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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

The work of our group can be divided into three major areas.

1. Sonar

The central problem is still the development of effective processing techniques for
the output of an array with a large number of sensors. We have developed a state-
variable formulation for the estimation and detection problem when the signal is a sample
function from a nonstationary process that has passed through a dispersive medium.
Work has continued in this area and we are attempting to find effective solution proce-
dures for the equations that result. Iterative techniques to measure the interference and
modify the array processor are also being studied. The current work includes both the
study of fixed and adaptive arrays.

2. Communications

a. Digital Systems

We have continued to work on the problem of evaluating the performance in the prob-
lem of detecting Gaussian signals in Gaussian noise. The results are being applied to a
number of design problems in the radar and sonar fields. The problem of suboptimal
receiver design is being studied, at the present time.

The study of digital and analog systems operating when there is a feedback channel
available from receiver to transmitter continues. The performance of several subopti-
mal systems has been computed, and work continues on the design of optimal systems
and related problem design.

b. Analog Systems

Work continues on the problem of estimating continuous waveforms in real time. We
are using a state-variable approach based on Markov processes. Several specific prob-
lems have been studied experimentally. In order to investigate the accuracy obtainable
and the complexity required in these systems by allowing the state equation to be non-
linear, we may also include interesting problems such as parameter estimation. This
modification has been included and several parameter estimation problems are being
studied experimentally.

This work was supported in part by the Joint Services Electronics Programs
(U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E).
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3. Random Process Theory and Applications

a. State-Variable and Continuous Markov Process Techniques

Previously, we have described an effective method for obtaining solutions to the

Fredholm integral equation. As a part of this technique we found the Fredholm deter-

minant. Subsequent research has shown that a similar determinant arises in a number

of problems of interest. Specifically, we have been able to formulate several interesting

design problems and carry through the solution. Work in this area continues.

b. System Identification Problem

The system identification problem is still an item of research. Applications of inter-

est include measurement of spatial noise fields, random-process statistics, and linear

system functions.

c. Detection Techniques

Various extensions of the Gaussian detection problem are being studied. A particu-

lar topic of current interest is the detection of non-Gaussian Markov processes.

H. L. Van Trees

A. BARANKIN BOUND ON THE VARIANCE OF ESTIMATES OF

THE PARAMETERS OF A GAUSSIAN RANDOM PROCESS

1. Introduction

In many problems of interest, one wants to determine how accurately he can estimate

parameters that are imbedded in a random process. Often this accuracy is expressed

in terms of a bound, usually the Cramer-Rao bound.l Unless, however, one can verify

the existence of an efficient or possibly an asymptotically efficient estimate for this

bound, the tightness of the result remains a question. This is particularly true in the

threshold region.

The issue of tighter bounds then remains. Probably the most common response to

this is the Bhattacharyya bound.1 One can derive, however, a bound that is optimum, in

that it is the tightest possible. This is the Barankin bound. 2

Two forms for this bound have appeared. We present them briefly here. Barankin

has shown that for any unbiased estimate a(R), the greatest lower bound on the variance

is given by

2
n
Z a.h.

Var [a(R)-A] > max i=1  (1)

{ai }, {hi rr (R A+h1)2t
E I

i= 1
a.

1p A) (R
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The maximization is done over the set {a i } of arbitrary dimension, n, and the set {h i }
such that the ratio Pr a(R A+hi)/Pr a(R IA) E L2 and A + h is contained in the parameter

space.

Keifer has put the bound as expressed in Eq. 1 in functional form. 3 ' 4

[5 Hf(H) dH
Var [a(R)-A] >- max (2)

[f(H)] Pr rI A+H)
E f(H) dH

[Note: Barankin considered the bound for the sth absolute central moment, while

Keifer considered the variance only; however, his derivation is easily generalized

by applying a Minkowski inequality rather than the Schwarz inequality. Keifer also

assumed that f(H) could be expressed in terms of the difference of two densities.

Although the optimum choice of f(H) has this property, there is no apparent reason

to assume this a priori.]

Several applications of this bound to estimating the parameters of processes have

appeared in the literature. These all consider the problem of estimating the param-

eter when it is imbedded in the mean of a Gaussian random process, that is,

r(t) = m(t, A) + n(t), T o < t < Tf, (3)

where m(t, A) is conditionally known to the receiver, and n(t) is an additive noise that

is a Gaussian random process whose statistical description does not depend on A.

