thio-xanthane-9-one are shown in Fig. II-4. The first four samples were recrystalized and sublimed several times, the last four came from the Beckman photosensitizer series without further purification.

The ether glass at 77 °K and the quartz (Spectrosil) sample tube give a typical microwave resonance frequency, $\nu = 9.15 \pm \text{GHz}$. The assignment of the observed signal as $\Delta M_s = \pm 2$ comes from the relative intensity of the $\Delta M_s = \pm 1$ and $\Delta M_s = \pm 2$ fields with that of the CH₃ radical signal.

A consistently reproducible "additional" field is observed for fluorene-9-one (see Fig. II-4c) at 2530 Oe and at 4580 Oe. These could well be two of the $\Delta M_s = \pm 1$ transitions. The concentration of samples are typically $\sim 10^{-1}$ M, dissolved in diethylether or EPA, degassed 5 ~ 6 times by the freeze-pump-thaw method and vacuum-sealed in quartz sample tubes of ~3 mm diameter. Then the sample is immersed in liquid nitrogen that is contained in a quartz dewar. Blank runs include: empty dewar, dewar with liquid nitrogen, dewar, liquid nitrogen, sample tube with solvent glass, and each of these blanks was tested for irradiation on and off. The quartz dewar at liquid N₂ temperature gave "impurity signals" at 3288, 3350, and 3400 Oe upon irradiation.

The instrument arrangement was usually: Field at t = 0, 1400 Oe; scan range ~210 Oe; time constant, "bypass" position; scan time 25 msec; modulation amplitude 5, 10, 20 Oe (depending on the width of the signal); receiver gain $1.25 \sim 5.0 \times 10^{6}$; temperature of the sample 77 °K; microwave power $0.5 \sim 1.6$ mW; microwave

Fig. II-4. $\Delta M_s = \pm 2$ field of (a) benzophenone, p-OH benzophenone, and p-CH₃ benzophenone; (b) p-NH₂ benzophenone, benzyl, and xanthen-9-one; (c) fluorene-9-one, thio-xanthane-9-one, and " $\Delta M_s \pm 1$ " of fluorene-9-one.

frequency 9.150 ± GHz. Noticeable are the linewidth and the shift of the $\Delta M_s = \pm 2$ fields.

Linewidth (for the numerical values in Oe see Fig. II-4).

p-CH₃ bzph > benzyl > bzph > xanthane-9-one » p-OH bzph > p-NH₂ bzph > fluorene-9-one (bzph = benzophenone)

Line position (for the numerical values in Oe see Fig. II-4).

```
bzph > xanthane-9-one > benzyl > fluorene-9-one > p-OH bzph > p-NH<sub>2</sub> bzph.
```

The trends that have been observed will be discussed in section 4.

3. Double-delta "1/2-Electron" Model of Benzophenone: $\pi\pi^*$ and $n\pi^*$ Types

The derivation and the details of the model have been described in previous reports. $^{4-6}$ The molecule-fixed axes and carbon-atom labels are defined in Fig. II-5.

Fig. II-5. Axes, angles θ_1 , θ_2 , and labels for atoms.

For Hückel MO,

$$\beta_{ij} = \cos \theta_{ij}, \quad \text{for } i \neq j, i = 1, j = 13.$$

$$\beta_{ij} = -1, \quad \text{for } i = j, \quad (9)$$

$$\beta_{ij} = 0, \quad \text{for } i \neq j, \quad \text{if } \begin{cases} i \neq 1 \\ j \neq 7, 13 \end{cases}$$

The resonance parameter $k_{c=0} = a_0 + k\beta = -0.76$ (Wheland¹⁶), the Coulomb parameter $h_0 = \chi_0 - \chi_c = 1$ (Pauling¹⁷), and $k_{c-c}(1.45 \text{ Å}) = 0.91$ (Mulliken¹⁸) are used. The approximate zero-field splitting parameters, $\langle U(\theta_1, \theta_2) \rangle$, are calculated by using the double-delta "1/2-electron" model formula.

Table II-1(a). Eigenvectors and the components of the position vectors for benzophenone π, π^* triplet (a) and n, π^* triplet (b).

BENZOPHE	NCNE (10,20)	PI-PI* CONF	IG				CUCAD	CARCNE
ATCM	XU	XL	YU	YL	ZU	- 21	CHUNE	
1	0.0	0.0	-0.472	0.472	0.0	0.0	-0.095	
2	1.684	1.766	-0.615	0.314	-0.082	C.060	0.186	-0.269
2	2.550	2.632	-0.615	0.314	-0.948	-0.806	-0.145	-C.C55
	2.557	2.639	-0.465	0.465	-1.937	-1.795	-0.319	C.290
5	1.698	1.780	-0.314	0.615	-2.060	-1.918	-C.145	-0.055
	0.832	0.914	-0.314	0.615	-1.926	-1.784	C.186	-0.269
7	0 825	0.907	-0.465	0.465	-0.571	-0.429	0.315	C.156
	-1 665	-1.747	-0.740	0.147	-0.185	0.095	0.178	-0.257
0	-2 531	-2.613	-0.740	0.147	-1.051	-0.771	-0.139	-0.052
- 10	_2 557	-2.639	-0.444	0.444	-2.006	-1.726	-0.304	C.276
10	-1 717	-1.799	-0.147	0.740	-2.095	-1.815	-0.139	-0.052
12	-0.851	-0.933	-6.147	0.740	-1.961	-1.681	0.178	-0.257
12	-0.025	-0.907	-0.444	0.444	-0.140	0.140	C.301	C.149
13	0 900	0.900	-0.472	0.472	0.900	0.900	-0.627	-0.469
ZES-APP	ROXIMATION,	DOUBLE CELTA	FUNCTION					
DAV. PR	OPERTICNAL T	C C, IS 0.19	7E-01 EA	V, PROPERTIE	ENAL TO E, IS	S-C.258E CO		
XAV # 0	264E CO	AV #-0.251E	00 ZAV #-C	.132E-01				

CBOND = eigenvectors of the highest bonding MO.

CABOND = eigenvectors of the lowest antibonding MO.

XU = X component of the position vector for the delta function above phenyl plane.

XL = X component of the position vector for the delta function below phenyl plane.

$$\begin{split} &\theta_1 = 10^\circ. \\ &\theta_2 = 20^\circ. \\ &\left\{ \mathbf{X}_{\mathrm{AV}}, \mathbf{Y}_{\mathrm{AV}}, \mathbf{Z}_{\mathrm{AV}} \right\} = \left< \mathbf{U}(\boldsymbol{\theta}) \right> \propto \ Z\mathrm{FS}. \end{split}$$

Table II-1(b).	Similar to Table II-1(a) except that various values are for hypothetical
	benzophenone pure n, π^* triplet having $\theta_1 = 10^\circ$, $\theta_2 = 20^\circ$.

0.0	0.0	-0.472	0.472	0.0	0.0	0.0	0.534
1 694	and a second sec		the second s	AND ALL DESCRIPTION OF A DESCRIPTION OF	and the second		
	1.766	-0.615	0.314	-0.082	0.060	0.0	-0.269
2.550	2.632	-0.615	0.314	-0.948	-0.806	C•0	-0.055
2 557	2.639	-0.465	0.465	-1.937	-1.795	C • C	C . 290
1 608	1.780	-0.314	0.615	-2.060	-1.918	0.0	-0.055
0 022	0 914	-0.314	0.615	-1.926	-1.784	C.C	-0.269
0.052	0.907	-0.465	0.465	-0.571	-0.429	C.O	0.156
1 445	-1 747	-0.740	0.147	-0.185	0.055	C.O	-0.25
1.000	-2 613	-0.740	0.147	-1.051	-0.771	0.0	-0.052
2.551	-2 630	-0.444	0.444	-2.006	-1.726	0.0	0.276
2.007	-2.009	-0.147	0.740	-2.095	-1.815	C.C	-0.052
1.11	-1.199	-0.147	0 740	-1.961	-1.681	0.0	-0.25
0.851	-0.933	-0.147	0 666	-0.140	0.140	0.0	0.149
0.825	-0.907	-0.444	0 472	0 900	0.900	0,000	-0.46
0.900	0.900	-0.472	0.472	0.900	0.,00	0	
	2.550 2.557 1.698 0.832 0.825 1.665 2.531 2.557 1.717 0.851 0.825 0.825	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