In this report we want to consider the situation when one has

r(t) = s(t:A) + n(t), T -< t < Tf, (4)o

where s(t:A) is a Gaussian random process whose covariance, Ks(t, u:A), depends on A,

and n(t) is an additive Gaussian noise. For simplicity, we assume: (a) that s(t:A)

has a zero mean, and (b) n(t) is a white process of spectral height No/2. Putting a finite
S 5-8

mean simply introduces terms whose analysis has already been treated. If n(t) is

nonwhite, it can be reduced to the case above by the customary whitening arguments.

We shall use Keifer's expression in Eq. 2 in our development. It is useful to write

Eq. 2 in a slightly different form by exchanging the squaring and expectation operation

in the denominator. This yields

( [f Hf(H) dH]2

Var [a(R)-A] > max , (5)
f (H) ff f(H 1 ) G(H1, H2:A) f(H) dHIdH 2
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where all integrals are over the domain of definition for G(H 1, H 2 :A), and

PrIa(R A+H1) Prla(R A+H2 )

G(H, H 2 :A) = E Pa R A) P( - A )

Pri(R A) pr (R A)

pra (R A+H 1 ) PrIa(R A+H 2 )
= dR. (6)

R Pr! a(R A+H2 )

In this form there are essentially three relatively distinct issues in calculating the

bound:

1. an effective computational method for evaluating the function G(H 1 , H 2 :A);

2. the optimal choice of the function f(H) so as to maximize the right side of Eq. 5;

and

3. effective computational alogrithms for implementing the bound.

We shall focus our discussion on the evaluation of G(H 1, H2 :A), since this is the manner

in which applying the bound for estimating the parameters of process essentially differs

from what has been done previously. We shall then make some comments on the second

and third issues as they relate to applying the bound.

2. Evaluation of the Function G(H 1, H 2 :A)

When the parameter to be estimated is imbedded simply in the mean of the observed

process, the calculation of G(H 1, H2 :A) is relatively straightforward.5, 6 We want to

consider the situation when the parameter is imbedded in the covariance function. Essen-

tially, our approach is first to assume that we are working with a sampled version of

the signal, next to derive the resulting bound, and then to let the sampling interval

become vanishingly small.

Let us assume that we are using a finite time averaging for our sampler. Then we

observe samples of the form

1 (n+)AT
rn = nT r(T) dT. (7)

We can consider the r to form a vector r. If AT is small compared with any correla-
n

tion times of s(t:A), then the elements of the covariance matrix of r, which we denote

by Kr(A), is given by

N 6

[K (A) K (nAT, mAT:A) + 2 AT (8)
r nm s 2 AT
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so that we have

prI (RIA) = expI 1 R TK-(A) R
ex 2 - r -

(2rr) N/2 detl/2[K (A)]

Substituting this expression in that for G(H 1, H 2 :A), Eq. 6, we obtain

G(H 1 , H 2 :A) =

det /2[Kr(A)]

(2r)N/ 2 detl/2[K (A+H 1 )] detl/2[K (A+H 2 )]

S 1RT 1K- 1  K-1 R] d.
exp-1_T [K (A+HI)+K _(A+H)-K (A) R R.

R - r
(10a)

Two observations are important here.

1. For the integral to be convergent, the matrix

K (A+H ) + K - (A+H )-K (A)
r 1 r (A+H 2) r

must be positive definite. It is easy to construct examples for which this would not be

true; consequently, there is often an inherent limitation on our choice of H 1 and H2 for

any particular example.

2. The matrix above is symmetric; therefore, if the integral does exist, that is, it

is convergent, it can be integrated conveniently by putting it into the form of a multivar-

iate Gauss density. Doing this yields

G(H 1, H :A)

det[K(A)] det[K(A+H 1 + KI(A+H-K(A

det[Kr(A+H1 )] det[Kr(A+H 2 )]
(10b)

We now use some of the properties of determinants to obtain

d et K (A+H ) + K (A+H) - K ( ) K (+H) K(A+H2 ) K 1(A)]

G(H 1, H2 :A)

We now want t

det[Kr(A)]

= det[Kr (A)]det-1/2{(Kr(A+H1) + Kr(A+H 2 )) Kr(A) - Kr(A+H 1) Kr(A+H 2 )}.