QPR No. 93

Orbital Promotion Type	θ_1 , θ_2	X _{av}	Yav	Z _{av}	D _{av}	$^{\rm E}_{ m av}$
$\pi^* \leftarrow \pi$	0,0	. 282	248	0341	.0511	265
$\pi^* \leftarrow n$	0,0	.0796	193	.114	171	136
$\pi^* \leftarrow \pi$	0,10	. 276	260	0163	.0244	268
$\pi^* \leftarrow n$	0,10	.0734	200	.126	190	137
$\pi^* \leftarrow \pi$	0,20	.274	264	0100	.0151	269
$\pi^* - n$	0,20	.0731	203	.130	195	138
$\pi^* \leftarrow \pi$	0,30	.269	271	.0015	0023	270
$\pi^* \leftarrow n$	0,30	.0726	209	.137	205	141
$\pi^* \leftarrow \pi$	0,45	. 258	282	. 0239	0359	270
$\pi^* - n$	0,45	.0707	221	.151	226	146
$\pi^* - \pi$	0,50	.254	287	.0327	0490	271
$\pi^* - n$	0,50	.0696	227	.157	236	148
$\pi^* \leftarrow \pi$	0,60	. 251	300	.0487	0730	276
$\pi^* \leftarrow n$	0,60	.0663	236	.170	255	151
$\pi^* \leftarrow \pi$	0,70	. 258	319	.0612	0918	288
$\pi^* \leftarrow n$	0,70	.0631	246	.183	274	154
$\pi^* \leftarrow n$	0,80	.0604	253	.192	288	156
$\pi^* \leftarrow \pi$	0,85	.268	340	.0718	108	304
$\pi^* \leftarrow n$	0,85	.0594	254	.195	293	157
$\pi^* \leftarrow \pi$	10,10	. 275	254	0207	.0310	264
$\pi^* - n$	10,10	.0727	198	.125	187	135
$\pi^* - \pi$	10,20	. 264	251	0132	.0197	258
$\pi^* - n$	10,20	.0724	201	.129	193	137
$\pi^* \leftarrow \pi$	10,30	. 253	251	0018	.0028	252
$\pi^* - n$	10,30	.0718	207	.135	203	 1 3 9
$\pi^* - \pi$	10,45	. 240	259	.0194	0291	250
$\pi^* - n$	10,45	.0692	219	.150	224	144
$\pi^* \leftarrow \pi$	10,50	. 239	266	.0269	0403	253
$\pi^* \leftarrow \pi$	10,60	.242	283	.0417	0625	263
$\pi^* - n$	10,60	.0651	234	.169	254	150
$\pi^* \leftarrow \pi$	10,70	.250	305	.0550	0825	277
$\pi^* \leftarrow n$	10,70	.0618	244	.182	273	153
$\pi^* - \pi$	10,80	. 259	325	.0652	0979	292
$\pi^* \leftarrow n$	10,80	.0587	250	.192	288	155
$\pi^* - \pi$	10,85	. 263	331	.0681	102	297
$\pi^* - n$	10,85	.0579	252	.195	292	155
$\pi^* \leftarrow \pi$	20,20	. 271	245	0257	.0385	258

Table II-2. Computed ZFS of benzophenone as functions of θ_1 and θ_2 .

Table II-2. (continued)

Orbital Promotion						
Туре	θ ₁ ,θ ₂	X _{av}	Yav	Z _{av}	D _{av}	Eav
$\pi^* \leftarrow n$	20,20	.0717	198	.126	189	135
$\pi^* \leftarrow \pi$	20,45	. 237	 246	.0088	 0132	241
$\pi^* \leftarrow n$	20,45	.0680	 216	.148	222	142
$\pi^* \leftarrow \pi$	20,50	. 232	 250	.0175	0262	241
$\pi^* - n$	20,50	.0682	220	.152	228	144
$\pi^* \leftarrow \pi$	20,60	. 233	265	.0317	0476	249
$\pi^* \leftarrow n$	20,60	.0637	232	.168	252	148
$\pi^* \leftarrow \pi$	20,70	.238	284	.0456	0684	261
$\pi^* \leftarrow n$	20,70	.0598	241	. 181	272	150
$\pi^* \leftarrow \pi$	20,80	.246	302	.0559	0838	274
$\pi^* \leftarrow n$	20,80	.0564	248	.192	288	152
$\pi^* \leftarrow \pi$	20,85	.249	308	.0587	0881	278
$\pi^* - n$	20,85	.0557	251	.195	292	153
$\pi^* \leftarrow \pi$	30,30	.265	234	0315	0472	250
$\pi^* \leftarrow n$	30,30	.0716	202	.130	195	137
$\pi^* \leftarrow \pi$	30,45	.226	229	.0026	0038	228
$\pi^* \leftarrow n$	30,45	.0687	214	.146	218	141
$\pi^* \leftarrow \pi$	30,50	.231	233	.0018	0027	232
$\pi^* \leftarrow n$	30,50	.0671	220	.153	229	143
$\pi^* \leftarrow \pi$	30,60	. 223	241	.0180	027	232
$\pi^* \leftarrow n$	30,60	.0634	231	.167	251	147
$\pi^* \leftarrow \pi$	30,70	. 224	256	.0326	0488	240
$\pi^* \leftarrow n$	30,70	.0590	242	.183	274	150
$\pi^* \leftarrow \pi$	30,80	. 227	217	.0441	0661	249
$\pi^* \leftarrow \pi$	30,85	. 229	276	.0473	0710	252
$\pi^* + n$	30,85	.0543	252	.198	296	153
$\pi^* \leftarrow \pi$	45,45	.255	216	0392	.0587	235
$\pi^* \leftarrow n$	45,45	.0739	216	.142	213	145
$\pi^* \leftarrow \pi$	45,50	.240	212	0280	.0419	226
$\pi + n$	45,50	.0724	222	.150	225	147
$\pi^* - \pi$	45,60	.217	209	0080	.0119	213
$\pi^* - n$	45,60	.0683	235	.167	250	152
$\pi^* - \pi$	45,70	. 202	214	.0117	0175	208
$\pi^* - n$	45 , 70	.0634	248	.185	277	156
$\pi^* \leftarrow \pi$	45,80	.194	222	.0280	0419	208
$\pi^* \leftarrow n$	45,80	.0583	259	. 201	301	159
$\pi^* \leftarrow \pi$	45,85	.192	225	.0332	0498	209

Table II-2. (concluded)