(11)

o let the sampling interval approach zero so as to collapse this to
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functional form. First, we separate the white-noise component. Substituting Eq. 8 in

Eq. 11 gives

G(H 1 , H 2 :A) = det Ks(A)

X det Ks(A+H ) Ks(A)

N
+ Ks(A+H2 ) Ks(A) +-2 AT

- K (A+H ) Ks(A+H2 )

det I +- K(A) AT
I N --s T

N
o

2

N 1

+ AT (Ks(A+H 1)+Ks(A))

(Ks(A+H 2 )+Ks(A)) + (N)2
( )2

1
-T (Ks(A+H 1)+K(A+H ) )

X det 1/2 +__ K (AH ) Ks(A) AT
0 _o~

2( 

N

+ (2o I

(AT)2

I

(AT)
2

N
+ o

2 ~
I

(AT)2

2
+N K(A+H2 ) Ks(A) AT

O -

N K (A+H ) K (A+H 2 ) AT 1 + 2Ks(A) "

Next, we define the kernel

Y[t, T:H 1 , H2 , A]
+ T f K (t ' u:A+H 2 ) Ks(u, T:A) du

o

T

0f
- f K (t,u:A+H) Ks(, T:A+H) du

T
+ 2K (t, T).

5

If we examine the second determinant in Eq. 12, we find that we have the identity

matrix plus 2/No times L(H 1 ,H 2,A), which is the sampled version of the kernel

(t, u:H 1 , H 2 ,A); that is, we have

G(H 1 , H 2 :A) = det + N Ks(A) AT X det 1/ + N L(H 1 , H 2 :A) AT].2 1, N 0 sOTI 1, 0 2 O
(14)
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N
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If we now let the sample interval approach zero, we observe that each of the determi-

nants becomes a Fredholm determinant evaluated at 2/No , or

2lim det +NKs(A) A = - : Ks(t, u: A), (15)
AT--0 o -

--im det + Ks(A+H 1) Ks(A) AT + 2 Ks(A+HZ) Ks(A) AT

So K (A+H i) K(A+H ) AT + 2K (A)

0 detE + 2 L(H H2, A) = y-- : (t,u:H 1 H 2 :A)). (16)
AT--0 o 0

[We note that the Fredholm determinant has the familiar form

oo

9 (z:K(t,u:A)) = Ii (1+zX.(A))
W i= 1

with the Xi(A) being the eigenvalues of the homogeneous Fredholm integral equation asso-

ciated with the kernel K(t,u:A).] The expression for G(H 1 ,H 2 :A) then becomes

G(H 1 ,H 2 :A) = - Ks(t, u:A) : (t u:H 2:A)(17)

Equation 17 is our basic result. Unless the computation of each of these Fredholm

determinant expressions is tractable, we have not made much progress. Some obser-

vations are useful. The first Fredholm determinant is a constant with respect to H 1 and

H 2 and it is often encountered in problems in communication theory. Its evaluation is

well understood. The operator Y[t,u:H 1, H :A] does not have any of the properties with

which we are accustomed to working. It is generally nonsymmetric; and although we can

guarantee that the determinant is real and positive for any value of its argument

z > 2/No , the operator itself is not necessarily positive definite.

There are two important situations in which we can evaluate the determinants by

methods that do not involve a direct computation of the eigenvalues of the kernels. The

first concerns stationary processes observed over long time intervals, while the second

is for the case in which the random process s(t:A) has a state variable of its generation.

The former is easier both to derive and describe, and we can discuss it conveniently

here. The latter is straightforward, but lengthy; therefore, we simply point out the

essential points and material needed to derive its realization, and defer the actual der-

ivation to a reference.
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We assume that both s(t:A) and n(t) are stationary processes and that the interval

length, T = T - T , is long compared with the effective correlation time of s(t:A). Under

these assumptions, K and Y both approach being a stationary operator and their eigen-

values have the same distribution as their respective spectra. For the first determinant

we have

In : K(t,u:A) =
N 0

In I + 2 X (A)on1+

00
n 2 d(:A)

In + S s (:A) 2Tr
o

(18)