Orbital Promotion		V		7		
iype	θ_1, θ_2	Aav	^Y av	^Z av	^D av	Eav
$\pi^* - n$	45,85	. 0568	261	. 205	307	159
$\pi^* - \pi$	50,50	. 251	209	0419	.0629	230
$\pi^* - n$	50,50	.0763	223	.147	220	150
$\pi^* \leftarrow \pi$	5 0 ,60	. 221	202	0192	.0288	211
$\pi^* \leftarrow n$	50,60	.0724	237	.165	247	155
$\pi^* \leftarrow \pi$	50,70	. 198	202	.0035	0052	200
$\pi^* - n$	50,70	.0671	252	.185	277	159
$\pi^* \leftarrow \pi$	50,80	.184	208	.0237	0355	196
$\pi^* \leftarrow n$	50,80	.0618	263	. 201	302	163
$\pi^* \leftarrow \pi$	50,85	.180	211	.0306	0459	195
$\pi^* - n$	50,85	.0602	267	. 206	310	163
$\pi^* \leftarrow \pi$	60,60	. 243	195	0485	.0727	219
$\pi^* - n$	60,60	.0845	240	.155	233	162
$\pi^* \leftarrow \pi$	60,70	.124	131	.0078	0117	128
$\pi^* - n$	60,70	.0799	257	.177	266	169
$\pi^* - \pi$	60,80	.169	187	.0185	0277	178
$\pi^* - n$	60,80	.0742	272	.198	297	173
$\pi^{*} \leftarrow \pi$	60,85	. 157	189	.0317	0475	173
$\pi^* - n$	60,85	.0725	276	.204	306	174
$\pi_{\cdot}^{\ast} \leftarrow \pi$	70,70	.238	185	0536	.0804	212
$\pi^* - n$	70,70	.102	263	.161	242	183
$\pi^* \leftarrow \pi$	70,80	.175	186	.0105	0157	181
$\pi^* - n$	70,80	.0996	283	.183	275	191
$\pi^* \leftarrow \pi$	70,85	.146	189	.0430	0645	167
$\pi - n$	70,85	.0983	289	.191	286	194
$\pi^{*} \leftarrow \pi$	80,80	.244	193	0513	.0770	219
$\pi + n$	80,80	.134	295	.161	242	215
$\pi_{+} \pi$	80,85	.174	208	.0346	0519	191
$\pi \hat{\tau} \leftarrow n$	80,85	.135	305	.169	254	220
π^{\sim} + π	85,85	. 381	 176	205	. 308	 279
$\pi^{} \leftarrow n$	85,85	.157	313	.156	233	235

(II. ELECTRON MAGNETIC RESONANCE)

$$\langle U(\theta_{1}, \theta_{2}) \rangle = \sum_{i \ k} \sum_{k} C_{i}(\theta_{1}, \theta_{2}) C_{k}(\theta_{1}, \theta_{2}) \{ C_{i}(\theta_{1}, \theta_{2}) C_{k}(\theta_{1}, \theta_{2}) - C_{k}(\theta_{1}, \theta_{2}) C_{i}(\theta_{1}, \theta_{2}) \} \left[\{ \mathscr{U}(\theta_{1}, \theta_{2}) \}_{i_{1}^{+}k_{2}^{+}} + \{ \mathscr{U}(\theta_{1}, \theta_{2}) \}_{i_{1}^{+}k_{2}^{-}} + \{ \mathscr{U}(\theta_{1}, \theta_{2}) \}_{i_{1}^{-}k_{2}^{+}} + \{ \mathscr{U}(\theta_{1}, \theta_{2}) \}_{i_{1}^{-}k_{2}^{-}} \right],$$

$$(10)$$

where $U \equiv X$, Y, Z, $\mathscr{U} \equiv \mathscr{X}$, \mathscr{Y} , \mathscr{J} (for the definition of each operator see previous reports $^{4-6}$), $C_n(\theta_1, \theta_2)$ are Hückel AO coefficients at atomic position n, $\{\mathscr{U}(\theta_1, \theta_2)\}_{\substack{i_1 \neq k_2 \\ i_1 \neq k_2 \\ i_2 \neq k_2 \\ i_1 \neq k_2 \\ i_1 \neq k_2 \\ i_2 \neq k_2 \\ i_2 \neq k_2 \\ i_2 \neq k_2 \\ i_1 \neq k_2 \\ i_2 \neq k_2 \\ i_2$

above the phenyl-ring plane, and electron 2 at the nucleus k below the phenyl-ring plane. Furthermore, two orbital excitation types $\pi\pi^*$ and $n\pi^*$ are assumed to involve only the promotion of an electron of n or of the highest π bonding orbital into the lowest antibonding π^* orbital. Typical position vectors for the delta functions at various nuclear positions above and below the phenyl-ring plane are shown in Table II-1. The results of the computation of Eq. 10 for both pure $\pi\pi^*$ and $n\pi^*$ triplet states of benzophenone are

listed in Table II-2. Figure II-6 shows the behavior of the approximate expectation of ZFS, that is, $\langle U(\theta_1, \theta_2) \rangle = X_{av}$, Y_{av} , Z_{av} in the case of $\theta_1 = \theta_2$ for $\pi\pi^*$ and $n\pi^*$ triplet

Fig. II-7. Computed principal values of the dipolar tensor of benzophenone (a) under the assumption of pure $\pi^* - \pi$ triplet $\theta_1 = \theta_2$ and $\theta_1 \neq \theta_2$; (b) under the assumption of pure $\pi^* - n$ triplet $\theta_1 = \theta_2$ and $\theta_1 \neq \theta_2$.

Fig. II-8. Uncertainty of principal values with assumed free rotation of phenyl rings.

17

states, respectively. Figure II-7 exhibits the superposition of $\langle U(\theta_1, \theta_2) \rangle$ for several possible combinations of θ_1 and θ_2 . Figure II-8 shows a comparison of the uncertainty of the principal values $\Delta \langle U(\theta_1, \theta_2) \rangle$ of the $\pi\pi^*$ triplet and that of the $n\pi^*$ triplet and points out that if θ_1 and θ_2 are equal and fixed (such as in the case of fluorene-9-one), we should expect a sharp resonance line.

4. Conclusions and Discussion

We may now inquire, "What do the observed and the computed results mean?" The most obvious observed trends are those of linewidth and line position.

(a) Linewidth

The linewidth λ_{kl} for the $lk \rightarrow ll$ transition can be approximated by¹⁹

$$\lambda_{k\ell} = 2h \left| \partial H / \partial \delta \right| \left[\left\langle \Delta \nu^2 \right\rangle_{k\ell} \right]^{1/2}, \tag{11}$$

where $\langle \Delta v^2 \rangle_{k\ell}$ is the second moment arising from the nuclear Zeeman and the electronnucleus couplings, and $\partial H / \partial \delta$, $\delta = h v_{microwave}$ is the field-shift operator. The former can be expressed as

$$\langle \Delta v^{2} \rangle = 4^{-1} \left\{ \sum_{N} \left(h^{-1} g_{N} \beta_{\rho} \right)^{2} \left| \overline{H}_{kN} - \overline{H}_{\ell N} \right|^{2} + \sum_{N'} \left| \langle k | S | k \rangle - \langle \ell | \overline{S} | \ell \rangle \right|^{2} \right\}$$
(12)

and

$$\widetilde{H}_{kN} = h(g_N \beta_\rho)^{-1} \langle \mathbf{k} | \overline{\overline{\tau}}_N \cdot \overline{S} | \mathbf{k} \rangle,$$

where g_N is the nuclear g factor, $\beta_{\rho} = eh/2Mc$ is the nuclear magneton, $\overline{\overline{T}}$ is the hyperfine interaction tensor, \overline{S} is the total electron spin operator, and $\partial H/\partial \delta$ in the $\delta = hv_{const.}$ experiment has the following form²⁰:

$$\frac{\partial H}{\partial \delta} = \delta H [3\delta^{2} + 9v - 9(g\beta H)^{2}] \times [2(\delta^{2} + v) \{4v + \delta^{2} - 2(g\beta H)^{2}\} + 4(g\beta H)^{2} \pm 6\sqrt{3} XYZ \{4(g\beta H)^{2} - \delta^{2} - 4v\}^{1/2}]^{-1}$$
(13)
$$v = XY + YZ + ZX.$$

Equations 11-13 imply that for an assembly of randomly oriented molecules the major contributions to the linewidth come from (i) the nucleon-electron interaction, (ii) the electron spin-spin interaction, and (iii) the deviation of the ZFS parameter, because of the molecular motion (vibration, internal rotation, etc.). In view of these considerations,

the significant linewidth gap between benzophenone and fluorene-9-one becomes quite reasonable (see Fig. II-9).