It is easy to verify by simple Fourier transform operations that the spectrum associated

with Y [t, u:H1, H 2 :A] is given by

SL(w:H1 , H :A) = 4- {[Ss(c:A+H 1 ) + S(w:A+H 2 )] Ss(w:A)

- Ss(w:A+HI) Ss(w:A+H 2 )} + 2Ss(w:A). (19)

Therefore, we have

n : tu 1 j In I + -- SL(Jw:H H2 :A) d
- 0 1'

Exponentiating and substituting in the expression for G(H 1, H 2 :A), we obtain

G(H 1 ,H 2 :A) = exp T n (+ 2 Ss(:A) - -n 1+ - SL(w:H1H 2 :A)

(20)

(21)

with SL(w:H 1 , H :A) given by Eq. 19.

We can obtain one simple check of the ab(

strate that our original bound given by Eq.

we choose f(H) to be a doublet, ul(H). This

1

Var [(R)-A] > 2 G(HH 2 :A)

1 2 H =H=0
1 2

ove result. It is straightforward to demon-

2 reduces to the Cramer-Rao bound if

yields

1

_ A

Straightforward differentiation and noting that
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2 2
1 + ? SL (0:0, 0:A) = 1 + 2 S (w:A) (23)

NL Ns
0 0 )2

yields

a G(H 1 , H2:A)

aH1 H 2

2 aSs( :A)
S aA

HI=H2=0 1 + S (w:A
0

T
2 oo

(24)
Sn + S (w:A) .

8A N s 2
0 O1

Substituting this in Eq. 22 yields the Cramer-Rao bound for estimating the parameters

of a random process.10

We wish to obtain realization of the bound when s(t:A) is generated by a system

described by state variables. We already know how to evaluate the Fredholm determi-

nant associated with the operation K(t,u:A).11, 12 The calculation for the determinant

associated with Y(t, u:H 1 , H2 :A) can be derived in a manner that is essentially analogous
11

to the derivation for K(t, u:A) performed previously. We outline this derivation briefly

now.

1. Referring to Eq. 13 which defines the operator

can implement its operation with the block diagram in

2 [t, u:H1, H2:A], we see that we

Fig. XXIII- 1.

Fig. XXIII-I. Realization of the operator Y [t, u:H 1, H2 :A] in terms of
covariance operations.
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Using previous results 1, we know how to specify a state-variable description of each

of the blocks in this diagram; hence the total system has a state-variable description.

2. Using this description and imposing the eigenfunction condition

T
f [t, u:H 1, H:A] (u) du = X(t), T t<Tf, (25)

0

allows us to specify a transcendental equation in terms of X whose roots are the eigen-

values of Eq. 25. We apply a normalization to this equation and evaluate it at X = -2/No

to yield the desired Fredholm determinant. We emphasize that given the state-variable

realization of the operator, the steps in the derivation are essentially parallel to those

developed previously.11 The specific results are given elsewhere. 13

The major difficulty with this approach is that the system in Fig. XXIII-1 implies

an 8N dimensional system, where N is the dimension of the system generating s(t:A).

This large dimensionality imposes stringent computational demands for even relatively

small N, especially when the time interval, T, is large. We hope that in many partic-

ular applications this dimensionality can be reduced; for as it currently stands, an

approach using sampling, for example, evaluation of Eq. 11 directly, may be more expe-

dient from a practical computational viewpoint. We also comment that the state-variable

realization of the Cramer-Rao inequality can be derived from these results.

3. Discussion

We have discussed a method of using the Barankin bound for bounding estimates of

the parameters of Gaussian random processes. We focused our attention on calculating
6

G(H 1 ,H 2 :A). The optimum choice of f(H) can be shown to be

f(H 1 ) = G- (H 1 , H 2 :A) H 2 dH 2 ,

where G- (H 1, H 2 :A) is the inverse kernel associated with G(H 1 , H 2 :A), so that the bound

is given by

Var [a(R)-A] > H1G-I(H1, H :A) H2 dHdH2
hjr 1 1 2 H2  1 2'

Due to the complexity of G(H 1, H 2 :A) as a function of H 1 and H 2 , one must resort
-1

to numerical methods for calculating either G (H 1 , H 2 :A) or the bound. This introduces

the problem of effective computational procedures. We shall defer this issue until we

have obtained more complete numerical results than we have at present. Some of our

comments, however, have been summarized elsewhere.13

A. B. Baggeroer
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