 $\begin{aligned} & (\theta_1, \theta_2) = (O \pm \theta'_1, O \pm \theta'_2) \\ & \langle \cup (\theta_1, \theta_2) \rangle = \cup (O, O) \pm \Delta \cup (\theta_1, \theta_2) \\ & \text{SPIN CORRELATION} \\ & \text{MORE LOCALIZED} \\ & \text{LARGE v VALUE} \\ & \lambda_{L-1} \sim 75 \text{ Oe} \end{aligned}$

 $(\theta_1, \theta_2) = (0, 0)$ $(U(\theta_1, \theta_2)) = U(0, 0)$ SPIN CORRELATION MORE DELOCALIZED SMALL v VALUE $\lambda_{1-1} \sim 15$ Oe

During the flash excitation, 25×10^{-3} sec, the $|T_1^r\rangle$ electronic states are populated. For the benzophenone the "snapshot" of the transitions between the r = +1 and r = -1 magnetic components is blurred, because of the greater value of v and the deviation (uncertainty) in $\langle U(\theta_1, \theta_2) \rangle$, while the "picture" of the fluorene-9-one is clear-cut, except for the finite width arising from $\langle \Delta v^2 \rangle$.

(b) Line Position of $\Delta M_{g} = \pm 2$

The theoretical line position of $\Delta M_s = \pm 2$ has at most four components. These arise from the canonical orientations and the stationary resonance condition. They are

$$H_{\min} = (2g\beta)^{-1} [\delta^{2} + 4v]^{1/2}$$

$$H'_{X} = (2g\beta)^{-1} [\delta^{2} - (Y - X)]^{1/2}.$$
(14)

 H'_y and H'_z follow the permuting order of XYZ, and if H_{min} exists for a given $\delta = h\nu_{microwave}$, it dominates the rest and H'_x , H'_y , and H'_z are likely to become little shoulders of H_{min} . In any case, from (11)-(14) it can readily be seen that both line-width and line position are dependent on the values and deviations of $\langle U(\theta_1, \theta_2) \rangle$.

The results of the computation (Figs. II-6 through II-8) suggest that the deviation of $\langle U(\theta_1, \theta_2) \rangle$ is appreciable and causes significant line broadening, provided that in $|T_1\rangle$ θ_1 and θ_2 of benzophenone vary, because of the degree of freedom within the limit determined by various nonbonded interactions.

We may generalize that the spin-spin interaction in a molecule possessing greater degree of vibrational or internal rotational freedom tends to increase, and the

uncertainty of its expectation increases. In a molecule possessing less degree of motional freedom the spin-spin correlation tends to decrease, and the uncertainty of its expectation decreases. Benzophenone and fluorene-9-one typify this generalization, and the alteration imposed by introducing substituent(s) upon the dipolar spin correlation should also follow this simple inference. The observed order of linewidth and line position are consistent with these conclusions.

Despite the great advantage of the apparatus, the only "possible $\Delta M_s = \pm 1$ " observed among short-lived n^{*} triplets is that of fluorene-9-one. No detailed structure of the phosphorescent state can be deduced from $\Delta M_s = \pm 2$ alone for the sample in a glass (because of its near isotropy).

The search for the $\Delta M_s = \pm 1$ transition by line symmetry is unreliable, since the resonance condition is dependent upon the principal values. For example, for a sample having D = 1.00 and |E| = 0.002, there is only one EMR line ($\Delta M_s = \pm 2$, not H_{min}) within 1400 < H \leq 4999 Oe. For D = 0.500, |E| = 0.002 there are no $\Delta M_s = \pm 2$; only two $\Delta M_s = \pm 1$ fields appear. For D \geq 2.00, |E| = 0.002 no EMR field can be found in the X-band observation.

Although no consideration of intermolecular forces was attempted in this work, the migration of excitation (exciton) in fairly concentrated rigid glass cannot be ignored. The formation of excited dimer and various anomalies encountered in EMR work when the intermolecular distance is small will be examined in the future. Various models of excitonic phenomena may be employed in such studies.²¹⁻²³

The authors would like to thank Professor D. M. Hercules and A. Vaudo for their assistance.

K. W. Bowers, B. S. Yamanashi, C. Mazza

References

- 1. S. P. McGlynn, T. Azumi, and M. Kinoshita, <u>Molecular Spectroscopy of the Triplet State</u> (Prentice-Hall Inc., Englewood Cliffs, N.J., 1968), pp. 166-172.
- 2. C. Thomson, Quart. Revs. Quantum Phys. 22, 45 (1968).
- 3. R. M. Hochstrasser and T-S Lin, J. Chem. Phys. 49, 4929 (1968).
- 4. K. W. Bowers, Quarterly Progress Report No. 89, Research Laboratory of Electronics, M. I. T., April 15, 1968, pp. 7-18.
- 5. B. S. Yamanashi, Quarterly Progress Report No. 91, Research Laboratory of Electronics, M.I.T., October 15, 1968, pp. 61-72.
- 6. B. S. Yamanashi and K. W. Bowers, Quarterly Progress Report No. 92, Research Laboratory of Electronics, M.I.T., January 15, 1969, pp. 43-59.
- 7. S. P. McGlynn, T. Azumi, and M. Kinoshita, op. cit., p. 263.
- 8. E. L. Wehry, in <u>Fluorescence</u>, G. G. Gilbault (ed.) (Mercel Dekker, Inc., New York, 1967).
- 9. D. S. McClure, J. Chem. Phys. 17, 665 (1949); 23, 1772 (1955).
- 10. D. S. McClure, J. Chem. Phys. 20, 682 (1952).

2

- 11. H. F. Hameka, in <u>The Triplet State</u>, A. B. Zahlan (ed.) (Cambridge University Press, London, 1967), pp. 1-27.
- 12. S. J. Fogel and H. F. Hameka, J. Chem. Phys. <u>42</u>, 132 (1965).
- 13. J. W. McIver and H. F. Hameka, J. Chem. Phys. 45, 767 (1966); 46, 825 (1967).
- 14. J. B. Lounsbury, J. Chem. Phys. <u>42</u>, 1549 (1965); <u>46</u>, 2193 (1967).
- 15. K. W. Bowers and C. Mazza, Bull. Am. Phys. Soc. 13, 170 (1968).
- 16. G. W. Wheland, J. Am. Chem. Soc. 64, 900 (1942).
- 17. L. Pawling, <u>The Nature of the Chemical Bond</u> (Cornell University Press, Ithaca, N.Y., 2d edition, 1940), p. 134.
- 18. R. S. Mulliken, C. A. Rice, and D. Orloff, J. Chem. Phys. <u>17</u>, 1248 (1949).
- 19. A. Abragam, <u>The Principles of Nuclear Magnetism</u> (Clarendon Press, Oxford, 1961), pp. 103-132.
- 20. P. Kottis and R. Lefebre, J. Chem. Phys. <u>41</u>, 379 (1964).
- 21. A. S. Davydov, Theory of Molecular Exciton (McGraw-Hill Book Company, New York, 1961).
- 22. D. P. Craig and S. H. Walmsleg, <u>Exciton in Molecular Crystals</u> (Benjamin, New York, 1968).
- 23. S. I. Choi, I. Jortner, S. A. Rice, and R. Silbey, J. Chem. Phys. <u>41</u>, 3294 (1964).